CN109647369B - 多孔碳纳米催化剂、制备方法及其应用 - Google Patents

多孔碳纳米催化剂、制备方法及其应用 Download PDF

Info

Publication number
CN109647369B
CN109647369B CN201910037412.5A CN201910037412A CN109647369B CN 109647369 B CN109647369 B CN 109647369B CN 201910037412 A CN201910037412 A CN 201910037412A CN 109647369 B CN109647369 B CN 109647369B
Authority
CN
China
Prior art keywords
porous carbon
carbon nano
preparation
temperature
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910037412.5A
Other languages
English (en)
Other versions
CN109647369A (zh
Inventor
陈建荣
徐琳祥
仲淑贤
柏嵩
徐燕
杨利宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201910037412.5A priority Critical patent/CN109647369B/zh
Publication of CN109647369A publication Critical patent/CN109647369A/zh
Application granted granted Critical
Publication of CN109647369B publication Critical patent/CN109647369B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/06Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
    • C01B3/065Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents from a hydride
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/26Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
    • C07D251/40Nitrogen atoms
    • C07D251/54Three nitrogen atoms
    • C07D251/56Preparation of melamine
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明实施例公开了一种多孔碳纳米催化剂的制备方法,包括以下步骤:将前驱体、钴盐、钼盐混合均匀进行研磨后,边通氮气边煅烧,先以2.3℃/min速率加热到550℃恒温4h,再以3℃/min速率加热到700~900℃恒温2h后冷却,其中,前驱体选自三聚氰胺二硼酸盐。本发明实施方式相对于现有技术而言,通过引入钼这种过渡金属,降低活性表面积减少的概率,修饰多孔碳纳米催化剂的表面结构,避免了多孔碳纳米催化剂的易团聚和不方便回收的问题,同时采用碳纳米材料为支撑结构,以石墨烯包裹的钴纳米颗粒嵌入到硼氮掺杂的多孔碳纳米球中,可以增大多孔碳纳米催化剂的比表面积,达到了安全、廉价、环保、高效的催化水解制氢的目的,在燃料化学移动制氢方面具有比较好的应用前景。

Description

多孔碳纳米催化剂、制备方法及其应用
技术领域
本发明实施例涉及纳米复合材料制备领域,特别涉及一种多孔碳纳米催化剂、制备方法及其应用。
背景技术
化石燃料的枯竭和日益严重的环境问题引发了对清洁和可持续替代能源的迫切需求。氢是最有前景的清洁和可再生能源,它已经在解决环境和能源危机的方面发挥了重要作用。然而,在正常环境条件下安全有效地释放氢气仍然是全球范围内亟待解决的技术难题。像金属合金混合物、金属硼氢化物-金属杂化物和氨硼烷等固态储氢材料已经引起了强烈的关注。含氢量19.6%的氨硼烷(AB)在普通储存条件下很稳定又是具有很好潜能的制氢便携式装置,所以利用AB催化制氢的报道也不少见了。AB的水解制氢反应与其热脱氢生成氢气的反应相比,不需要高温条件,在室温下利用适当的纳米催化剂水解1molAB就可以制取3molH2。AB的水解制氢反应具有高效、便捷等优势不言而喻。
目前金属催化剂,如:铜、金、铁等,已经广泛地应用于环境催化、氨与甲醇合成、费托合成和烃类转化等工业。迄今为止,各种各样的催化剂体系已经在AB的水解方面进行了测试,还通过使用Pt、Ru和Rh等贵金属实现了快速制氢,但是由于Pt、Ru和Rh等贵金属价格昂贵、资源有限限制了它们的实际应用。
为了替代贵金属,像Co等稳定的非贵金属已经被研发出来了。但是目前报道的较多催化剂由于比表面积小和非磁性等缺点,经常易团聚和不方便回收。这样严重影响了它们的催化活性和循环利用制氢的效果。
综上所述,提供一种稳定、易回收、活化能低和可快速制氢的材料的制备方法是目前亟需解决的问题。
发明内容
本发明实施方式的目的在于提供一种多孔碳纳米催化剂、制备方法及其应用,提供了一种稳定、易回收、活化能低和可快速制氢的材料的制备方法,达到了安全、廉价、环保、高效的催化水解制氢的目的。
为解决上述技术问题,本发明的实施方式提供了一种多孔碳纳米催化剂的制备方法,包括以下步骤:
将前驱体、钴盐、钼盐混合均匀进行研磨后,边通氮气边煅烧,先以2.3℃/min速率加热到550℃恒温4h,再以3℃/min速率加热到700~900℃恒温2h后冷却,其中,前驱体选自三聚氰胺二硼酸盐。
本发明的实施方式还提供了一种上述多孔碳纳米催化剂的制备方法制备得到的多孔碳纳米催化剂。
本发明的实施方式还提供了多孔碳纳米催化剂在催化水解氨硼烷制氢中的应用。
本发明实施方式相对于现有技术而言,通过引入钼这种过渡金属,降低活性表面积减少的概率,修饰多孔碳纳米催化剂的表面结构,避免了多孔碳纳米催化剂的易团聚和不方便回收的问题,同时采用碳纳米材料为支撑结构,以石墨烯包裹的钴纳米颗粒嵌入到硼氮掺杂的多孔碳纳米球中,可以增大多孔碳纳米催化剂的比表面积,使得多孔碳纳米催化剂具有更好的催化活性和选择性,提供了一种稳定、易回收、活化能低和可快速制氢的材料的制备方法,达到了安全、廉价、环保、高效的催化水解制氢的目的,在燃料化学移动制氢方面具有比较好的应用前景。
另外,前驱体的制备方法包括以下步骤:
将硼酸和三聚氰胺混合后进行溶解;
加热上述混合物,冷却至室温,得到白色沉淀物;
过滤白色沉淀物,洗涤、干燥后,得到白色前驱体。
另外,干燥的条件为:采用真空干燥;其中干燥温度为60~90℃,干燥压力为0~6.65×10-2mbar。
另外,钴盐选自六水合氯化钴、氯化钴、硝酸钴或六水合硝酸钴中的一种或多种。
另外,钼盐选自二水合钼酸钠、钼酸钠、二钼酸铵或四钼酸铵中的一种或多种。
另外,氮气的速率为18~30mL/min。
另外,煅烧的条件为温度为500~900℃,时间为10~12h。
另外,钴盐、钼盐、前驱体的质量比为0.4:0.12:0.0136。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例1中制备的前驱体—三聚氰胺二硼酸盐(C3N6H6·2H3BO3,M·2B)的拉曼光谱图;
图2是本发明实施例2~5中制备的多孔碳纳米催化剂的X射线衍射图;
图3是本发明实施例5中制备的多孔碳纳米催化剂的扫描电子显微镜图;
图4是本发明实施例5中制备的多孔碳纳米催化剂的循环水解AB次数试验;
图5是本发明实施例5中制备的多孔碳纳米催化剂的制氢热力学分析;
图6是本发明实施例5中制备的多孔碳纳米催化剂的阿伦尼乌斯曲线。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合附图对本发明的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本发明各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
实施例1
称取硼酸3.71g和三聚氰胺3.78g,将硼酸加入含80毫升二次水的烧杯中用玻璃棒搅拌溶解,将三聚氰胺加入含170毫升二次水的三颈烧瓶中在恒温磁力搅拌器的作用下使其溶解,接着当三聚氰胺溶液加热到85℃时将硼酸溶液滴加进三颈烧瓶中,然后混合液85℃恒温搅拌4h,紧接着自然冷却至室温约6h,得到白色沉淀,然后过滤白色沉淀物并用去离子水洗涤3次,最后将样品在90℃下干燥12h,得到白色前驱体,即三聚氰胺二硼酸盐(C3N6H6·2H3BO3,M·2B),其拉曼光谱图如图1所示。
实施例2
称取三聚氰胺二硼酸盐0.4g,六水合氯化钴0.04g及二水合钼酸钠(Na2MoO4·2H2O)0.01355g,一起加入研钵中研磨后,在管式炉中边通氮气边煅烧,第1个升温程序是以2.3℃/min速率加热到550℃恒温4h;第2个升温程序是以3℃/min速率加热到700℃恒温2h,经过两个程序升温,最后自然冷却得到多孔碳纳米催化剂,该催化剂的X射线衍射的结果见图2中的C。
需要说明的是,本实施例中的钴盐选自六水合氯化钴,除此之外,也可以选自氯化钴、硝酸钴或六水合硝酸钴中的一种或多种,另外,本实施例中的钼盐选自二水合钼酸钠,除此之外,也可以选自钼酸钠、二钼酸铵或四钼酸铵中的一种或多种。本实施例在此不一一赘述。
实施例3
称取三聚氰胺二硼酸盐0.4g,六水合氯化钴0.08g及二水合钼酸钠0.01355g,一起加入研钵中研磨后,在管式炉中边通氮气边煅烧,第1个升温程序是以2.3℃/min速率加热到550℃恒温4h;第2个升温程序是以3℃/min速率加热到700℃恒温2h,经过两个程序升温,最后自然冷却得到多孔碳纳米催化剂,该催化剂的X射线衍射的结果见图2中的D。
实施例4
称取三聚氰胺二硼酸盐0.4g,六水合氯化钴0.12g及二水合钼酸钠0.01355g,一起加入研钵中研磨后,在管式炉中边通氮气边煅烧,第1个升温程序是以2.3℃/min速率加热到550℃恒温4h;第2个升温程序是以3℃/min速率加热到700℃恒温2h,经过两个程序升温,最后自然冷却得到多孔碳纳米催化剂,该催化剂的X射线衍射的结果见图2中的E,该催化剂的扫描电子显微镜的结果见图3。
由图3可知,实施例4制备得到的催化剂呈多孔结构,具有较大的比表面积。
对比例1
二水合钼酸钠对多孔碳纳米催化剂的影响
称取三聚氰胺二硼酸盐0.4g和六水合氯化钴(CoCl2·6H2O(0.12g))0.12g,一起加入研钵中研磨后,在管式炉中边通氮气边煅烧,第1个升温程序是以2.3℃/min速率加热到550℃恒温4h;第2个升温程序是以3℃/min速率加热到700℃恒温2h,经过两个程序升温,最后自然冷却得到多孔碳纳米催化剂,该催化剂的X射线衍射的结果见图2中的B。
实验结果表明:
对比例1与实施例2~4相比,区别在于对比例1没有加入二水合钼酸钠,由图2中B、C、D、E可知,实施例2~4均成功合成了钼功能化的石墨烯包裹的钴纳米颗粒嵌入到硼氮掺杂的多孔碳纳米球(Co,Mo@B,N-PCNSs),即实施例2~4制备得到的多孔碳纳米催化剂均成功引入了钼。
实施例5
称取实施例4制备得到的多孔碳纳米催化剂20mg,将其投入含有8mL二次水的两颈瓶(50mL,带控制阀)中,并将混合物在磁力搅拌的作用下反应一段时间。当加入40mg AB时,开始产生氢气,两颈瓶带控制阀的一端与气体量筒连接以监测产生的氢气量(控制恒温水浴锅的水温在25℃),多孔碳纳米催化剂重复利用5次后,制氢速率明显变慢了,不过它有磁性很方便回收,所以可以用一块永久性磁铁吸引,就很容易地实现与混合液分离后回收再利用,结果见图4。
实施例6
称取实施例4制备得到多孔碳纳米催化剂20mg,将其投入含有8mL二次水的两颈瓶(50mL,带控制阀)中,并将混合物在磁力搅拌的作用下反应一段时间。当加入40mg AB时,开始产生氢气,两颈瓶带控制阀的一端与气体量筒连接以监测产生的氢气量(控制恒温水浴锅的水温分别在25℃,30℃,35℃和40℃),研究不同的环境温度对多孔碳纳米催化剂的催化活性的影响。另外,AB的水解反应在35分钟内完成,产生了93mL H2,最大氢气产生率为0.2118molH2molM -1 min -1(在25℃水温中),结果见图5;在不同水温下,可以得到催化剂的制氢率,因此多孔碳纳米催化剂的活化能如图6所示。
由实施例5~6可知,本发明实施例所制备的多孔碳纳米催化剂在室温下具有稳定、易回收、活化能低和低成本等优点,并且该催化剂可以重复使用5次。该多孔碳纳米催化剂在室温下的平均氢气产生率为0.2118molH2molM -1 min -1,而活化能仅为26.6KJmol-1,可知本发明实施例所制备的多孔碳纳米催化剂具有低成本、稳定和方便循环等特点,在燃料化学移动制氢方面具有比较好的应用前景。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (9)

1.一种多孔碳纳米催化剂的制备方法,其特征在于,所述多孔碳纳米催化剂为钼功能化的石墨烯包裹的钴纳米颗粒嵌入到硼氮掺杂的多孔碳纳米球,包括以下步骤:
将前驱体、钴盐、钼盐混合均匀进行研磨后,边通氮气边煅烧,先以2.3℃/min速率加热到550℃恒温4h,再以3℃/min速率加热到700~900℃恒温2h后冷却,其中,所述前驱体选自三聚氰胺二硼酸盐;
所述钴盐、钼盐、前驱体的质量比为0.4:0.12:0.0136或0.4:0.08:0.0136。
2.根据权利要求1所述的多孔碳纳米催化剂的制备方法,其特征在于,所述前驱体的制备方法包括以下步骤:
将硼酸和三聚氰胺混合后进行溶解;
加热上述混合物,冷却至室温,得到白色沉淀物;
过滤所述白色沉淀物,洗涤、干燥后,得到白色前驱体。
3.根据权利要求2所述的多孔碳纳米催化剂的制备方法,其特征在于,所述干燥的条件为:采用真空干燥;其中干燥温度为60~90℃,干燥压力为0~6.65×10-2mbar。
4.根据权利要求1所述的多孔碳纳米催化剂的制备方法,其特征在于,所述钴盐选自六水合氯化钴、氯化钴、硝酸钴或六水合硝酸钴中的一种或多种。
5.根据权利要求1所述的多孔碳纳米催化剂的制备方法,其特征在于,所述钼盐选二水合钼酸钠、钼酸钠、二钼酸铵或四钼酸铵中的一种或多种。
6.根据权利要求1所述的多孔碳纳米催化剂的制备方法,其特征在于,所述氮气的速率为18~30mL/min。
7.根据权利要求1所述的多孔碳纳米催化剂的制备方法,其特征在于,所述煅烧的条件为温度为500~900℃,时间为10~12h。
8.权利要求1~7任一项所述的多孔碳纳米催化剂的制备方法制备得到的多孔碳纳米催化剂。
9.权利要求8中所述的多孔碳纳米催化剂在催化水解氨硼烷制氢中的应用。
CN201910037412.5A 2019-01-15 2019-01-15 多孔碳纳米催化剂、制备方法及其应用 Active CN109647369B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910037412.5A CN109647369B (zh) 2019-01-15 2019-01-15 多孔碳纳米催化剂、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910037412.5A CN109647369B (zh) 2019-01-15 2019-01-15 多孔碳纳米催化剂、制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109647369A CN109647369A (zh) 2019-04-19
CN109647369B true CN109647369B (zh) 2022-03-25

Family

ID=66120099

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910037412.5A Active CN109647369B (zh) 2019-01-15 2019-01-15 多孔碳纳米催化剂、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109647369B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110652993A (zh) * 2019-09-30 2020-01-07 成都理工大学 一种钴氮杂石墨烯基催化剂催化氨硼烷产氢性能的研究
CN111153470B (zh) * 2020-02-12 2021-11-09 浙江师范大学 基于碳毡负载钴颗粒的电芬顿阴极材料的制备方法及其在污水处理中的应用
CN111517444A (zh) * 2020-04-30 2020-08-11 湖南金旅环保股份有限公司 一种内嵌碳化铁的硼氮共掺杂碳纳米管催化剂降解有机污染物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528671A (zh) * 2015-01-20 2015-04-22 河北工业大学 一种多孔氮化硼纳米纤维的制备方法
CN108057446A (zh) * 2017-12-14 2018-05-22 沈阳师范大学 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
CN108246332A (zh) * 2018-01-16 2018-07-06 浙江大学 一种二维非贵金属负载型催化剂及其制备方法和应用
CN108417845A (zh) * 2018-03-07 2018-08-17 上海应用技术大学 一种含钴和镍的多孔碳复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104528671A (zh) * 2015-01-20 2015-04-22 河北工业大学 一种多孔氮化硼纳米纤维的制备方法
CN108057446A (zh) * 2017-12-14 2018-05-22 沈阳师范大学 氨硼烷水解制氢Co-Mo-B纳米催化剂及制备方法
CN108246332A (zh) * 2018-01-16 2018-07-06 浙江大学 一种二维非贵金属负载型催化剂及其制备方法和应用
CN108417845A (zh) * 2018-03-07 2018-08-17 上海应用技术大学 一种含钴和镍的多孔碳复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Co–Mo–B–P Alloy with Enhanced Catalytic Properties for H2 Production by Hydrolysis of Ammonia Borane;R. Fernandes等;《Top Catal》;20120821;第55卷;文章第1033页左栏第2段 *
Ultrafine porous boron nitride nanofibers synthesized via a freeze-drying and pyrolysis process and their adsorption properties;Jing Lin等;《RSC Advances》;20151218;第6卷;全文 *

Also Published As

Publication number Publication date
CN109647369A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
Qian et al. Methane decomposition to produce COx-free hydrogen and nano-carbon over metal catalysts: A review
Alpaydın et al. A review on the catalysts used for hydrogen production from ammonia borane
Yao et al. Facile synthesis of graphene-supported Ni-CeO x nanocomposites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane
He et al. Air-engaged fabrication of nitrogen-doped carbon skeleton as an excellent platform for ultrafine well-dispersed RuNi alloy nanoparticles toward efficient hydrolysis of ammonia borane
Krishnan et al. PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions
CN109647369B (zh) 多孔碳纳米催化剂、制备方法及其应用
Li et al. Monolithically integrated NiCoP nanosheet array on Ti mesh: An efficient and reusable catalyst in NaBH4 alkaline media toward on-demand hydrogen generation
Akdim et al. Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride
Aydin et al. Kinetic properties of Cobalt–Titanium–Boride (Co–Ti–B) catalysts for sodium borohydride hydrolysis reaction
CN105964259A (zh) 一种多核核壳结构镍基催化剂的制备方法
CN105836702A (zh) 一种碘化氢催化分解制氢方法
Yuan et al. Cation/anion-doping induced electronic structure regulation strategy to boost the catalytic hydrogen evolution from ammonia borane hydrolysis
ZOU et al. Preparation of graphene-supported Co-CeOx nanocomposites as a catalyst for the hydrolytic dehydrogenation of ammonia borane
Hu et al. Synthesis of a novel Co-B/CTAB catalyst via solid-state-reaction at room temperature for hydrolysis of ammonia-borane
Jiang et al. Ru nanoclusters confined in N, O-codoped porous carbon as robust catalysts for hydrolytic dehydrogenation of NH3BH3
Feng et al. Integrating carbon vacancy modified carbon quantum dots with carbon nitride for efficient photocatalytic CO2 reduction to syngas with tunable hydrogen to carbon monoxide ratio
Jiang et al. Hierarchically porous CoP@ CNR nanorod derived from metal-organic frameworks as noble-metal-free catalyst for dehydrogenization of ammonia-borane
Li et al. Coffee ground derived biochar embedded Ov-NiCoO2 nanoparticles for efficiently catalyzing a boron‑hydrogen bond break
Xie et al. Effect of oxygen vacancy influenced by CeO2 morphology on the methanol catalytic reforming for hydrogen production
Zhang et al. Effect of bimetallic nitride NiCoN on the hydrogen absorption and desorption properties of MgH2 and the catalytic effect of in situ formed Mg2Ni and Mg2Co phases
Liu et al. Highly-efficient hydrogen production from ammonia decomposition over Co-doped graphdiyne under moderate temperature
Miao et al. Catalytic formic acid dehydrogenation via hexagonal-boron nitride supported palladium
Karakaş et al. Catalytic activites of a biomaterial (sumac) catalyst in sodium borohyride methanolysis reactions
CN109847779B (zh) 一种g-C3N4-MP-MoS2复合材料及其制备方法与应用
Zhang et al. Hydrolytic dehydrogenation of NH3BH3 over Cu/CoOx (OH) y nanocomposite for H2 evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant