CN108057446A - 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法 - Google Patents

氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法 Download PDF

Info

Publication number
CN108057446A
CN108057446A CN201711337747.6A CN201711337747A CN108057446A CN 108057446 A CN108057446 A CN 108057446A CN 201711337747 A CN201711337747 A CN 201711337747A CN 108057446 A CN108057446 A CN 108057446A
Authority
CN
China
Prior art keywords
nanocatalysts
solution
prepared
ammonia borane
chemical plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201711337747.6A
Other languages
English (en)
Inventor
王艳
孟伟
白树崇
齐楠
戚克振
夏博书
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Normal University
Original Assignee
Shenyang Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Normal University filed Critical Shenyang Normal University
Priority to CN201711337747.6A priority Critical patent/CN108057446A/zh
Publication of CN108057446A publication Critical patent/CN108057446A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Catalysts (AREA)

Abstract

本发明属于无机纳米材料领域,涉及一种氨硼烷水解制氢Co‑Mo‑B纳米催化剂及制备方法,以金属或非金属基底为载体,将基底依次用热碱溶液、酸侵蚀液、敏化液和活化液处理后,浸入化学镀液中进行化学镀,再经洗涤、干燥,即得以基底为载体的、具有多种形貌的Co‑Mo‑B纳米催化剂。该方法过程简单、成本低廉、易重复、纯度高、适宜大规模制备,且制备的纳米催化材料在催化氨硼烷水解制氢上具有较高的催化活性和较好的循环稳定性,这为氨硼烷水解制氢在质子交换膜燃料电池方面的应用提供了有效的技术支撑,加快了其实用化进程。

Description

氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
技术领域
本发明涉及一种氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法,属于无机纳米材料领域。
背景技术
随着全球经济的迅猛发展,煤、石油和天然气等化石能源的不断消耗,氢能成为解决当前能源危机的一种新能源。氢能由于具有清洁高效的优点而能够应用于生产生活多个方面,而成为具有开发潜力的能源之一。然而,怎样制氢?靠什么来制氢?这些问题一直是广大科研工作者极为关注的研究领域。在众多的储氢材料中,氨硼烷(NH3BH3,AB)以其高质量储氢量(19.6wt.%)、相对成本较低等优点成为较有潜力的储氢材料之一。水解是氨硼烷与水反应放出氢气的过程,此反应无催化剂在室温下不反应,加入催化剂后均可实现室温快速、大量放氢(见式(1))。水解制氢的关键在于研制高效廉价催化剂。
NH3BH3+2H2O→NH4 ++BO2 +3H2 (1)
氨硼烷可以为便携式电源、燃料电池以及电动汽车等提供氢源,引起了人们的广泛关注。上述制氢反应可通过催化剂来调节,因此催化剂开发成为氨硼烷制氢领域亟待解决的关键问题之一。
在氨硼烷水解放氢反应中,Pt、Ru、Pd、Ir、Rh等贵金属材料催化剂的使用(Q.Yao,Z.H.Lu,Y.Jia,X.Chen,X.Liu,Int.J.Hydrogen Energy,40(2015)2207-2215;B.L.Conley,D.Guess,T.J.Williams,J.Am.Chem.Soc.,133(2011)14212-14215.)均可有效提高氨硼烷的放氢速率,但高昂的成本不适合工业生产和生活需要,阻碍其广泛应用。因此,为了在提高催化剂催化速率的同时降低材料成本,非贵金属基催化剂则成为了又一研究热点。主要包含Ni,Co,Co–P,Co–B,Cu–B,Co–Ni–B,Ni–B,Co–Mo–B以及Co–Ni–P等Co基和Ni基催化剂。随着研究的不断深入,三元非贵金属催化剂材料被广泛关注,这可能是三种元素之间的协同效应,可有效提高催化效率,增强催化剂的稳定性,尤其是三元非贵金属Co–Mo–B催化剂材料因具有较好的催化活性而备受关注。
传统的Co–Mo–B材料多采用液相还原法制备成粉状,但是粉体材料存在一定的问题,如易于团聚,在循环使用过程难于从体系中分离,这在很大程度上影响了其催化氨硼烷水解制氢的活性和循环稳定性。实际上,材料的性质不仅与其元素组成、纯度有关,还与材料本身的形貌、结构以及颗粒尺寸等因素有很大关系,因此,这就为Co–Mo–B材料的制备过程提出了更高的要求,不仅能制备出Co–Mo–B纳米材料,而且还要重视材料本身的微观形貌以及颗粒尺寸。目前,采用化学镀一步合成形貌可控的Co–Mo–B纳米催化材料还未见报道。
发明内容
本发明以解决上述粉体材料中遇到的问题为目的,旨在提供一种粒径可控的Co–Mo–B纳米催化材料及制备方法。
本发明是这样实现的,提供一种氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法,以金属或非金属基底为载体,将基底依次用热碱溶液、酸侵蚀液、敏化液和活化液处理后,浸入化学镀液中进行化学镀,再经洗涤、干燥,即得以金属或非金属基底为载体的、具有多种形貌的Co-Mo-B纳米催化剂。
具体的,上述方法包括如下步骤:
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液:
称取5-10g氢氧化钠溶于100mL水中,并在40-80℃的恒温水浴中恒温配制成热碱溶液;由30-60mL磷酸、30-50mL醋酸和5-20mL硝酸配制成的混合液为酸侵蚀液;由1g二水氯化亚锡超声分散在5mL盐酸中,加蒸馏水定容至1L配制成敏化液;由0.1g氯化钯超声溶解在1mL盐酸中,加蒸馏水定容至1L配制成活化液;
2)配制化学镀液:
a)将一定量的钴盐和钼酸盐先后溶于80mL蒸馏水中配成0.05~1.0mol/L主盐溶液;b)将一定量的的甘氨酸加入到所述主盐溶液中,使主盐与甘氨酸均匀混合;c)将5-15g次磷酸钠作为还原剂加入到步骤b)配好的混合溶液中,用一定浓度的氢氧化钠溶液调节体系pH至10-13之间,即为化学镀液;d)将化学镀液置于50~90℃的恒温水浴中恒温待用;
3)制备Co-Mo-B纳米催化剂:
将一定面积的金属或非金属基底依次用上述步骤1)中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,侵入步骤2)中配好的化学镀液中进行化学镀,施镀时间为5min,最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,得到Co-Mo-B纳米催化剂。
进一步地,,所述基底为碳布、Cu片、Ni片、泡沫Cu、泡沫Ni或泡沫海绵中的一种。
本发明还提供了一种利用上述方法制备的氨硼烷水解制氢Co-Mo-B纳米催化剂,制得的Co-Mo-B纳米催化剂的形貌为由纳米尺寸的颗粒堆积而成的球状、类珊瑚状、类冰淇淋状。
利用上述方法制备而得的Co-Mo-B纳米催化剂在催化氨硼烷水解制氢过程中放氢速率为5100mLmin-1g-1,经过五次循环利用后,催化效率为3159.1mLmin-1g-1
与现有技术相比,本发明的优点在于:
使用低成本的反应物,通过调节基底材料、体系的pH值,还原剂浓度,施镀时间,在室温下采用化学镀法制备了形貌可控Co–Mo–B纳米催化材料,主要包括球状、类珊瑚状、类冰淇淋状。条件的调节改变了化学镀过程中金属Co、Mo和非金属B的沉积速度,改变了晶核生长速度以及生长方向,最终实现了Co–Mo–B催化材料的形貌可控制备,这在一定程度上实现了材料的有效筛选,降低颗粒尺寸,增加材料的比表面积,提高了其催化活性。尤其是在泡沫海绵上制备的球形纳米级该催化剂材料在催化氨硼烷水解制氢体系中表现了较好的催化活性,其放氢速率高达5100.0mL·min-1·g-1,该速率其活化能为41.7kJ·mol-1,该催化活性明显优于多数非贵金属催化材料,甚至远远超过贵金属催化材料,这在质子交换膜燃料电池方面将具有广泛的应用前景。
附图说明
图1为化学镀制备的三元非贵金属Co–Mo–B纳米催化材料CMB-A的扫描电镜(SEM)图;
图2化学镀制备的三元非贵金属Co–Mo–B纳米催化材料CMB-B的扫描电镜(SEM)图;
图3化学镀制备的三元非贵金属Co–Mo–B纳米催化材料CMB-C的扫描电镜(HRSEM)图;
图4为制备的三元非贵金属Co–Mo–B纳米催化材料CMB-E催化氨硼烷水解(25℃)放氢速率曲线图;
图5制备的三元非贵金属Co–Mo–B纳米催化材料CMB-E催化氨硼烷水解放氢的循环性能测试曲线。
具体实施方式
下面结合实施例进一步说明本发明方法的过程和效果。
实施例1
碳布负载的Co–Mo–B纳米催化材料的制备:
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液(以下实施例均使用该热碱溶液、酸侵蚀液、敏化液以及活化液):
称取9g氢氧化钠溶于100mL水中,并在60℃的恒温水浴中恒温配制成热碱溶液;量取48mL磷酸、33mL醋酸、19mL硝酸混合配成100mL的酸侵蚀液;称取1g二水氯化亚锡超声溶解在5mL盐酸中,加蒸馏水定容至1L,配成敏化液;配制活化液:称取0.1g氯化钯超声溶解在1mL盐酸中,加蒸馏水定容至1L,配成活化液。
2)配制化学镀液:①取1.1884g六水合氯化钴溶于80mL蒸馏水中配成钴盐溶液;②取1.2099g的钼酸钠溶于上述配制好的钴盐溶液中,搅拌溶解,配制成主盐溶液;③将4.5022g甘氨酸加入到上述主盐溶液中,使主盐与甘氨酸混合均匀;④将2.2735g硼氢化钠作为还原剂加入到上述混合溶液中,并通过一定氢氧化钠溶液调节体系pH至11.5,置于25℃的恒温水浴中恒温待用。
3)碳布负载的Co–Mo–B纳米催化材料的制备:将面积为1×1cm2的碳布依次用上述步骤1中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,浸入步骤2中配好的镀液中进行化学镀,施镀时间为5min。最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,所得催化材料记为CMB-A。图1为对应条件下制备的Co–Mo–B催化材料CMB-A的扫面电镜(SEM)图。从图可以看出,制备的Co–Mo–B表现90-110nm之间的球形颗粒结构。
实施例2
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液同实施例1步骤1。
2)配制化学镀液:①取1.1890g六水合氯化钴溶于80mL蒸馏水中配成钴盐溶液;②取1.2073g的钼酸钠溶于上述配制好的钴盐溶液中,搅拌溶解,配制成主盐溶液;③将4.5000g甘氨酸加入到上述主盐溶液中,使主盐与甘氨酸混合均匀;④将1.5399g硼氢化钠作为还原剂加入到上述混合溶液中,并通过一定氢氧化钠溶液调节体系pH至12,置于25℃的恒温水浴中恒温待用。
3)泡沫镍负载的Co–Mo–B纳米催化材料的制备:将面积为1×1cm2的泡沫镍依次用上述步骤1中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,浸入步骤2中配好的镀液中进行化学镀,施镀时间为5min。最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,所得催化材料记为CMB-B。图2为对应条件下制备的Co–Mo–B催化材料CMB-B的扫面电镜(SEM)图。从图可以看出,制备的Co–Mo–B是由60-80nm的小颗粒纠结在一起的珊瑚状结构。
实施例3
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液同实施例1步骤1。
2)配制化学镀液:①取1.1858g六水合氯化钴溶于80mL蒸馏水中配成钴盐溶液;②取1.2056g的钼酸钠溶于上述配制好的钴盐溶液中,搅拌溶解,配制成主盐溶液;③将4.5027g甘氨酸加入到上述主盐溶液中,使主盐与甘氨酸混合均匀;④将1.5350g硼氢化钠作为还原剂加入到上述混合溶液中,并通过一定氢氧化钠溶液调节体系pH至11,置于25℃的恒温水浴中恒温待用。
3)泡沫镍负载的Co–Mo–B纳米催化材料的制备:将面积为1×1cm2的泡沫镍依次用上述步骤1中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,浸入步骤2中配好的镀液中进行化学镀,施镀时间为5min。最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,所得催化材料记为CMB-C。图3为对应条件下制备的Co–Mo–B催化材料CMB-C的扫面电镜(SEM)图。从图可以看出,制备的Co–Mo–B是由40-85nm的小颗粒堆积在一起的类冰淇淋状结构。
实施例4
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液同实施例1步骤1。
2)配制化学镀液:①取1.1927g六水合氯化钴溶于80mL蒸馏水中配成钴盐溶液;②取1.2081g的钼酸钠溶于上述配制好的钴盐溶液中,搅拌溶解,配制成主盐溶液;③将4.5081g甘氨酸加入到上述主盐溶液中,使主盐与甘氨酸混合均匀;④将1.5392g硼氢化钠作为还原剂加入到上述混合溶液中,并通过一定氢氧化钠溶液调节体系pH至11,置于25℃的恒温水浴中恒温待用。
3)铜片负载的Co–Mo–B纳米催化材料的制备:将面积为1×1cm2的铜片依次用上述步骤1中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,浸入步骤2中配好的镀液中进行化学镀,施镀时间为5min。最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,所得催化材料记为CMB-D。
实施例5
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液同实施例1步骤1。
2)配制化学镀液:①取1.1899g六水合氯化钴溶于80mL蒸馏水中配成钴盐溶液;②取1.2104g的钼酸钠溶于上述配制好的钴盐溶液中,搅拌溶解,配制成主盐溶液;③将4.5020g甘氨酸加入到上述主盐溶液中,使主盐与甘氨酸混合均匀;④将2.2713g硼氢化钠作为还原剂加入到上述混合溶液中,并通过一定氢氧化钠溶液调节体系pH至11,置于25℃的恒温水浴中恒温待用。
3)泡沫海绵负载的Co–Mo–B纳米催化材料的制备:将面积为1×1cm2的泡沫海绵依次用上述步骤1中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,浸入步骤2中配好的镀液中进行化学镀,施镀时间为5min。最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,所得催化材料记为CMB-E。
实施例5
将催化剂CMB-E加入到氨硼烷水溶液溶液中,进行放氢动力学性能测试实验,具体为:称取0.0400g固体氨硼烷溶解于8mL蒸馏水中配成澄清的氨硼烷水溶液,待完全溶解后,转移至25mL单口瓶中,立即加入一定量的上述制备好的催化剂,计时开始,测试温度为25℃。
依上述方法对催化剂CMB-E进行催化氨硼烷水解制氢动力学性能测试的实验结果如图4示。可见,该催化剂催化氨硼烷水解的放氢速率(以单位质量催化剂的用量计算)为5100mLmin-1g-1
重复上述操作4次,测得催化剂CMB-E催化氨硼烷水解制氢的循环性能曲线如图5示。可以看出:催化剂CMB-E催化氨硼烷水解制氢的放氢速率第一次为5100mLmin-1g-1,第五次为3159.1mLmin-1g-1,也就是说,经过五次循环利用后,其催化效率仍保持在第一次的61.9%。通过与文献进行对比,可以发现,即使经过五次吸放氢循环后,第五次的放氢速率也远远高于多数非贵金属催化剂材料(Paladini M,Arzac GM,Godinho V,et al.AppliedCatalysis B:Environmental.2014;158-159:400-9),甚至是贵金属催化剂材料(Basu S,Brockman A,Gagare P,et al.J Power Sources.2009;188:238-43),这说明该催化剂具有较高的催化氨硼烷水解制氢的催化活性。
结果表明,本发明提供的一种氨硼烷水解制氢Co-Mo-B纳米催化剂及其制备方法,通过调节基底材料、体系的pH值,还原剂浓度,施镀时间,在室温下采用化学镀法制备了形貌可控Co–Mo–B纳米催化材料,主要包括球状、类珊瑚状、类冰淇淋状。条件的调节改变了化学镀过程中金属Co、Mo和非金属B的沉积速度,改变了晶核生长速度以及生长方向,最终实现了Co–Mo–B催化材料的形貌可控制备,这在一定程度上实现了材料的有效筛选,降低颗粒尺寸,增加材料的比表面积,提高了其催化活性。,这为氨硼烷水解制氢在质子交换膜燃料电池方面的应用提供了有效的技术支撑,加快了其实用化进程。

Claims (5)

1.氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法,其特征在于,以金属或非金属基底为载体,将基底依次用热碱溶液、酸侵蚀液、敏化液和活化液处理后,浸入化学镀液中进行化学镀,再经洗涤、干燥,即得以金属或非金属基底为载体的、具有多种形貌的Co-Mo-B纳米催化剂。
2.氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法,其特征在于,包括如下步骤:
1)配制热碱溶液、酸侵蚀液、敏化液以及活化液:
称取5-10g氢氧化钠溶于100mL水中,并在40-80℃的恒温水浴中恒温配制成热碱溶液;由30-60mL磷酸、30-50mL醋酸和5-20mL硝酸配制成的混合液为酸侵蚀液;由1g二水氯化亚锡超声分散在5mL盐酸中,加蒸馏水定容至1L配制成敏化液;由0.1g氯化钯超声溶解在1mL盐酸中,加蒸馏水定容至1L配制成活化液;
2)配制化学镀液:
a)将一定量的钴盐和钼酸盐先后溶于80mL蒸馏水中配成0.05~1.0mol/L主盐溶液;b)将一定量的的甘氨酸加入到所述主盐溶液中,使主盐与甘氨酸均匀混合;c)将5-15g次磷酸钠作为还原剂加入到步骤b)配好的混合溶液中,用一定浓度的氢氧化钠溶液调节体系pH至10-13之间,即为化学镀液;d)将化学镀液置于50~90℃的恒温水浴中恒温待用;
3)制备Co-Mo-B纳米催化剂:
将一定面积的金属或非金属基底依次用上述步骤1)中配制好的热碱溶液、酸侵蚀液、敏化液以及活化液处理后,侵入步骤2)中配好的化学镀液中进行化学镀,施镀时间为5min,最后将镀好的催化剂材料取出,依次用蒸馏水和无水乙醇清洗干净后,室温下真空干燥24h,得到Co-Mo-B纳米催化剂。
3.如权利要求1或2任一所述的氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法,其特征在于,所述基底为碳布、Cu片、Ni片、泡沫Cu、泡沫Ni或泡沫海绵中的一种。
4.利用如权利要求1或2任一所述的氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法制备而得的Co-Mo-B纳米催化剂,其特征在于,制得的Co-Mo-B纳米催化剂的形貌为由纳米尺寸的颗粒堆积而成的球状、类珊瑚状、类冰淇淋状。
5.利用如权利要求1或2任一所述的氨硼烷水解制氢Co-Mo-B纳米催化剂的制备方法制备而得的Co-Mo-B纳米催化剂,其特征在于,制得的Co-Mo-B纳米催化剂在催化氨硼烷水解制氢过程中放氢速率为5100mLmin-1g-1,经过五次循环利用后,催化效率为3159.1mLmin-1g-1
CN201711337747.6A 2017-12-14 2017-12-14 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法 Pending CN108057446A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711337747.6A CN108057446A (zh) 2017-12-14 2017-12-14 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711337747.6A CN108057446A (zh) 2017-12-14 2017-12-14 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法

Publications (1)

Publication Number Publication Date
CN108057446A true CN108057446A (zh) 2018-05-22

Family

ID=62138799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711337747.6A Pending CN108057446A (zh) 2017-12-14 2017-12-14 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN108057446A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647369A (zh) * 2019-01-15 2019-04-19 浙江师范大学 多孔碳纳米催化剂、制备方法及其应用
CN111495370A (zh) * 2020-05-08 2020-08-07 沈阳师范大学 扭结的纳米带状Co-Fe-B催化剂、制备方法及其应用
CN111569933A (zh) * 2020-06-22 2020-08-25 中认英泰检测技术有限公司 基于多孔碳的金属催化剂、其制备方法及应用
CN112237933A (zh) * 2020-10-19 2021-01-19 重庆大学 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法
US11027259B2 (en) * 2017-12-05 2021-06-08 Huizhou University Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen
CN114225955A (zh) * 2021-12-24 2022-03-25 沈阳师范大学 一种双载体修饰三元合金纳米腔催化剂及其制备方法与应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11027259B2 (en) * 2017-12-05 2021-06-08 Huizhou University Preparation method for hollow molybdate composite microspheres and method for catalyzing ammonia borane hydrolysis to produce hydrogen
CN109647369A (zh) * 2019-01-15 2019-04-19 浙江师范大学 多孔碳纳米催化剂、制备方法及其应用
CN109647369B (zh) * 2019-01-15 2022-03-25 浙江师范大学 多孔碳纳米催化剂、制备方法及其应用
CN111495370A (zh) * 2020-05-08 2020-08-07 沈阳师范大学 扭结的纳米带状Co-Fe-B催化剂、制备方法及其应用
CN111569933A (zh) * 2020-06-22 2020-08-25 中认英泰检测技术有限公司 基于多孔碳的金属催化剂、其制备方法及应用
CN111569933B (zh) * 2020-06-22 2021-08-03 中认英泰检测技术有限公司 基于多孔碳的金属催化剂、其制备方法及应用
WO2021258425A1 (zh) * 2020-06-22 2021-12-30 中认英泰检测技术有限公司 基于多孔碳的金属催化剂、其制备方法及应用
CN112237933A (zh) * 2020-10-19 2021-01-19 重庆大学 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法
CN114225955A (zh) * 2021-12-24 2022-03-25 沈阳师范大学 一种双载体修饰三元合金纳米腔催化剂及其制备方法与应用

Similar Documents

Publication Publication Date Title
CN108057446A (zh) 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
Wei et al. Fast hydrogen generation from NaBH4 hydrolysis catalyzed by nanostructured Co–Ni–B catalysts
Wang et al. Co-P nanoparticles supported on dandelion-like CNTs-Ni foam composite carrier as a novel catalyst for hydrogen generation from NaBH4 methanolysis
Chou et al. Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts
Zhou et al. Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective
Krishnan et al. Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation
WO2020073398A1 (zh) 超薄Ni-Fe-MOF纳米片及其制备方法和应用
Wang et al. Cobalt–copper–boron nanoparticles as catalysts for the efficient hydrolysis of alkaline sodium borohydride solution
CN108091889A (zh) 硼氢化钠水解制氢Co-Ni-P纳米催化剂及制备方法
Liu et al. A novel material of nanoporous magnesium for hydrogen generation with salt water
Wang et al. Hydrogen generation from alkaline NaBH4 solution using nanostructured Co–Ni–P catalysts
CN101347736A (zh) 一种用于硼氢化物催化水解制氢催化剂及其制备方法
CN100545305C (zh) 非金属基体化学镀的一种活化工艺
CN104046967B (zh) 一种Co-P纳米催化材料的制备方法
CN108479820B (zh) 一种硼氢化钠醇解制氢用块状载体纳米型合金催化剂及其制备方法
Li et al. Enhanced catalytic activity of the nanostructured Co–W–B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane
Feng et al. Durable and high performing Ti supported Ni0. 4Cu0. 6Co2O4 nanoleaf-like array catalysts for hydrogen production
CN113171776A (zh) 用于硼氢化钠溶液水解制氢的负载型催化剂、制备方法及应用
Lee et al. Development of 3D open-cell structured Co-Ni catalysts by pulsed electrodeposition for hydrolysis of sodium borohydride
CN108246332A (zh) 一种二维非贵金属负载型催化剂及其制备方法和应用
CN110013855B (zh) 高效氧化钴镍/氢氧化镍复合物电催化剂及其制备方法和应用
Cai et al. High performance of AuPt deposited on Ni nanoparticles in ethylene glycol oxidation
Wang et al. Nanostructured thin–film Co–B catalysts for hydrogen generation from hydrolysis of ammonia borane
Lu et al. Electroless plating synthesis of bifunctional crystalline/amorphous Pd-NiFeB heterostructure catalysts for boosted electrocatalytic water splitting
US20090196821A1 (en) Plated cobalt-boron catalyst on high surface area templates for hydrogen generation from sodium borohydride

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20180522