CN112237933A - 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法 - Google Patents

制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法 Download PDF

Info

Publication number
CN112237933A
CN112237933A CN202011117134.3A CN202011117134A CN112237933A CN 112237933 A CN112237933 A CN 112237933A CN 202011117134 A CN202011117134 A CN 202011117134A CN 112237933 A CN112237933 A CN 112237933A
Authority
CN
China
Prior art keywords
catalyst
preparing
foamed nickel
reaction
sodium borohydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011117134.3A
Other languages
English (en)
Inventor
李俊
庄佑勋
徐嘉豪
付乾
张亮
朱恂
廖强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202011117134.3A priority Critical patent/CN112237933A/zh
Publication of CN112237933A publication Critical patent/CN112237933A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了制备Co‑P‑B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:包括以下步骤:一:制备Co‑P‑B催化剂浆料;二:喷涂法负载Co‑P‑B催化剂于泡沫镍上:负载前,先将泡沫镍超声清洗,以去除泡沫镍表面的氧化物与杂质;再将通过步骤一制得的Co‑P‑B催化剂浆料均匀喷涂于泡沫镍上,并在真空干燥箱中烘干;三:催化硼氢化钠水解制氢:将负载好Co‑P‑B催化剂的泡沫镍制作成催化床放入反应室中,将反应液硼氢化钠碱性溶液通过输送单元输入反应室中,反应液与催化床接触后,发生水解反应生成H2,反应生成的H2经过气液分离单元分离出;本发明可广泛应用于环保、能源等领域。

Description

制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法
技术领域
本发明涉及氢气制备的方法,具体涉及制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法。
背景技术
便携式氢燃料电池系统目前已在无人机、车用、机器人、军事、农业等领域得到广泛关注。该系统由储氢部件与氢燃料电池堆两部分组成,目前限制其能量密度的主要瓶颈在于储氢部件。常用的储氢方式主要有压缩氢气瓶、液化氢储存、金属氢化物、化学氢化物等。其中,化学氢化物储氢率高,安全便捷,易于处理与运输,可实现低压在线供氢,具有独特的发展优势。
氢化物中,硼氢化钠(NaBH4)水解制氢是一种极具潜力的在线制氢方式,其水解方程式为:
NaBH4+2H2O→NaBO2+4H2ΔH=-217kJ/mol
常温下,NaBH4水解速率较为缓慢,在溶液中加入NaOH、KOH等碱性稳定剂,可抑制其自水解反应的发生。在pH=14时,NaBH4碱性溶液可稳定储存数月,在催化剂的作用下即可实现快速产氢。采用NaBH4碱性溶液在线水解制氢的优点主要有:1)硼氢化钠质量储氢率高,理论值为10.8wt.%;2)反应所制得氢气纯度高,气相产物仅有氢气;3)反应转化率高,产氢速率快;4)无毒不易燃,可稳定储存,方便运输与携带;5)副产物为偏硼酸钠(NaBO2),性质稳定,无毒不易燃,对环境无害。
催化床在硼氢化钠水解制氢系统中至关重要,是影响制氢速率与NaBH4反应转化率的决定性因素。贵金属催化剂如铂、铑、钌等催化水解性能良好,但储量有限,价格昂贵,从而限制了其规模化生产和应用。非贵金属催化剂如钴、镍、铜及其合金显示出高效的催化活性,价格低廉,是工业应用的最佳选择。其中,以钴为催化活性中心的Co-P-B是一种高效的NaBH4水解制氢催化剂。在连续流反应器中,粉末状催化剂易造成催化剂团聚,管道堵塞,反应之后难以分离回收再利用的问题,因此常将催化剂负载在固态基底上使用。常用的负载基底包括:碳、硅、泡沫镍、铝、离子交换树脂、金属有机骨架等。其中,泡沫镍机械强度高,具有发达的孔隙结构,在催化反应中能保持良好的热化学稳定性,是催化NaBH4水解制氢的良好基底。
发明内容
本发明所要解决的技术问题在于提供一种制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法。
本发明的技术方案是,一种制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:包括以下步骤:
步骤一:制备Co-P-B催化剂浆料,具体为:
(1)、配制Co2+盐与H2PO2 -盐的混合溶液,记为前驱体溶液;
(2)、配制硼氢化钠碱性溶液;
(3)、将步骤(2)配制的碱性溶液缓慢加入到前驱体溶液中,剧烈搅拌,获得含有Co-P-B催化剂颗粒的悬浊液;
(4)待反应完全后,将悬浊液静置至室温,并利用离心机将Co-P-B催化剂颗粒从悬浊液中分离,再将Co-P-B催化剂颗粒洗涤若干次,完成Co-P-B催化剂颗粒的制备;
(5)、将洗涤好的Co-P-B催化剂颗粒加入到一定体积的含有粘结剂的浆料中,搅拌均匀后,超声振荡,获得Co-P-B催化剂浆料;
步骤二:喷涂法负载Co-P-B催化剂于泡沫镍上:
负载前,先将泡沫镍超声清洗,以去除泡沫镍表面的氧化物与杂质;再将通过步骤一制得的Co-P-B催化剂浆料均匀喷涂于泡沫镍上,并在真空干燥箱中烘干;
步骤三:催化硼氢化钠水解制氢:
将负载好Co-P-B催化剂的泡沫镍制作成催化床放入反应室中,将硼氢化钠碱性溶液通过输送单元输入反应室中,反应液硼氢化钠碱性溶液与催化床接触后,发生NaBH4水解反应生成H2,反应生成的H2经过气液分离单元分离出。
根据本发明所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法的优选方案,所述Co2+盐可选用CoCl2、Co(CH3COO)2、CoSO4、CoF2或者Co(NO3)2;所述H2PO2 -盐可选用NaH2PO2或者KH2PO2
根据本发明所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法的优选方案,粘结剂选用Nafion膜溶液、PTFE溶液或者丁苯橡胶。
根据本发明所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法的优选方案,其特征在于:Co-P-B催化剂中Co、P、B原子比为1:0.5~1.2:1.5~3.5。
本发明所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法的有益效果是:本发明提出采用还原-喷涂的方法制备高效的Co-P-B/泡沫镍催化床,该方法安全简便,适用于工业大规模生产应用,该催化床可直接应用于NaBH4水解制氢系统,在线供氢给燃料电池使用,满足燃料电池在不同功率条件下的供氢需求,拓宽燃料电池的应用场景,对硼氢化钠在线水解制氢燃料电池系统的推广应用具有较重要的应用价值,可广泛应用于无人机、车用、机器人、军事、农业等领域。
附图说明
图1是采用本发明制备的催化床NaBH4水解产氢速率与反应室温度随时间的变化规律图。
图2是在不同Co-P-B催化剂载量下产氢流量的变化规律图。
图3是在不同进液速度下产氢流量的变化规律图。
图4是在不同圆柱型催化床长度下产氢流量的变化规律图。
具体实施方式
实施例1,一种制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,包括以下步骤:
步骤一:化学还原法制备Co-P-B催化剂浆料。具体为:
(1)、配制Co2+盐与H2PO2 -盐的混合溶液,记为前驱体溶液;Co2+盐可选用CoCl2、Co(CH3COO)2、CoSO4、CoF2、Co(NO3)2等,H2PO2 -盐可选用NaH2PO2、KH2PO2等。
(2)、配制NaBH4碱性溶液;碱性稳定剂可选用NaOH、KOH等,质量分数为1-15%。
(3)、将步骤(2)配制的NaBH4碱性溶液缓慢加入到前驱体溶液中,剧烈搅拌,获得含有黑色Co-P-B催化剂颗粒的悬浊液;伴随产生大量的气泡。催化剂Co、P、B原子比为1:0.5~1.2:1.5~3.5。
(4)待反应完全后,将悬浊液静置至室温,并利用离心机将Co-P-B催化剂颗粒从悬浊液中分离,再将Co-P-B催化剂颗粒用去离子水、无水乙醇洗涤若干次,完成Co-P-B催化剂颗粒的制备;
(5)、将洗涤好的催化剂颗粒取出,加入到一定体积的去离子水与粘结剂的混合浆料中。搅拌均匀后,超声振荡15~30min。粘结剂可选用Nafion膜溶液、PTFE溶液、丁苯橡胶等,优选5%Nafion膜溶液。混合浆料中去离子水与粘结剂溶液的体积比为100:0.5~2。
步骤二:喷涂法负载Co-P-B催化剂于泡沫镍上。负载前,先将泡沫镍依次使用1wt%的稀HCl溶液与无水乙醇超声清洗15min,再用去离子水冲洗若干次,以去除泡沫镍表面的氧化物与杂质。随后,用喷枪将通过步骤一制得的Co-P-B催化剂浆料均匀喷涂于泡沫镍上,并在真空干燥箱中烘干。催化剂载量通过差重法获得。所述的催化剂载量为3~7mg/cm2
步骤三:催化NaBH4水解制氢。负载好催化剂的片状泡沫镍即可用于固定床连续流式装置中。本发明以圆柱型反应室为例,但不局限于此。将泡沫镍沿长度方向卷曲成一定直径的圆柱型催化床后,放入反应室中。将NaBH4碱性溶液通过输送单元,例如蠕动泵,将NaBH4碱性溶液输入反应室中,进液速度可调控。反应液NaBH4碱性溶液与催化床接触后,随即发生NaBH4水解反应。反应生成的NaBO2和H2经过气液分离单元,分离出的H2经过洗气和干燥后,即可通入氢燃料电堆中使用。
实施实例2:
步骤一:化学还原法制备Co-P-B催化剂浆料。配制1mol/L CoCl2与0.8mol/LNaH2PO2的混合溶液共100mL,记为前驱体溶液A;2mol/L NaBH4与0.5mol/L NaOH混合溶液共100mL,记为溶液B。将溶液B缓慢加入到前驱体溶液A中并剧烈搅拌。溶液中迅速生成黑色的Co-P-B催化剂颗粒,伴随产生大量的气泡。待反应完全后,将悬浊液静置至室温并利用离心机将Co-P-B催化剂颗粒从悬浊液中分离。随后将催化剂用去离子水、无水乙醇洗涤若干次。将洗涤好的催化剂颗粒取出,加入100mL去离子水,1mL5%的Nafion膜溶液,搅拌均匀后,超声振荡20min后进行催化剂的负载。
步骤二:喷涂法负载Co-P-B催化剂于泡沫镍上。首先将泡沫镍裁剪为10×20cm2大小,并依次使用1wt%的稀HCl溶液与无水乙醇超声清洗15min,再用去离子水冲洗若干次,以去除泡沫镍表面的氧化物与杂质。随后,用喷枪将上述制得的Co-P-B催化剂浆料均匀喷涂于泡沫镍上,并在真空干燥箱中烘干。催化剂载量通过差重法获得,控制为6.0±0.2mg/cm2。负载好催化剂的片状泡沫镍沿长度方向卷曲成直径25mm左右,长度10cm的圆柱型催化床。
步骤三:催化NaBH4水解制氢。将制备的圆柱型Co-P-B/泡沫镍催化床放入内径26mm的反应室中,测试其对NaBH4水解制氢的催化性能。将NaBH4碱性溶液(20wt%NaBH4,5wt%NaOH)通过蠕动泵泵入反应室中,进液速度为4mL/min,反应液与催化床接触,随即发生NaBH4水解反应。反应生成的NaBO2和H2经过一个气液分离单元,分离出的H2经过洗气和干燥后,通过气体质量流量计测量流量。通过数据采集器每隔两秒采集一次流量计测得的流量信号与反应室外壁面热电偶测得的温度信号,再传输到电脑中进行数据的处理。其产氢速率(25℃,101kPa)与反应室温度随时间的变化规律如图1所示。
实施实例3:
图2显示了不同Co-P-B催化剂载量下平均产氢流量的变化规律。随着Co-P-B载量的增加,产氢流量增加,越来越接近理论值,即催化床的催化性能越好,使得NaBH4水解反应更为完全。当Co-P-B载量为6mg/cm2时,催化效率相较于理论值只相差0.044L/min,达到理论产氢流量的96%。
实施实例4:
图3显示了不同进液速度与平均产氢速率的相互关系。从图中可以看出,产氢速率与进液速度基本呈现正相关关系,即使在高进液速度下(4mL/min),该催化床也可达到接近于理论值的产氢速率,能很好满足不同产氢速率的需求。典型的100W质子交换膜氢空燃料电池堆消耗氢气的速率为1.55L/min(25℃,101kPa),因此,在4mL/min进液速度下的产氢流量(2.14L/min)可满足电堆138W功率下的供氢需求。同时,从图中还可以得知,在实际NaBH4水解制氢系统中,只需调节泵的功率,控制进液速度,即可获得不同的产氢流量,使其与氢燃料电堆的功率相匹配。
实施实例5:
图4显示了不同圆柱型催化床长度与平均产氢速率的相互关系。从图中可以看出,产氢速率随催化床长度增加而增加,越来越接近于理论值。同时,从图中还可以推断出,NaBH4水解反应主要发生在催化床前端部分,10cm长度催化床下,在中段6cm处,NaBH4水解转换率即可达到90%以上。
本发明的原理如下:
以钴为催化活性中心的Co-P-B是一种高效的NaBH4水解制氢催化剂。在连续流反应器中,粉末状催化剂易造成催化剂团聚,管道堵塞,反应之后难以分离回收再利用的问题,因此常将催化剂负载在固态基底上使用。泡沫镍机械强度高,具有发达的孔隙结构,在催化反应中能保持良好的热化学稳定性,是一种催化NaBH4水解制氢的良好基底。本发明所提出的还原-喷涂法安全简便,经济实用,适合工业上机械大规模制备。由此方法制备的Co-P-B/泡沫镍催化床催化性能极好,NaBH4的反应转化率可达到96%以上,产氢速率接近理论产氢速率,实现NaBH4的充分利用,减小储氢成本。该催化床制备方法在NaBH4在线水解制氢燃料电池系统未来大规模实际应用中体现出较大的优势,具有较大的应用潜力。
本发明与现有技术相比具有如下优势:
1)本发明采用还原-喷涂法制备Co-P-B/泡沫镍催化床,安全简便,经济实用,适合工业上大规模运用;
2)本发明制备的催化床催化性能极好,可实现接近理论值的NaBH4反应转换率及水解产氢速率,能充分利用NaBH4,降低储氢成本;
3)采用本催化床的NaBH4在线水解制氢燃料电池系统具有响应速度快、能量密度高等特点。
以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (4)

1.一种制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:包括以下步骤:
步骤一:制备Co-P-B催化剂浆料,具体为:
(1)、配制Co2+盐与H2PO2 -盐的混合溶液,记为前驱体溶液;
(2)、配制NaBH4碱性溶液;
(3)、将步骤(2)配制的碱性溶液缓慢加入到前驱体溶液中,剧烈搅拌,获得含有Co-P-B催化剂颗粒的悬浊液;
(4)、待反应完全后,将悬浊液静置至室温,并利用离心机将Co-P-B催化剂颗粒从悬浊液中分离,再将Co-P-B催化剂颗粒洗涤若干次,完成Co-P-B催化剂颗粒的制备;
(5)、将洗涤好的Co-P-B催化剂颗粒加入到一定体积的含有粘结剂的浆料中,搅拌均匀后,超声振荡,获得Co-P-B催化剂浆料;
步骤二:喷涂法负载Co-P-B催化剂于泡沫镍上:
负载前,先将泡沫镍超声清洗,以去除泡沫镍表面的氧化物与杂质;再将通过步骤一制得的Co-P-B催化剂浆料均匀喷涂于泡沫镍上,并在干燥箱中烘干;
步骤三:催化NaBH4水解制氢:
将负载好Co-P-B催化剂的泡沫镍制作成催化床放入反应室中,将NaBH4碱性溶液通过输送单元输入反应室中,反应液与催化床接触后,发生NaBH4水解反应生成H2,反应生成的H2经过气液分离单元分离出。
2.根据权利要求1所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:所述Co2+盐可选用CoCl2、Co(CH3COO)2、CoSO4、CoF2或者Co(NO3)2;所述H2PO2 -盐可选用NaH2PO2或者KH2PO2
3.根据权利要求1所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:粘结剂选用Nafion膜溶液、PTFE溶液或者丁苯橡胶。
4.根据权利要求1所述的制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法,其特征在于:Co-P-B催化剂中Co、P、B原子比为1:0.5~1.2:1.5~3.5。
CN202011117134.3A 2020-10-19 2020-10-19 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法 Pending CN112237933A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011117134.3A CN112237933A (zh) 2020-10-19 2020-10-19 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011117134.3A CN112237933A (zh) 2020-10-19 2020-10-19 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法

Publications (1)

Publication Number Publication Date
CN112237933A true CN112237933A (zh) 2021-01-19

Family

ID=74168962

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011117134.3A Pending CN112237933A (zh) 2020-10-19 2020-10-19 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法

Country Status (1)

Country Link
CN (1) CN112237933A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171776A (zh) * 2021-04-29 2021-07-27 苏州西热节能环保技术有限公司 用于硼氢化钠溶液水解制氢的负载型催化剂、制备方法及应用
CN113398960A (zh) * 2021-06-17 2021-09-17 广西师范大学 一种R/Co3B-CoP复合材料及其制备方法和应用
CN114225955A (zh) * 2021-12-24 2022-03-25 沈阳师范大学 一种双载体修饰三元合金纳米腔催化剂及其制备方法与应用
CN114433165A (zh) * 2022-02-18 2022-05-06 沈阳师范大学 一种蓬松状结构双金属基复合催化剂及其制备方法与应用
CN114618539A (zh) * 2022-02-23 2022-06-14 燕山大学 一种分级结构硼氢化钠产氢催化剂及其制备方法和应用
CN115945204A (zh) * 2022-04-01 2023-04-11 四川晨光博达新材料有限公司 一种多孔负载定型二氟化钴催化剂及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347736A (zh) * 2007-07-20 2009-01-21 中国科学院金属研究所 一种用于硼氢化物催化水解制氢催化剂及其制备方法
CN107159227A (zh) * 2017-06-27 2017-09-15 江苏师范大学 一种高效、长寿命硼氢化钠水解制氢用CoWB/NF催化剂及其制备方法
CN108057446A (zh) * 2017-12-14 2018-05-22 沈阳师范大学 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
CN109097790A (zh) * 2018-06-19 2018-12-28 重庆大学 体相析氢电极的制备方法及电解水制氢反应器
CN110368952A (zh) * 2019-08-06 2019-10-25 东莞市三聚氢能科技有限公司 一种喷涂式生产硼氢化钠制氢催化剂的制备方法
CN111389429A (zh) * 2020-04-13 2020-07-10 苏州大学 一种用于催化氨硼烷水解的催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101347736A (zh) * 2007-07-20 2009-01-21 中国科学院金属研究所 一种用于硼氢化物催化水解制氢催化剂及其制备方法
CN107159227A (zh) * 2017-06-27 2017-09-15 江苏师范大学 一种高效、长寿命硼氢化钠水解制氢用CoWB/NF催化剂及其制备方法
CN108057446A (zh) * 2017-12-14 2018-05-22 沈阳师范大学 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
CN109097790A (zh) * 2018-06-19 2018-12-28 重庆大学 体相析氢电极的制备方法及电解水制氢反应器
CN110368952A (zh) * 2019-08-06 2019-10-25 东莞市三聚氢能科技有限公司 一种喷涂式生产硼氢化钠制氢催化剂的制备方法
CN111389429A (zh) * 2020-04-13 2020-07-10 苏州大学 一种用于催化氨硼烷水解的催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
A. CHUNDURI ET AL.: "A unique amorphous cobalt-phosphide-boride bifunctional electrocatalyst for enhanced alkaline water-splitting", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
JAEYOUNG LEE ET AL.: "A structured Co-B catalyst for hydrogen extraction from NaBH4 solution", 《CATALYSIS TODAY》 *
夏亦良等: "硼氢化钠醇解制氢用泡沫镍载钴磷纳米花合金催化剂的研究", 《黑龙江科学》 *
王彬等: "《石墨烯基础及氢气刻蚀》", 30 September 2019, 冶金工业出版社 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171776A (zh) * 2021-04-29 2021-07-27 苏州西热节能环保技术有限公司 用于硼氢化钠溶液水解制氢的负载型催化剂、制备方法及应用
CN113398960A (zh) * 2021-06-17 2021-09-17 广西师范大学 一种R/Co3B-CoP复合材料及其制备方法和应用
CN113398960B (zh) * 2021-06-17 2024-03-01 广西师范大学 一种R/Co3B-CoP复合材料及其制备方法和应用
CN114225955A (zh) * 2021-12-24 2022-03-25 沈阳师范大学 一种双载体修饰三元合金纳米腔催化剂及其制备方法与应用
CN114433165A (zh) * 2022-02-18 2022-05-06 沈阳师范大学 一种蓬松状结构双金属基复合催化剂及其制备方法与应用
CN114618539A (zh) * 2022-02-23 2022-06-14 燕山大学 一种分级结构硼氢化钠产氢催化剂及其制备方法和应用
CN114618539B (zh) * 2022-02-23 2023-04-07 燕山大学 一种分级结构硼氢化钠产氢催化剂及其制备方法和应用
CN115945204A (zh) * 2022-04-01 2023-04-11 四川晨光博达新材料有限公司 一种多孔负载定型二氟化钴催化剂及其制备方法
CN115945204B (zh) * 2022-04-01 2024-04-26 四川晨光博达新材料有限公司 一种多孔负载定型二氟化钴催化剂及其制备方法

Similar Documents

Publication Publication Date Title
CN112237933A (zh) 制备Co-P-B/泡沫镍催化床用于硼氢化钠水解制氢的方法
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
CN107744822B (zh) 一种金属磷化物-多孔碳框架复合材料及其制备方法和应用
Li et al. Enabling electrocatalytic N2 reduction to NH3 by Y2O3 nanosheet under ambient conditions
Zhao et al. BCN-encapsulated nano-nickel synergistically promotes ambient electrochemical dinitrogen reduction
TW200824818A (en) Method for manufacturing metal nano particles having hollow structure and metal nano particles manufacturing by the method
CN102166523B (zh) 一种镍纳米粒子负载多壁碳纳米管催化剂制备方法
CN108155392B (zh) 一种还原氧化石墨烯负载Pd-M纳米复合催化剂的制备方法
CN107052359A (zh) 一种Au‑AgPd核/双金属框结构纳米材料、制备方法及其应用
CN104607186B (zh) 基于低共熔溶剂的多壁碳纳米管载PdSn催化剂及其制备方法与应用
CN101773839B (zh) 一种PtRuCo/C三元合金纳米催化剂及其制备方法
Yang et al. PdAgCu alloy nanoparticles integrated on three-dimensional nanoporous CuO for efficient electrocatalytic nitrogen reduction under ambient conditions
Grodkowski et al. Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions
CN101143319A (zh) 一种催化剂及其制备和在硼氢化物水解制氢中的应用
Li et al. Ammonia borane and its applications in the advanced energy technology
JP2013010687A (ja) 固体水素燃料並びにその製造方法及びその使用方法
CN105845952A (zh) 一种燃料电池阳极催化剂的制备方法
EP1899263A2 (en) Method and device and pure hydrogen generation from acidic solution
Cordeiro et al. Water oxidation reaction catalyzed by Co3O4 treated with organic compounds
Yang et al. Facile construction of a novel binder-free graphene/polyimide foam-based Au electrode for H2O2 electroreduction
CN105148918A (zh) 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用
Huo et al. Oriented external electric fields act as a “switch” of Pt-M/BC3N2 diatomic catalysts activate pristine ammonia borane dehydrogenation: A DFT study
TWI405717B (zh) 以海水摻合硼氫化合物產製氫氣的方法
CN110368944A (zh) 一种α-NixFey(OH)2电催化剂及其在工作电极中的应用
CN103223495B (zh) 一种三足钉螺形纳米钯的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210119

RJ01 Rejection of invention patent application after publication