CN109592987B - 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法 - Google Patents

一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法 Download PDF

Info

Publication number
CN109592987B
CN109592987B CN201910034475.5A CN201910034475A CN109592987B CN 109592987 B CN109592987 B CN 109592987B CN 201910034475 A CN201910034475 A CN 201910034475A CN 109592987 B CN109592987 B CN 109592987B
Authority
CN
China
Prior art keywords
carbon
boron nitride
composite material
sic composite
interface phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910034475.5A
Other languages
English (en)
Other versions
CN109592987A (zh
Inventor
朱苏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Shixin New Materials Co Ltd
Original Assignee
Hunan Shixin New Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Shixin New Materials Co Ltd filed Critical Hunan Shixin New Materials Co Ltd
Priority to CN201910034475.5A priority Critical patent/CN109592987B/zh
Publication of CN109592987A publication Critical patent/CN109592987A/zh
Application granted granted Critical
Publication of CN109592987B publication Critical patent/CN109592987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/524Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite obtained from polymer precursors, e.g. glass-like carbon material
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62844Coating fibres
    • C04B35/62857Coating fibres with non-oxide ceramics
    • C04B35/62865Nitrides
    • C04B35/62868Boron nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62886Coating the powders or the macroscopic reinforcing agents by wet chemical techniques
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Products (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

本发明公开了一种含富碳氮化硼界面相C/C‑SiC复合材料的制备方法。该方法为:1)在含硼酸、尿素的前驱体溶液A中加入AM和MBAM混合溶解后加入引发剂过硫酸铵APS引发聚合反应,形成溶胶溶液B;2)将碳纤维预制件浸渍于溶胶溶液B中,浸渍完成后烘干,重复浸渍烘干、热处理,获得含富碳氮化硼界面相的碳纤维预制件;3)将碳纤维预制件浸渍树脂、渗硅处理得到含富碳氮化硼涂层的C/C‑SiC复合材料。所制得的材料中的界面相一方面由于BN与液硅之间不存在化学反应,因而能防止液硅侵蚀纤维;另一方面由于高分子凝胶在氮气气氛下热处理将残留较多的游离碳,能提高该界面对硅的润湿性,从而提高界面与基体的结合强度,两种作用耦合最终大幅提高C/C‑SiC材料的力学性能。

Description

一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法
技术领域
本发明涉及一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,属于纤维增强陶瓷基复合材料制备技术领域。
背景技术
纤维增强陶瓷基复合材料由用连续陶瓷或碳纤维增强的陶瓷或碳基质组成,与金属或其他常规工程材料相比,它对高温和腐蚀性环境具有更大抵抗力。因此,该材料作为热结构材料具有重要意义,最初是为军事和航空航天开发的应用。现在,它们被引入许多其他新领域,并且它们的应用范围将会增长当生产成本大幅降低时。潜在的应用包括热交换器,热力发动机,燃气轮机,航空航天工业,核反应堆,化学工业,汽车工业,生物制品的结构部件植入物,等等。
到目前为止,C/C-SiC复合材料作为陶瓷基复合材料的杰出代表已经被广泛应用。C/C-SiC复合材料的制备方法主要包括以下三种途径:化学气相渗透(chemical vaporinfiltration,CVI)、热压烧结法(high pressure-sinter process,HP-Sinter)、先驱体浸渍裂解法(polymer impression pyrolytic,PIP)以及熔硅浸渍法(liquid siliconinfiltration,LSI),其中LSI工艺过程通常是用熔融Si对多孔C/C复合材料进行浸渗处理,使熔硅与接触的炭发生反应生成SiC基体,是一种简单、快捷且低成本制备C/SiC双基体材料的方法,已被应用于工业化生产C/C-SiC复合材料。然而,在LSI工艺过程中,熔融硅不可避免的会与碳纤维发生反应,导致纤维损伤,使复合材料力学性能偏低,材料呈现明显的脆性,需要采取措施避免纤维与熔融硅的直接反应。目前,主流的方法是采用CVI工艺在碳纤维表面沉积一层0.1μm-0.3μm的热解碳保护层,以消耗液硅的方式来在一定程度上达到保护纤维的效果,但是CVI工艺周期较长,而且纤维仍有较大几率被液硅侵蚀。因此,需要提供一种新型低成本快速制备纤维保护界面的方法。
氮化硼(boron nitride,BN)与硅在熔融渗硅工艺的温度范围内(1400℃-1900℃)不存在反应,且与碳纤维之间存在良好的相容性,可以作为一种新型的防止液硅侵蚀纤维的界面相。同时,相比于CVI沉积热解碳工艺,采用硼酸尿素反应制备BN更为高效。但是,BN对于液硅的润湿性差,会对渗硅效率以及界面层与基体结合产生负面影响,而且传统工艺制备的BN界面均匀性较差,因此需要对传统工艺作出改进。
发明内容
针对现有技术的不足,本发明的目的在于提供一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,所得C/C-SiC复合材料具有富碳氮化硼界面相可有效防止液硅侵蚀纤维的保护界面,提高基于LSI工艺制备的C/C-SiC复合材料的力学性能。
为了实现上述目的,本发明采用如下技术方案。
本发明一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,包括如下步骤:
1)在含硼酸、尿素的前驱体溶液A中加入丙烯酰胺(AM)和N,N'-亚甲基双丙烯酰胺(MBAM)混合,溶解后加入引发剂过硫酸铵(APS)引发聚合反应,水浴搅拌,形成透明的溶胶溶液B;
2)将经脱胶处理后的碳纤维预制件浸渍于步骤1所得的溶胶溶液B中,浸渍完成后烘干,重复浸渍、烘干处理2~4次,然后于惰性气氛下热处理,获得含富碳氮化硼界面相的碳纤维预制件。
本发明的技术方案,在C/C-SiC复合材料中富碳氮化硼界面相的制备过程中,以溶胶溶液B作为碳纤维预制件的浸渍剂,该浸渍剂将BN前驱体原料硼酸、尿素镶嵌于高分子三维网络凝胶间隙之中,使得原料可以实现分子级别的分散均匀,待碳纤维预制件完成浸渍、烘干以及热处理后,BN界面相将均匀的、完整的附着于碳纤维预制件中,同时由于高分子三维网络凝胶经热处理裂解后将残余游离碳,从而形成富碳氮化硼界面相,利用上述的富碳氮化硼界面相碳纤维预制件经LSI工艺制备的C/C-SiC复合材料,碳的存在将进一步的增强界面与液硅的润湿性,从而改善界面与基体的结合。
优选的方案,所述前驱体溶液A中,硼酸和尿素的质量比为1:2~5。
优选的方案,所述前驱体溶液A中,硼酸的浓度为1.5mol/L~1.7mol/L。
优选的方案,所述含硼酸、尿素的前驱体溶液A中的溶剂为乙醇与水组成的混合溶剂。
优选的方案,所述混合溶剂中乙醇与水的体积比为1:1~3。
采用乙醇和水的混合溶剂可以使前驱体获得更好的溶解与分散,有利于后续形成均质的凝胶溶液。
优选的方案,前驱体溶液A的配取方式为:将硼酸、尿素加入由乙醇与水组成的混合溶剂中,于50℃~80℃搅拌0.5~1h,即得前驱体溶液A。
优选的方案,所述溶胶溶液B中,按质量比计,MBAM:APS:AM=1:2~9:20~25。
优选的方案,所述溶胶溶液B中,按质量比计,AM:硼酸=1:2~8。
在本发明中,BN前驱体原料与溶胶体系(AM、MBAM、APS)的质量比对最终形成的氮化硼界面层具有一定的影响需要有效的控制,若BN前驱体原料(硼酸、尿素)的加入量过大,则所形成的界面层中,碳含量将少,且均匀度差,力学性能不足,而若溶胶体系(AM、MBAM、APS)的加入量过大,则界面层中含碳量将过多,液硅易沿着碳含量多的区域透过涂层腐蚀纤维,同样导致力学性能降低。
优选的方案,步骤1中,所述聚合反应的温度为30~40℃,聚合反应的时间10~30min。
优选的方案,步骤2中,所述浸渍的温度:30~40℃,浸渍的时间为15~30min。
优选的方案,步骤2中,所述烘干的温度为80~100℃,烘干的时间为40~60min。
优选的方案,步骤2中,所述热处理的工艺程序为:0.2℃/min~5℃/min升温至150℃~250℃,保温0.5h~1h,0.2℃/min~5℃/min升温至300℃~400℃,保温0.5h~1h;0.2℃/min~5℃/min升温至800℃~900℃,保温1h~1.5h;5℃/min~10℃/min升温至1000℃~1200℃,保温1h~2h,随炉冷却。
在本发明中,由于最终形成富碳氮化硼的经历的反应较多,所以需要进行梯度升温,多个区间保温,才更有利于形成均匀致密结合性能好的界面层。
优选的方案,步骤2中,所述惰性气氛为氮气气氛。
优选的方案,步骤2中,所述碳纤维预制件选自碳化硅纤维编织件、碳纤维缠绕件、二维碳毡、2.5D针刺整体毡中的至少一种。
作为进一步的优选,所述碳纤维预制件选自2.5D针刺整体毡,所述2.5D针刺整体毡的密度为0.4~0.6g/cm3
优选的方案,将含富碳氮化硼界面相的碳纤维预制件采用呋喃树脂经3~4次浸渍、碳化处理至获得密度为1.0g/cm3~1.5g/cm3的C/C多孔预制体,将C/C多孔预制体经熔融渗硅处理的得到密度为2.0g/cm3~2.3g/cm3的含富碳氮化硼界面相的C/C-SiC复合材料。
与现有技术相比,本发明的突出优点是
本发明在传统的硼酸尿素合成BN的基础上,结合高分子网络凝胶,提高了在C/C-SiC中制备BN界面相的效率及均匀性,有效阻隔了液硅对纤维的侵蚀;同时保留高分子凝胶裂解残余的游离碳,提高了界面与液硅的润湿性,从而改善界面与基体的结合,两者协同作用,使最终制得的含富碳氮化硼界面相的C/C-SiC复合材料力学性能大幅提高。
本发明的制备方法简单可控,原料廉价,适合于工业化生产。
附图说明
图1是实施例1制备的富碳氮化硼界面层的SEM图。
图2是对比例1中采用传统工艺制备的氮化硼界面层的SEM图
图3是对比例2制备的富碳氮化硼界面层的SEM图。
具体实施方式
实施例1
富碳氮化硼界面相的制备
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;在前驱体溶液A中加入单体丙烯酰胺(AM)10g和交联剂N,N'-亚甲基双丙烯酰胺(MBAM)0.4g,搅拌溶解,降温至40℃后加入引发剂过硫酸铵(APS)1.7856g,搅拌10min引发聚合反应,形成溶胶溶液B;
2)将密度为0.55g/cm3的2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于溶胶溶液B中20min,取出于80℃烘干40min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,得到均匀紧密的氮化硼界面;其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,
保温1h;5℃/min升温至1200℃,保温1h,随炉冷却;
该实施例制备的纤维表面氮化硼界面的显微照片如图1所示,由该图可以看出,涂层均匀致密,与纤维结合紧密,厚度均一,厚度在300nm-500nm范围内。
实施例2
富碳氮化硼界面相的制备
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;在前驱体溶液A中加入单体丙烯酰胺(AM)15g和交联剂N,N'-亚甲基双丙烯酰胺(MBAM)0.6g,搅拌溶解,降温至40℃后加入引发剂过硫酸铵(APS)1.7856g,搅拌10min引发聚合反应,形成溶胶溶液B;
2)将密度为0.55g/cm3的2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于溶胶溶液B中20min,取出于80℃烘干40min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,得到均匀紧密的氮化硼界面;其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,保温1h;5℃/min升温至1200℃,保温1h,随炉冷却。
实施例3
富碳氮化硼界面相的制备
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;在前驱体溶液A中加入单体丙烯酰胺(AM)5g和交联剂N,N'-亚甲基双丙烯酰胺(MBAM)0.2g,搅拌溶解,降温至40℃后加入引发剂过硫酸铵(APS)1.7856g,搅拌10min引发聚合反应,形成溶胶溶液B;
2)将密度为0.55g/cm3的2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于溶胶溶液B中20min,取出于80℃烘干40min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,得到均匀紧密的氮化硼界面;其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,保温1h;5℃/min升温至1200℃,保温1h,随炉冷却。
实施例4
富碳氮化硼界面相的C/C-SiC复合材料的制备。
将实施例1、2、3所得富碳氮化硼界面相预制体采用下述方法,进行树脂浸渍碳化、渗硅处理获得C/C-SiC复合材料:
将碳毡采用呋喃树脂浸渍碳化,重复3次增密得到的多孔C/C预制体,浸渍碳化工艺为:样品与呋喃树脂在浸渍釜中80℃预热30min,然后抽真空0.5h,加压至1Mpa保压1.5h,然后200℃固化1h,最后取出样品在真空碳管炉中碳化,保护气氛N2,温度为800℃,保温1.5h,升温速率5℃/min。将多孔C/C预制体按需硅量1.5倍的硅粉至于石墨坩埚中铺平,将多孔预制体放置在硅粉上,并把坩埚置于高温真空炉中进行熔硅浸渗制得密度的C/C-SiC复合材料。保护气氛氩气,渗硅温度1800℃,保温1h,升温速率8℃/min。
表1力学性能检测数据
Figure BDA0001945398640000061
对比例1:
传统工艺制备氮化硼界面
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;
2)将2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于前驱体溶液A中20min,取出于80℃烘干40min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,保温1h;5℃/min升温至1200℃,保温1h,随炉冷却;
该实施例制备的传统氮化硼界面的显微照片如图2所示,由该图可以看出,涂层制备的并不均匀,仍有大量裸露的纤维,界面与纤维的结合也不强,易脱落。
含传统氮化硼界面的C/C-SiC复合材料的制备
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;
2)将2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于前驱体溶液A中20min,取出于80℃烘干40min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,保温1h;5℃/min升温至1200℃,保温1h,随炉冷却;
3)将步骤(2)处理后的碳毡采用呋喃树脂浸渍碳化,重复3次增密得到1.31g/cm3的多孔C/C预制体,浸渍碳化工艺为:样品与呋喃树脂在浸渍釜中80℃预热30min,然后抽真空0.5h,加压至1Mpa保压1.5h,然后200℃固化1h,最后取出样品在真空碳管炉中碳化,保护气氛N2,温度为800℃,保温1.5h,升温速率5℃/min。
4)取步骤(3)处理的多孔C/C预制体按需硅量1.5倍的硅粉至于石墨坩埚中铺平,将多孔预制体放置在硅粉上,并把坩埚置于高温真空炉中进行熔硅浸渗制得密度2.13g/cm3的C/C-SiC复合材料。保护气氛氩气,渗硅温度1800℃,保温1h,升温速率8℃/min。
该工艺所得的材料的三点抗弯强度为173±25MPa,断裂韧性7.6±0.6MPa·m1/2
对比例2
富碳氮化硼界面相的制备
1)将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;在前驱体溶液A中加入单体丙烯酰胺(AM)10g和交联剂N,N'-亚甲基双丙烯酰胺(MBAM)0.4g,搅拌溶解,降温至40℃后加入引发剂过硫酸铵(APS)1.7856g,搅拌10min引发聚合反应,形成溶胶溶液B;
2)将密度为0.55g/cm3的2.5D针刺整体毡在真空碳管炉中惰性气氛下800℃脱胶处理,然后于40℃浸渍于溶胶溶液B中10min,取出于80℃烘干20min,重复该处理4次,将重复浸渍烘干处理后的碳毡在氮气气氛下常压热处理,得到均匀紧密的氮化硼界面;其中热处理的工艺过程为:5℃/min升温至160℃,保温0.5h,5℃/min升温至320℃,保温0.5h;5℃/min升温至800℃,保温1h;5℃/min升温至1200℃,保温1h,随炉冷却;
3)将步骤(2)处理后的碳毡采用呋喃树脂浸渍碳化,重复3次增密得到1.25g/cm3的多孔C/C预制体,浸渍碳化工艺为:样品与呋喃树脂在浸渍釜中80℃预热30min,然后抽真空0.5h,加压至1Mpa保压1.5h,然后200℃固化1h,最后取出样品在真空碳管炉中碳化,保护气氛N2,温度为800℃,保温1.5h,升温速率5℃/min。
4)取步骤(3)处理的多孔C/C预制体按需硅量1.5倍的硅粉至于石墨坩埚中铺平,将多孔预制体放置在硅粉上,并把坩埚置于高温真空炉中进行熔硅浸渗制得密度2.08g/cm3的C/C-SiC复合材料。保护气氛氩气,渗硅温度1800℃,保温1h,升温速率8℃/min。
该实施例制备的传统氮化硼界面的显微照片如图3所示,由该图可以看出,由于浸渍干燥的时间较短,溶胶溶液的浸润不充分,涂层厚度较实施列1中的厚度薄得多,为150-180nm。该工艺所得的材料的三点抗弯强度为170±28MPa,断裂韧性7.3±0.6MPa·m1/2
对比例3
溶胶溶液的制备将硼酸40g、尿素120g溶于400ml乙醇与水(V乙:V水=1:1)的混合溶剂中,80℃水浴加热,搅拌30min溶解得到前驱体溶液A;在前驱体溶液A中加入单体丙烯酰胺(AM)10g和交联剂N,N'-亚甲基双丙烯酰胺(MBAM)0.4g,搅拌溶解,降温至40℃后加入引发剂过硫酸铵(APS)2.6784g,搅拌10min引发聚合反应。
该例中引发剂过硫酸铵(APS)含量过高,单体的交联过快,产生大量凝胶,无法进行反复浸渍过程。

Claims (6)

1.一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,包括如下步骤:
1)在含硼酸、尿素的前驱体溶液A中加入AM和MBAM混合,溶解后加入引发剂APS引发聚合反应,水浴搅拌,形成透明的溶胶溶液B;
所述溶胶溶液B中,按质量比计,MBAM:APS:AM =1:2~9:20~25;所述溶胶溶液B中,按质量比计,AM: 硼酸=1:2~8;
2)将经脱胶处理后的碳纤维预制件浸渍于步骤1所得的溶胶溶液B中,浸渍完成后烘干,重复浸渍、烘干处理2~4次,然后于惰性气氛下热处理,获得含富碳氮化硼界面相的碳纤维预制件;进行树脂浸渍、碳化、渗硅处理获得C/C-SiC复合材料;所述碳纤维预制件选自碳化硅纤维编织件、碳纤维缠绕件、二维碳毡、2.5D针刺整体毡中的至少一种,
所述浸渍的温度为30~40℃,浸渍的时间为15~30min;
所述烘干的温度为80~100℃,烘干的时间为40~60min;
所述热处理的工艺程序为:0.2℃/min~5℃/min升温至150℃~250℃,保温0.5h~1h,0.2℃/min~5℃/min升温至300℃~400℃,保温0.5h~1h;0.2℃/min~5℃/min升温至800℃~900℃,保温1h~1.5h;5℃/min~10℃/min升温至1000℃~1200℃,保温1h~2h,随炉冷却。
2.根据权利要求1所述的一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,所述前驱体溶液A中,硼酸和尿素的质量比为1:2~5;
所述前驱体溶液A中,硼酸的浓度为1.5mol/L~1.7mol/L。
3.根据权利要求1所述的一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,所述含硼酸、尿素的前驱体溶液A中的溶剂为乙醇与水组成的混合溶剂;
所述混合溶剂中乙醇与水的体积比为1:1~3。
4.根据权利要求1所述的一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,所述前驱体溶液A的配取方式为:将硼酸、尿素加入由乙醇与水组成的混合溶剂中,于50℃~80℃搅拌0.5~1h,即得前驱体溶液A。
5.根据权利要求1所述的一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,步骤1中,所述聚合反应的温度为30~40℃,聚合反应的时间10~30min。
6.根据权利要求1所述的一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法,其特征在于,将含富碳氮化硼界面相的碳纤维预制件采用呋喃树脂经3~4次浸渍、碳化处理至获得密度为1.0g/cm3~1.5g/cm3的C/C多孔预制体,将C/C多孔预制体经熔融渗硅处理得到密度为2.0g/cm3~2.3g/cm3的含富碳氮化硼界面相的C/C-SiC复合材料。
CN201910034475.5A 2019-01-15 2019-01-15 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法 Active CN109592987B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910034475.5A CN109592987B (zh) 2019-01-15 2019-01-15 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910034475.5A CN109592987B (zh) 2019-01-15 2019-01-15 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109592987A CN109592987A (zh) 2019-04-09
CN109592987B true CN109592987B (zh) 2021-11-19

Family

ID=65965138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910034475.5A Active CN109592987B (zh) 2019-01-15 2019-01-15 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109592987B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110436951A (zh) * 2019-08-27 2019-11-12 中南大学 一种低成本C/C-SiC-BN复合摩擦材料及其制备方法
CN110483070B (zh) * 2019-09-16 2021-11-09 哈尔滨工业大学 一种短切SiC纤维的复合涂层、SiBCN陶瓷复合材料及制备方法
FR3106829B1 (fr) * 2020-02-05 2023-09-29 Vandenbulcke Lionel Gerard Procédé de fabrication de composites à matrice céramique comprenant une interphase spécifique
CN111943726B (zh) * 2020-08-11 2022-10-04 航天特种材料及工艺技术研究所 一种高性能C/SiBCN复合材料及其制备方法和应用
CN113582728B (zh) * 2021-07-30 2022-10-14 湖南工学院 用溶胶凝胶烧结法在碳碳复合材料表面制备氮化硼纤维缠绕涂层的方法
CN113929481A (zh) * 2021-11-15 2022-01-14 航天特种材料及工艺技术研究所 一种氮化物纤维增强复合材料及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751006A (zh) * 2003-02-17 2006-03-22 Snecma固体燃料推进器公司 硅化热结构复合材料的方法及由此方法得到的部件
CN104030715A (zh) * 2014-06-25 2014-09-10 中国人民解放军国防科学技术大学 一种Cf/BN-SiC复合材料的制备方法
CN105152672A (zh) * 2015-07-16 2015-12-16 中国人民解放军国防科学技术大学 Cf/(BN-SiC)复合材料的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1751006A (zh) * 2003-02-17 2006-03-22 Snecma固体燃料推进器公司 硅化热结构复合材料的方法及由此方法得到的部件
CN104030715A (zh) * 2014-06-25 2014-09-10 中国人民解放军国防科学技术大学 一种Cf/BN-SiC复合材料的制备方法
CN105152672A (zh) * 2015-07-16 2015-12-16 中国人民解放军国防科学技术大学 Cf/(BN-SiC)复合材料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A modified dip-coating method to prepare BN coating on SiC fiber by introducing the sol–gel process;Jianggao Liu et. al;《Surface & Coatings Technology》;20151212(第286期);全文 *
Formation of BN films on carbon fibers by dip-coating;Ding-Fwu Lii et. al;《Surface and Coatings Technology》;20020215(第150期);全文 *
氮化硼修饰导热复合材料和碳纤维氮化硼涂层的制备及性能研究;刘群;《中国学位论文全文数据库》;20180930;第14-15,43-45,47,50-52,55页 *

Also Published As

Publication number Publication date
CN109592987A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109592987B (zh) 一种含富碳氮化硼界面相C/C-SiC复合材料的制备方法
EP3118177B1 (en) Method for making ceramic matrix composite articles
CN109293383B (zh) 一种纤维增强碳-碳化硅陶瓷基复合材料及其制备方法
EP2543650B1 (en) Method for manufacturing high-density fiber reinforced ceramic composite materials
CN109265188B (zh) 一种碳纤维增强硼化铪-硼化钽-碳陶瓷基复合材料及其制备方法
CN110317073B (zh) 一种多级纤维协同增韧抗氧化陶瓷基复合材料的制备方法
US6706401B1 (en) Carbon matrix composites fabricated by a rapid and low-cost process incorporating in-situ polymerization of wetting monomers
CN110028330B (zh) 一种陶瓷基复合材料及其制备方法
US5067999A (en) Method for providing a silicon carbide matrix in carbon-fiber reinforced composites
CN110423119B (zh) 一种耐烧蚀C/SiC陶瓷基复合材料的制备方法
CN109400168B (zh) 一种包含交替形成的SiBCN涂层和SiC涂层的SiC纤维及其制备方法和应用
CN109053207A (zh) 一种硅酸钇改性碳化硅纤维增强碳化硅复合材料及其制备方法
JP2006290670A (ja) 繊維強化炭化ケイ素複合材料及びその製造方法
CN110304932B (zh) 一种具有HfB2界面的Cf/SiC复合材料的制备方法
CN108892524B (zh) 一种C/SiC复合材料制备方法
CN112409003B (zh) 一种杂化基体碳化硅基复合材料及其制备方法
CN113061046A (zh) 硅硼氮纤维增强氮化硼陶瓷基复合材料的制备方法及应用
CN108129156A (zh) 一种碳陶复合材料及其先驱体浸渍制备方法
JP2009227565A (ja) 炭素繊維強化炭化ケイ素複合材及びその製造方法
CN110655414A (zh) 一种碳纤维增强碳-铪钽碳固溶体复合材料及其制备方法
CN112374901B (zh) 一种耐烧蚀改性C/SiC复合材料及其制备方法
CN109402786A (zh) 一种近化学计量比SiC纤维的制备方法
CN112899589A (zh) 一种超高温耐烧蚀陶瓷基复合材料的制备方法
JP5068218B2 (ja) 炭素繊維強化炭化ケイ素複合材料およびその製造方法
CN108840698B (zh) 一种多孔c/c复合材料及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant