CN109603565B - 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法 - Google Patents

儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法 Download PDF

Info

Publication number
CN109603565B
CN109603565B CN201811518640.6A CN201811518640A CN109603565B CN 109603565 B CN109603565 B CN 109603565B CN 201811518640 A CN201811518640 A CN 201811518640A CN 109603565 B CN109603565 B CN 109603565B
Authority
CN
China
Prior art keywords
organic framework
substrate
membrane
metal organic
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811518640.6A
Other languages
English (en)
Other versions
CN109603565A (zh
Inventor
张国亮
唐凯杰
孟琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201811518640.6A priority Critical patent/CN109603565B/zh
Publication of CN109603565A publication Critical patent/CN109603565A/zh
Application granted granted Critical
Publication of CN109603565B publication Critical patent/CN109603565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/025Aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/10Cellulose; Modified cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明提供了一种金属有机骨架复合膜的合成方法,本发明方法首先采用儿茶酚类物质辅助沉积改性基底表面,为金属有机骨架材料的合成提供更多的异相成核位点,之后在一定条件下合成连续和致密的金属有机骨架复合膜;本发明方法具有广泛的通用性,可以适用于多种材质和构型的基底,并且可用于合成多种类型的金属有机骨架复合膜,具有很好的应用价值和前景。

Description

儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法
(一)技术领域
本发明涉及金属有机骨架膜的合成方法,具体涉及一种儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法。
(二)背景技术
自上世纪Leob和sourirajan制备出第一长醋酸纤维分离膜开始,膜科学进入飞速发展阶段。1980年,Permea公司成功研制生产Prism膜并用于氢气分离。这是世界上第一款用于大规模工业化应用的气体分离膜。从那时起,基于膜的气体分离已经发展为每年1.5亿美元的业务,并且在不久的将来有可能实现实质性的增长。我国的膜分离技术是从1958年研究离子交换膜开始的,而气体分离膜技术的研究则要从20世纪八十年代开始。
膜分离相较于变压吸附技术,有着低能耗、操作简单等优势。目前气体分离膜材料应用上有机膜占据着主导地位,因其具有低成本、工艺技术成熟稳定的特点。然而,有机膜的使用寿命短,并且热稳定性、化学稳定性较低。对比有机聚合物膜,沸石分子筛或二氧化硅膜具有刚性、均一的孔道结构,对气体分离有较高选择性和通量,而且热稳定性和化学稳定性较好。然而这两类膜的制备过程要求较高,生产难度大,且大部分沸石分子筛由于孔径大于0.4nm,对于一些更小的气体分子分离效果很差。而像碳分子筛膜则由于生产稳定性差且成本高,限制了其工业化应用。因此,很多新的气体分离材料被不断开发出来。
金属有机骨架材料由于其具有高孔隙率、低密度、大比表面积、孔道规则、孔径可调以及拓扑结构多样性和可裁剪性等优点,在膜材料应用方面拥有巨大潜力。金属有机骨架材料(MOF)指过渡金属离子与有机配体通过自组装形成的具有周期性网络结构的晶体多孔材料,通过对有机配体与金属源的调控可以控制孔道的大小和性质,克服了沸石分子筛孔道的限制。目前金属有机骨架材料主要分为ZIF系列、IRMOF系列和MIL系列等,已被广泛用于分离、催化、储气和传感等方面。
在气体分离膜领域,MOF的引入通常有两种,即复合或混合基质。在基底上合成金属有机骨架复合膜的方法有:(1)原位合成法;(2)二次生长法;(3)层层自主装;(4)电化学法;(5)微流体扩散法等。目前大多数复合基底采用无机氧化铝和有机材料。有机膜由于其低成本和以化学修饰的特点经常作为复合基底,然而正是由于其化学易修饰性和其稳定性,往往限制了有机基底膜的使用种类。因此开发普适性的基底修饰方法对MOF复合膜的大规模应用具有重要意义。
(三)发明内容
本发明的目的是提供一种合成连续致密的金属有机骨架复合膜的方法。本发明合成方法的设计思路为:首先采用儿茶酚类物质辅助沉积改性基底表面,为金属有机骨架材料的合成提供更多的异相成核位点,之后在一定条件下合成连续和致密的金属有机骨架复合膜。
本发明的技术方案如下:
一种金属有机骨架复合膜的合成方法,所述方法为:
(1)基底的改性
利用儿茶酚类物质使聚合物或金属盐富集并沉积在基底表面,为MOF生长提供足够的成核位点;
所述基底的材质为聚丙烯、聚乙烯、聚偏氟乙烯、聚丙烯腈、聚砜、聚醚砜、聚酰胺、聚醚醚酮、纤维素、氧化铝、二氧化钛、铜、铁或锌;所述基底的构型为平板式、管式、网式或中空纤维式;
当沉积的物质为聚合物时,适用的儿茶酚类物质为多巴胺、左旋多巴或儿茶酚;所述聚合物为聚乙烯胺、聚乙烯亚胺、聚丙烯胺、聚苯胺、聚苯甲胺中的一种或两种以上任意比例的组合;
沉积方法例如:将聚合物、儿茶酚类物质加入缓冲溶液中充分溶解,得到混合液,取基底浸没于所得混合液,暴露在空气中50~150r/min振荡反应6~10h,得到改性的基底,取出基底洗净(用水清洗或用气流冲洗)、烘干(30~80℃),待用;
所述混合液中,聚合物的浓度为2~10mg/mL,儿茶酚类物质的浓度为0.5~5mg/mL;所述缓冲溶液为tris-HCl、tris-磷酸盐、氨基酸或硼酸盐缓冲剂,pH值在7~10;优选tris-HCl缓冲剂,pH值在8.5;
当沉积的物质为金属盐时,适用的儿茶酚类物质为单宁酸;所述金属盐中的金属元素为Zn、Al、Cu、Co、Ni、Fe、Mg、Cr中的一种或两种以上任意比例的组合,金属盐的形式为硝酸盐、氯化盐、硫酸盐、醋酸盐中的一种或两种以上任意比例的混合物,优选硝酸锌、氯化锌、硝酸铜、氯化铜、醋酸锌、硝酸钴、氯化铝中的一种或两种以上任意比例的混合物;
沉积方法例如:分别配制单宁酸水溶液(0.4~0.6mg/mL,调节pH=7~9)、金属盐水溶液(0.2~0.5mg/mL),将基底反复浸入以上两种溶液,反复5~10次,每次浸入时振荡20~60s,之后取出基底用去离子水冲洗,空气中静置干燥,待用;
(2)配制金属有机骨架(MOF)前驱液
将有机配体、金属盐、辅助剂、溶剂混合并搅拌均匀,得到金属有机骨架前驱液;
所述金属盐与有机配体、辅助剂、溶剂的物质的量之比为1:0.5~5:0.1~10:50~500;
所述有机配体为2-甲基咪唑或均苯三酸;
所述辅助剂为无水甲酸钠、尿素或氨水(25~28wt%,以氨计);
所述金属盐中的金属元素为Zn、Al、Fe、Cu、V、Ti、Cr、Co、Ni、Mg、Cd、Sr、Zr、Nb、Mo、Ba、La、Ce、Pr、Nd、Mn、Sm、Gd中的一种或两种以上任意比例的组合(可以与步骤(1)金属盐络合的单宁酸中的金属元素相同、不同或者有重合),金属盐的形式为硝酸盐、氯化盐、硫酸盐、醋酸盐中的一种或两种以上任意比例的混合物,优选硝酸锌、氯化锌、硝酸铜、氯化铜、醋酸锌、硝酸钴、氯化铝中的一种或两种以上任意比例的混合物;
所述溶剂为甲醇、水、乙醇中的一种或两种以上任意比例的混合溶剂;
(3)合成金属有机骨架复合膜
将步骤(1)准备好的基底浸没于步骤(2)配制的金属有机骨架前驱液中,升温至80~150℃反应12~24h,之后冷却至室温(20~30℃),取出合成的膜经清洗(用甲醇或乙醇)、烘干(30~80℃),得到所述金属有机骨架复合膜。
本发明的有益效果主要体现在:
1、提供一种温和的改性方法,且原料大多低毒低害;
2、提供一种合成致密连续的金属有机骨架复合膜的方法;
3、本发明方法具有广泛的通用性,可以适用于多种材质和构型的基底,并且可用于合成多种类型的金属有机骨架复合膜,具有很好的应用价值和前景。
(四)附图说明
图1为本发明实施例1制备的聚醚砜/ZIF-8膜的SEM图;
图2为本发明实施例2制备的聚醚砜/ZIF-8膜的SEM图;
图3为本发明实施例1制备的聚醚砜/ZIF-8膜的气体通量随气体分子大小图。
(五)具体实施方式
下面通过具体实施例对本发明作进一步的说明,但本发明的保护范围并不仅限于此。
实施例1:基底为聚醚砜中空纤维膜,采用聚乙烯胺和左旋多巴辅助沉积的改性方法,合成的金属有机骨架膜为聚醚砜/ZIF-8膜。
制备方法:
(1)聚醚砜中空纤维膜的改性:基底为聚醚砜中空纤维膜,采用聚乙烯胺和左旋多巴辅助沉积的改性方法,聚乙烯胺(0.15g)和左旋多巴(0.05g)加入Tris-HCl缓冲溶液中(25mL,pH=8.5)中,将两端封口的聚醚砜中空纤维膜放入并在100r/min下振荡6h。将膜取出,用气流吹去膜表面附着多余的液体,用自制的支架支起并放在烘箱干燥待用。
(2)聚醚砜/ZIF-8膜的合成:将步骤(1)得到的改性后的聚醚砜中空纤维膜放入配制好的MOF前驱溶液中,在85℃进行溶剂热合成24h,反应体系冷却后,将膜取出用甲醇冲洗几次并浸泡一段时间,最后取出烘干,得到聚醚砜/ZIF-8膜(图1为其SEM图);所述MOF前驱溶液由氯化锌(0.2g)、无水甲酸钠(0.1g,在ZIF-8膜的合成中作为去质子化剂)、2-甲基咪唑(0.22g)和甲醇(20mL)混合均匀配制而成。
将聚醚砜/ZIF-8膜进行单组分气体分离性能表征,实验结果如图3所示,各气体通量不同,且远远超过聚醚砜基底膜选择性,聚醚砜/ZIF-8膜表现出良好的分离性能,说明所制备的ZIF-8膜连续致密,不存在明显的缺陷。
实施例2:基底为聚醚砜中空纤维膜,单宁酸为改性剂,合成的金属有机骨架膜为聚醚砜/ZIF-8膜。
(1)聚醚砜中空纤维膜的改性:采用单宁酸络合金属离子沉积法,分别配制单宁酸(0.5mg/mL)和醋酸锌(0.3mg/mL)水溶液,调节单宁酸溶液pH=8。将聚醚砜中空纤维膜反复浸入以上两种溶液,期间不停地振荡溶液30s,反复7次。取出膜后用去离子水冲洗几次,空气中静置干燥。
(2)聚醚砜/ZIF-8膜的合成:将步骤(1)得到的改性过后的聚醚砜中空纤维膜放入配制好的MOF前驱溶液中,在85℃进行溶剂热合成24h,反应体系冷却后,将膜取出用甲醇冲洗并浸泡一段时间干净,最后取出烘干,得到聚醚砜/ZIF-8膜(图2为其SEM图);所述MOF前驱液由氯化锌(0.2g)、无水甲酸钠(0.1g,在ZIF-8膜的合成中作为去质子化剂)、2-甲基咪唑(0.2g)和甲醇(20mL)混合均匀配制而成。
经单组分气体渗透测试得到该膜H2通量为1.7×10-7mol/m2sPa,H2/N2=16,H2/CH4=20(室温,1bar)。
实施例3:基底为α-Al2O3多孔平板膜,单宁酸为改性剂,合成的金属有机骨架膜为α-Al2O3/CuBTC膜。
制备方法:
(1)含有铜凝胶的聚砜平板膜的制备:采用单宁酸络合金属离子沉积法改性基底,将单宁酸(1.0g)与硫酸铜(0.1g)加入到去离子水(50mL)中,调节pH大于7,将α-Al2O3多孔平板膜一面浸入上述溶液中1h。取出膜后用去离子水冲洗几次,空气中静置干燥。
(2)α-Al2O3/CuBTC膜的合成:将步骤(1)得到的改性后的α-Al2O3平板膜放入配制好的MOF前驱溶液中,在110℃进行溶剂热合成18h,反应体系冷却后,将膜取出用乙醇冲洗、浸泡并烘干,得到α-Al2O3/CuBTC膜;所述合成溶液由硝酸铜(0.875g,4.67mmol)、均苯三酸(0.42g,2.0mmol)和乙醇(12mL)、去离子水(12mL)混合均匀配制而成。
实施例4:基底为聚偏氟乙烯平板膜,采用聚乙烯亚胺和多巴胺辅助沉积的改性方法,合成的金属有机骨架膜为聚偏氟乙烯/ZIF-67膜。
制备方法:
(1)聚偏氟乙烯平板膜的改性:
基底为聚偏氟乙烯平板膜,采用聚乙烯亚胺和多巴胺辅助沉积的改性方法,聚乙烯亚胺(0.15g)和盐酸多巴胺(0.05g)加入Tris-磷酸盐缓冲溶液中(25mL,pH=8.5)中,将部分上述溶液滴加在聚偏氟乙烯平板膜正面,将膜静置6h。反应完后,倒掉膜表面液体,用去离子水清洗膜表面,放在烘箱干燥待用。
(2)聚偏氟乙烯/ZIF-67膜的合成:将步骤(1)得到的改性后的聚偏氟乙烯平板膜放入配制好的MOF前驱溶液中,在85℃进行溶剂热合成24h,反应体系冷却后,将膜取出用甲醇冲洗几次并浸泡一段时间,最后取出烘干,得到聚偏氟乙烯/ZIF-67膜;所述MOF前驱溶液由Co(NO3)2·6H2O(0.721g)、无水甲酸钠(0.45g,在ZIF-67膜的合成中作为去质子化剂)、2-甲基咪唑(0.306g)和甲醇(20mL)混合均匀配制而成。
对比例:
相比于《CN201310373159.3一种金属有机框架膜及其制备方法和应用》单用多巴胺作用于无机基底,本发明可适用于多种有机基底,且单宁酸辅助沉积下所得ZIF-8/PES中空纤维膜H2/N2甚至可以超过前方法。
相较于溶胶凝胶改性制得,以有机膜为基底的ZIF-8膜,该方法所得ZIF-8膜通量更大,膜更薄(15-25μm:40μm(溶胶凝胶))。——Metal based gels as versatileprecursors to synthesize stiff and integrated MOF/polymer composite membranes
相较于氨化改性,该膜表面成核位点的富集方法条件温和,且不会使膜变得很脆,保证可操作性。——Preparation of continuous NH2–MIL-53membrane on ammoniatedpolyvinylidene fluoride hollow fiber for efficient H2purification
相较于《CN201410776050.9一种聚醚砜支撑体上金属有机骨架膜的制备方法》,该改性方法可适用于中空纤维膜改性,更利于膜的集成,节省成本。

Claims (5)

1.一种金属有机骨架复合膜的合成方法,其特征在于,所述方法为:
(1)基底的改性
利用儿茶酚类物质使聚合物或金属盐富集并沉积在基底表面,为MOF生长提供足够的成核位点;
当沉积的物质为聚合物时,适用的儿茶酚类物质为多巴胺、左旋多巴或儿茶酚;所述聚合物为聚乙烯胺、聚乙烯亚胺、聚丙烯胺、聚苯胺、聚苯甲胺中的一种或两种以上任意比例的组合;
当沉积的物质为金属盐时,适用的儿茶酚类物质为单宁酸;所述金属盐中的金属元素为Zn、Al、Cu、Co、Ni、Fe、Mg、Cr中的一种或两种以上任意比例的组合,金属盐的形式为硝酸盐、氯化盐、硫酸盐、醋酸盐中的一种或两种以上任意比例的混合物;
(2)配制金属有机骨架(MOF)前驱液
将有机配体、金属盐、辅助剂、溶剂混合并搅拌均匀,得到金属有机骨架前驱液;
所述金属盐与有机配体、辅助剂、溶剂的物质的量之比为1:0.5~5:0.1~10:50~500;
所述有机配体为2-甲基咪唑或均苯三酸;
所述辅助剂为无水甲酸钠、尿素或氨水;
所述金属盐中的金属元素为Zn、Al、Fe、Cu、V、Ti、Cr、Co、Ni、Mg、Cd、Sr、Zr、Nb、Mo、Ba、La、Ce、Pr、Nd、Mn、Sm、Gd中的一种或两种以上任意比例的组合,金属盐的形式为硝酸盐、氯化盐、硫酸盐、醋酸盐中的一种或两种以上任意比例的混合物;
所述溶剂为甲醇、水、乙醇中的一种或两种以上任意比例的混合溶剂;
(3)合成金属有机骨架复合膜
将步骤(1)准备好的基底浸没于步骤(2)配制的金属有机骨架前驱液中,升温至80~150℃反应12~24h,之后冷却至室温,取出合成的膜经清洗、烘干,得到所述金属有机骨架复合膜。
2.如权利要求1所述的金属有机骨架复合膜的合成方法,其特征在于,步骤(1)中,所述基底的材质为聚丙烯、聚乙烯、聚偏氟乙烯、聚丙烯腈、聚砜、聚醚砜、聚酰胺、聚醚醚酮、纤维素、氧化铝、二氧化钛、铜、铁或锌。
3.如权利要求1所述的金属有机骨架复合膜的合成方法,其特征在于,步骤(1)中,所述基底的构型为平板式、管式、网式或中空纤维式。
4.如权利要求1所述的金属有机骨架复合膜的合成方法,其特征在于,步骤(1)中,沉积的物质为聚合物,沉积方法为:将聚合物、儿茶酚类物质加入缓冲溶液中充分溶解,得到混合液,取基底浸没于所得混合液,暴露在空气中50~150r/min振荡反应6~10h,得到改性的基底,取出基底洗净、烘干,待用;
所述混合液中,聚合物的浓度为2~10mg/mL,儿茶酚类物质的浓度为0.5~5mg/mL;所述缓冲溶液为tris-HCl、tris-磷酸盐、氨基酸或硼酸盐缓冲剂,pH值在7~10。
5.如权利要求1所述的金属有机骨架复合膜的合成方法,其特征在于,步骤(1)中,沉积的物质为金属盐,沉积方法为:分别配制单宁酸水溶液、金属盐水溶液,将基底反复浸入以上两种溶液,反复5~10次,每次浸入时振荡20~60s,之后取出基底用去离子水冲洗,空气中静置干燥,待用。
CN201811518640.6A 2018-12-12 2018-12-12 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法 Active CN109603565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811518640.6A CN109603565B (zh) 2018-12-12 2018-12-12 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811518640.6A CN109603565B (zh) 2018-12-12 2018-12-12 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法

Publications (2)

Publication Number Publication Date
CN109603565A CN109603565A (zh) 2019-04-12
CN109603565B true CN109603565B (zh) 2021-05-07

Family

ID=66007952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811518640.6A Active CN109603565B (zh) 2018-12-12 2018-12-12 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法

Country Status (1)

Country Link
CN (1) CN109603565B (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110339811B (zh) * 2019-06-27 2021-10-15 浙江工业大学 一种微生物基碳分子筛及其制备方法与应用
CN111330460B (zh) * 2019-11-28 2021-04-23 青岛科技大学 Dna /zif-8改性聚砜纳滤膜的方法及所得膜
CN111265716A (zh) * 2020-02-24 2020-06-12 重庆市人民医院 一种骨材表面原位修饰金属有机框架的方法及其骨修复应用
CN111266068B (zh) * 2020-03-04 2021-08-06 大连理工大学 一种接枝负载催化剂的纳米结构微通道基底的微反应器及其制备方法
CN111569670B (zh) * 2020-04-24 2022-05-20 江苏大学 一种聚酚介导的普鲁士蓝/石英纳米复合膜及其制备方法与用途
CN112121651B (zh) * 2020-09-10 2022-03-01 常州大学 单宁酸改性La-Zn(4,4’-dipy)(OAc)2/BC复合膜、制备及应用
CN116474573A (zh) * 2020-10-15 2023-07-25 中国石油化工股份有限公司 一种金属-有机框架材料分离膜及其制备方法与应用
CN112717706B (zh) * 2020-11-03 2022-06-10 浙江师范大学 金属有机框架zif-8膜、制备方法及其应用
CN112546300B (zh) * 2020-11-24 2024-03-15 温州医科大学附属口腔医院 一种雷洛昔芬改性mof涂层介导局部抗骨质疏松性金属基材植入材料及其制备方法
CN113019865A (zh) * 2021-03-10 2021-06-25 西南交通大学 一种含铁有机金属框架功能涂层材料的制备方法及应用
CN113046857B (zh) * 2021-03-15 2022-03-04 海南大学 一种可自更新活性防污涂层的海水提铀吸附剂及其制备方法
CN113351035A (zh) * 2021-07-01 2021-09-07 长春工业大学 一种亲水改性聚醚砜中空纤维超滤膜的制备方法
CN113797391A (zh) * 2021-09-27 2021-12-17 南方医科大学南方医院 一种用于医疗器械的涂料及其制备方法和应用
CN114307254B (zh) * 2022-01-07 2023-10-24 四川农业大学 水下疏油/油下疏水可切换的油水分离材料及其制备方法
CN114653402B (zh) * 2022-03-14 2023-06-27 广西师范大学 一种过渡金属配合物@共价有机框架光催化剂制备方法
CN114669205B (zh) * 2022-04-18 2023-11-03 青岛科技大学 一种Ni-Fe双金属MOF晶层聚砜复合纳滤膜及其制备方法
CN115006998A (zh) * 2022-06-16 2022-09-06 浙江理工大学 一种用于重金属污水处理的复合纳米纤维膜及制备方法和用途
CN115581804B (zh) * 2022-09-21 2023-08-29 南方科技大学 一种金属有机骨架改性的聚醚醚酮骨移植材料及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597577A (zh) * 2016-02-24 2016-05-25 复旦大学 基于金属有机骨架/氧化石墨烯复合物的荷正电纳滤膜及其制备方法
CN107398186A (zh) * 2017-07-11 2017-11-28 中国科学技术大学 金属有机骨架分离层膜及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050067344A1 (en) * 2003-09-30 2005-03-31 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Zeolite membrane support and zeolite composite membrane
US20090274616A1 (en) * 2007-08-30 2009-11-05 Nichirin Co., Ltd. Zeolite membranes for hydrogen gas production and method of producing hydrogen gas using the zeolite membranes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597577A (zh) * 2016-02-24 2016-05-25 复旦大学 基于金属有机骨架/氧化石墨烯复合物的荷正电纳滤膜及其制备方法
CN107398186A (zh) * 2017-07-11 2017-11-28 中国科学技术大学 金属有机骨架分离层膜及其制备方法

Also Published As

Publication number Publication date
CN109603565A (zh) 2019-04-12

Similar Documents

Publication Publication Date Title
CN109603565B (zh) 儿茶酚类化合物辅助沉积合成金属有机骨架复合膜的方法
CN111249918B (zh) 一种mof膜的原位可控合成方法
Jiang et al. Ultra-facile aqueous synthesis of nanoporous zeolitic imidazolate framework membranes for hydrogen purification and olefin/paraffin separation
Xu et al. MOF-based membranes for pervaporation
CN103446893B (zh) 一种在管式陶瓷支撑体内壁制备金属有机骨架膜的方法
US9713796B2 (en) Process for the preparation of MOFs-porous polymeric membrane composites
Zhang et al. Fabrication of highly (110)-Oriented ZIF-8 membrane at low temperature using nanosheet seed layer
Li et al. Sol–gel asynchronous crystallization of ultra-selective metal–organic framework membranes for gas separation
Li et al. Green synthesis of ZIF-8 tubular membranes from a recyclable 2-methylimidazole water-solvent solution by ZnO nanorods self-converted strategy for gas separation
US20220401915A1 (en) Structured metal-organic framework fiber adsorbent for capturing carbon dioxide and manufacturing method therefor
Song et al. Structural manipulation of ZIF-8-based membranes for high-efficiency molecular separation
Hao et al. Synthesis of high-performance polycrystalline metal–organic framework membranes at room temperature in a few minutes
Nian et al. Preparation of a pure ZIF-67 membrane by self-conversion of cobalt carbonate hydroxide nanowires for H 2 separation
CN105879708A (zh) 一种利用不同源氧化锌层诱导制备Co-ZIF-67金属有机骨架膜的方法
CN111729518B (zh) 一种配体掺杂金属有机骨架的杂化zif-8膜的制备方法及应用
CN111672330B (zh) 一种采用热退火后合成技术制备mof纳滤膜的方法
CN111841333B (zh) 一种担载型zif-8膜的高效制备方法
CN115245759A (zh) 一种自支撑共价有机框架膜及其制备方法
CN113289501B (zh) 一种纳米多孔碳陶瓷膜纳滤复合膜的制备方法
US11878267B2 (en) Mixed matrix membrane (MMM) and method of H2/CO2 gas separation by using MMM
CN110052184B (zh) 一种气液界面制备mof膜的方法
CN116948206A (zh) 一种新型精准调控zif-8材料形貌的方法
CN115888414A (zh) 一种高选择性高通量高度有序自组装混合基质气体分离膜及其制备方法
CN109575305B (zh) Co-MOF气敏纳米材料的制备方法及其产品和应用
CN107970786B (zh) 一种混合基质膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant