CN109562695B - 用于经由无线电力传输为路上电动车供电的系统和方法 - Google Patents

用于经由无线电力传输为路上电动车供电的系统和方法 Download PDF

Info

Publication number
CN109562695B
CN109562695B CN201780049842.8A CN201780049842A CN109562695B CN 109562695 B CN109562695 B CN 109562695B CN 201780049842 A CN201780049842 A CN 201780049842A CN 109562695 B CN109562695 B CN 109562695B
Authority
CN
China
Prior art keywords
power
coils
coil
vehicle
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780049842.8A
Other languages
English (en)
Other versions
CN109562695A (zh
Inventor
哈南·伦巴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electrotron Wireless Charging Co.,Ltd.
Original Assignee
ELECTRIC ROAD Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ELECTRIC ROAD Ltd filed Critical ELECTRIC ROAD Ltd
Priority claimed from PCT/IL2017/050724 external-priority patent/WO2018002931A1/en
Publication of CN109562695A publication Critical patent/CN109562695A/zh
Application granted granted Critical
Publication of CN109562695B publication Critical patent/CN109562695B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J5/005
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/02Details
    • B60M1/10Arrangements for energising and de-energising power line sections using magnetic actuation by the passing vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/02Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power with means for maintaining voltage within a predetermined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/06Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M7/00Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway
    • B60M7/003Power lines or rails specially adapted for electrically-propelled vehicles of special types, e.g. suspension tramway, ropeway, underground railway for vehicles using stored power (e.g. charging stations)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • H02J7/025
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

在本文中提供了一种用于为路上车辆进行无线电力传输的系统。该系统包括多个基站;输电线,该输电线位于路面的下方,具有多个区段,每个区段具有至少一对线圈以及至少一个电容器,该电容器经由开关电连接于该区段的线圈;以及至少一个车辆,该车辆具有至少一个电力接收区段,该电力接收区段具有连接于至少一个电容器的至少两个线圈,其中,该至少一个车辆还包括通信传输器,该通信传输器被配置成传输供电请求信号,其中,电力传输区段的线圈被配置成接收供电请求信号;并且其中在多个基站中的每一个基站还被配置成响应于供电请求信号,向多个电力传输区段供给处于谐振频率的电流。

Description

用于经由无线电力传输为路上电动车供电的系统和方法
发明领域
本发明总体涉及无线电力传输的系统和方法,并且具体涉及这种为路上移动的车辆供电的方法和系统。
发明背景
在阐述相关技术的短讨论之前,可以有帮助地阐述将在下文中使用的某些术语的定义。
术语“无线电力传输”(WPT)(也叫作“空中供电”)在本文中指的是在不使用导体的情况下从电源向电气设备(诸如,电网或耗电设备)传输电能。在无线电力传输中,连接于电源的无线传输器使电场能量穿过介于中间的空间传送到一个或更多个接收器,在接收器处,电场能量转换回电流,并且随后得到使用。在互连的导线不便利、危险或者不可行的情况下,无线传输对于为电气设备供电来说是有用的。无线供电技术分成两类:非辐射的和辐射的。在非辐射技术中,通常由磁场使用在导线线圈之间的磁感耦合来传递电力。这一类型的应用包括对类似列车或者公共汽车的电动车进行感应供电。
术语“电力传输器”在本文中指的是WPT网络的设施侧。在基于感应的WPT中,电力传输器包括感应电路。术语“电力接收器”在本文中指的是WPT网络的车辆侧。
术语“非轨道车辆”在本文中指的是未被约束沿着特定轨道移动的路上车辆(诸如,小汽车和公共汽车),与普通列车以及轻轨列车相反。
通过空气为非轨道车辆供电产生很多挑战。因为非轨道车辆可以在前进方向的横向上移动,因此存在着电力传输器侧(路)上的感应电路与在电力接收器侧(车辆)上的感应电路变得非重叠,并因此使WPT过程变得效率低。
另一个挑战是处理由于线圈恰当地定位在道路下方而导致的潜在的辐射危险。再一个挑战是无论变化的负载如何,调节由网络向车辆供应的电流。在电力接收器(车辆)处的未经调节的电流可以导致不受限的电流以及对电力接收器电路的破坏。还重要的是提供有效率而又简单的机构,通过该机构,电力接收器(车辆)向电力传输器(道路)请求能源。
发明概述
根据本发明的一些实施例,在本文中提供了用于为在路上车辆无线供电的系统。该系统包括:多个基站,其被配置成输出处于特定频率的交流电;电力线,其位于路面下方,并且包括多个独立切换的电力传输区段,每个电力传输区段包括至少一对线圈,该至少一对线圈串联电连接于至少一个电容器,并且经由开关串联电连接于该多个基站之中的一个基站,形成切换电力传输电感电路;以及至少一个车辆,该至少一个车辆具有至少一个电力接收区段,该至少一个电力接收区段具有至少两个线圈以及至少一个电容器,形成电力接收电感电路,其中,该至少一个车辆还包括通信传输器,该通信传输器被配置成传输供电请求信号,其中,电力传输区段的线圈被配置成接收所述供电请求信号,其中,与接收所述供电请求信号的电力传输区段的线圈相关联的基站还被配置成向所述电力传输区段供给处于特定频率的交流电,该特定频率是响应于供电请求信号的、所述电力传输电路和接收电感电路的谐振频率。
根据本发明的一些实施例,在电力传输区段处的每对线圈之中的线圈是采用相反相位的方式操作的。
根据本发明的一些实施例,仅仅在至少在电力传输区段的线圈和在电力接收区段处的线圈之间存在部分重叠的时候,由车辆发送的供电请求信号可以受到检测。
根据本发明的一些实施例,供电请求信号可以包括由在与基站相关联的开关处的电流回路检测,其中,当在电流回路处检测到电流时,并且受到基站许可时,基站向在电力传输区段处的线圈供给。
根据本发明的一些实施例,供电请求信号可以包括被配置成在电流回路处生成交流电,并且其中检测可以包括通过相位检测来执行。
根据本发明的一些实施例,谐振频率可以是大约80kHz至100kHz,并且供电请求信号可以处于大约400kHz至1000kHz的频率。
根据本发明的一些实施例,车辆可以包括在电力接收区段的两侧上的辅助电力接收区段。
根据本发明的一些实施例,辅助电力接收区段可以包括椭圆形的或者矩形的线圈。
根据本发明的一些实施例,车辆还可以包括电动机以及阻抗匹配电路,该阻抗匹配电路被配置成接收来自电力接收电感电路的电流,并且向电动机递送阻抗匹配的电流。
根据本发明的一些实施例,车辆可以包括超级电容器,其中,阻抗匹配电路将阻抗匹配的电流经由超级电容器递送到电动机。
根据本发明的一些实施例,车辆可以包括稳压器,该稳压器防止在电动机处的输出电压超过预定义值。
根据本发明的一些实施例,稳压器可以包括这样的电路:该电路感测基准电压超过预定义值,并且使至少一个电容器重复放电,直到基准电压达到在预定义值以下为止。
附图简述
本发明的实施例通过示例的方式阐释但是不限于附图的图,在附图中同样的附图标记表示相应的、相似的或者类似的部件,在附图中:
图1A、1B和1C分别是根据本发明的一些实施例的用于为电动车供电的系统的示意性俯视图和正面剖视图;
图2A和2B是根据本发明的一些实施例的空心变压器的剖视示意图;
图3A和3B是根据本发明的一些实施例的在接收器阵列中多相接收器单元的侧视图和仰视图;
图4是根据本发明的一些实施例的多相输电线的侧视图、俯视图和仰视图;
图5是根据本发明的一些实施例的蓄电器系统的示意性剖视图;
图6A-图6D分别是根据本发明的一些实施例的三线圈段和六线圈段的电气系统布置的示意图;
图7是根据本发明的一些实施例的单相接收器和单相蓄电器的底层示意图,该单相接收器和单相蓄电器可以替代本发明一些实施例中的接收器和蓄电器;
图8是根据本发明的一些实施例的用于为电动车50供电的系统的更详细的侧面剖视图;
图9A是根据本发明的一些实施例的用于改变接收器电感的电路的示意图;
图9B是示出根据本发明的一些实施例的在已知调制频率范围中、在已知时间段内、在已知时间窗口中的蓄电器变化的频率的图;
图10是根据本发明的一些实施例的用于驱动在道路上的车辆的方法的示意性流程图;
图11是根据本发明的一些实施例的用于为在道路上的车辆供电的方法的示意性流程图;
图12A-图12D是根据本发明一些实施例的输电线区段的俯视图;
图13A和13B是在根据本发明的一些实施例的车辆的底层上接收器阵列的示意图;
图14是根据本发明的一些实施例的用于从接收器阵列聚集能量的接收器电路的示意图;
图15A-图15F是根据本发明的一些实施例的输电线的机械装置和结构的示意图;
图16A-图16D示意性地示出在根据本发明的一些实施例的输电线区段上接收器阵列行(array row)的位置上蓄电器线圈和接收器线圈之间能量传输的依赖关系;
图17是根据本发明的一些实施例的防止从输电线辐射泄露的额外方法的示意图;
图18是根据本发明的一些实施例的防止从输电线和接收器阵列辐射泄露的额外方法的示意图;
图19A和19B是在根据本发明一些实施例的输电线的段中的输电线区段的示意图;
图20是示出根据本发明的一些实施例的系统的示意性框图;
图21是示出根据本发明的一些实施例的与线圈相关的一些方面的图解;
图22是示出根据本发明的一些实施例的与线圈相关的其他方面的图解;
图23是示出根据本发明的一些实施例的与线圈相关的再一些方面的图解;
图24是示出根据本发明的一些实施例的与基站相关的方面的图解;
图25是示出根据本发明的一些实施例的与开关相关的其他方面的图解;
图26是示出根据本发明的一些实施例的与接收器相关的其他方面的图解;
图27是示出根据本发明的一些实施例的与接收器相关的其他方面的电路图;
图28是示出根据本发明的一些实施例的与接收器相关的其他方面的电路图;
图29是示出根据本发明的一些实施例的与接收器相关的方面的波形图;并且
图30是示出根据本发明的一些实施例的与接收器相关的其他方面的电路图。
能够领会为了阐释的简洁和清楚,图中所示的部件没有必要准确地或者按比例绘制。例如,为了清楚,一些部件的尺寸可能相对于其他部件进行放大,或者若干物理组件可能被包括在一个功能块或者一个部件中。另外,在认为合适之处,附图标记可能在图中重复以表示相应或者类似部件。
发明的详细描述
在以下详细描述中,提出若干特定细节以提供对本发明的整体理解。然而,本领域技术人员能够理解,本发明离开这些特定细节也可以实施。在其他例子中,并未详细描述已知方法、步骤和组件、模块、单元和/或电路以不至于模糊本发明。
根据本发明的一些实施例,用于对在道路上的电动车充电的系统和方法能够在车辆在道路上移动时为车辆供电。道路的特定段可以包括可以为车辆供电以使得车辆依靠其移动的电荷感应(charge-inducing)设施。因此,车辆的可充电电池可以用于在不包括这种设施的其他道路段上行驶。例如,可以减小用于在其他道路段上使用的车辆的可充电电池的尺寸,和/或可以实现更长的路程。在包括电荷感应设施的道路段,路程的范围至少在电力方面上是基本不受限制的。
现在参考图1A、1B和1C,它们分别是根据本发明的一些实施例的用于为电动车供电的系统100的俯视图和正面剖视图。系统100至少包括一个蓄电器系统300(参照图5进行更详细的描述),蓄电器系统300中的两个在图1A中显示。如图1B所示,系统300包括可以放置在道路30上或者道路30中开挖沟槽32内的感应条或者输电线20。如图2A所示,感应条或者输电线20可以包括和/或作为空心变压器200的初级绕组起作用,变压器200的次级绕组可以是安装在车辆50的车辆底层52处的接收器阵列10。接收器阵列10可以沿着垂直于在道路30上的车辆50的运行方向或者输电线20的纵向轴线的轴线A从一侧移动到另一侧。
两个跟踪线圈13可以在以距离接收器阵列10沿着轴线A的中心相同距离处被安装在接收器阵列10的两侧。可以通过本文所述的闭环控制方法执行通过追踪线圈13进行的接收器阵列10的定位。为了从输电线20有效地接收电力,接收器阵列10沿着轴线A的中心,即,线圈17(如图3A所示)沿着轴线A的中心,应当定位在输电线20的中心的上方,即,线圈27(如图3A所示)沿着轴线A的中心的上方。因此,为了有效地传输电力,当接收器阵列10在输电线20上方的期望位置处时,分别位于接收器阵列10两侧的两个追踪线圈13应当定位在距输电线20沿着轴线A的中心相同距离处。如本文详细描述的,在通过蓄电器线圈27发送引导信号和/或驱动信号的同时,可以在追踪线圈13的出口处测量电压值。当接收器阵列10和追踪线圈13从输电线20上方的期望位置处偏离时,可以在追踪线圈13的出口处测量不同的平均能量值。当距输电线20上方期望位置的偏离(shift)较小时,两个追踪线圈13处的平均能量值之间的差异可以较小,并且,当接收器阵列10和追踪线圈13定位在期望位置时,在两个追踪线圈13处的平均能量值可能基本相同。
在一些其他实施例中,如图1C所示,接收器阵列10可以包括若干接收器阵列10a,这可以消除移动接收器以从输电线20接收电力的需求。系统100还可以包括从总电力网络接收电力并且提供在各个道路段的输电线20所需电力的发电机或者变流器22。根据车道的数量、交通负荷、道路的陡度和/或影响车辆50和/或变流器22的电力损耗的任何其他参数,一个发电机或者变流器22可以分配给几十米到几百米之间的特定道路段。
根据本发明的一些实施例,输电线20可以包括可以利用单相或者多相运行的多相电力系统。能够理解,在本说明书中,多相电力可以包括任何数量的单相或者多相,在一些实施例中可以指单相电力。因此,本文描述的多相系统或者部件可以是或者包括任何数量单相或者多相的系统或者部件。
如本文以下更详细显示的,根据相的数量,输电线20可以包括蓄电器单元阵列,其中每一个单元可以包括若干组蓄电器载荷,例如蓄电器线圈,每一组线圈接收不同相移的AC电力。因此,多相输电线20可以根据相的数量包括若干导体组24以通过相应多个导体组24从变流器22接收多相AC电力。
现在参照图2A和2B,它们是根据本发明的一些实施例的空心变压器200和200a的剖面示意图。显示了输电线20和接收器阵列10。如图2A所示,接收器阵列10可以沿着垂直于道路30上车辆50的行驶方向和/或感应条20的纵向轴线的轴线A从一侧移动到另一侧,以例如根据在追踪线圈13处测量的信号定位在输电线20上方的期望位置中。如图2B所示,接收器阵列10可以包括在空心变压器200a中的若干接收器阵列10a,这可以消除移动接收器以从输电线20接收电力的需求。沿着车辆50的宽度的接收器的数量依赖于车辆的宽度。
如以下详细描述的,接收器阵列10或者接收器阵列10a的每一者可以组成可以从相应蓄电器线圈接收电力的接收器单元阵列,例如,组装的接收器线圈。接收器阵列10或者接收器阵列10a每一者的工作区域(例如每个线圈)的宽度l应当和输电线20的宽度(例如,蓄电器线圈的宽度)相同。
空心中间间隙,即,输电线20和接收器阵列10之间的空心210,的尺寸可以影响变压器200传输能量的能力。当输电线20和接收器阵列10之间的距离d较小时,能量损失可能较小。距离d在行驶期间可以例如根据道路的弹性和/或质量在已知范围内改变,其中,道路的弹性和/或质量影响接收器阵列10沿着轴线Z移动。在一些示例性实施例中,输电线20和接收器阵列10之间的距离d可以高达约20cm,其中,接收器阵列10(例如接收器线圈)的宽度l可以高达约40cm。为了抑制车辆主体磁影响,变压器200可以包括在接收器阵列10或者接收器阵列10a和车辆下侧52之间的多个绝缘体盘12。
变压器200的电力损失可能由导体(例如接收器线圈和蓄电器线圈)的电阻和输电线20和接收器阵列10之间的距离引起,这尤其依赖道路条件。可以通过使用合适的利兹线(Litz线)减小线圈的电阻。当线圈的宽度较大时,由输电线20和接收器阵列10之间的距离引起的损失可以较小。
另外,在接收器和蓄电器线圈中可能产生邻近效应(proximity effect)。线圈中电线的邻近尤其在高频率下可能引起可以抵抗电线中电流的相互涡流电流。本发明的实施例可以包括由一个层构成的螺旋Litz线圈,能够使在邻近的线圈之间发生低相互作用,因此减少邻近效应和/或提供具有高质量系数的线圈。
例如,可以当接收器线圈位于蓄电器线圈上方时提供能量的传递,因此可以创建变压器。可以通过闭环控制自动地执行接收器阵列10或者接收器阵列10a在输电线20上方的定位。
现在参照图3A和3B,根据本发明的一些实施例,图3A和3B分别示出多相接收器单元15在接收器10或者接收器阵列10a中的侧视图和仰视图。接收器单元15中的单位或者线圈17的数量依赖于车辆所需的电力。正如本发明的典型实施例中所包括的,多相接收器15可以包括至少与系统运行的相数量相对应的数量的线圈17,或者是该数量的任意其他倍。在如图1C、2B和3B中所示的布置中,接收器阵列10a的数量依赖于车辆的结构和宽度。
现在参照图4,图4是根据本发明的一些实施例的多相输电线20的侧视图、俯视图和仰视图的示意图。输电线20可以由几十米的区段形成。每一个区段可以形成大约1米的几个段25。每个段25可以由相应多相电力发生器(例如发电机22)而单独地供电。根据相的数量或者该数量的其他倍,每个段25可以包括若干蓄电器载荷(例如蓄电器线圈27)。例如,三相输电线20可以由相应的三相电力发生器(例如发电机22)供电。因此,每一个段25可以包括三个蓄电器载荷(例如,蓄电器线圈27)或者三的其他倍(例如六个)蓄电器载荷。尽管本发明不在相的数量方面进行限制,但是在图4-图7的例子中示出了三相配置。图4-图7中示出的实施例可以在任何数量的相的电力下运行。因此,当本说明提到对应于三相电力的三个部件或者三的倍数的部件时,可以分别由与系统运行的相的数量相对应的其他数量或者系统运行的相的数量的倍数的系统部件替换。
如图4中所示,线圈27组装为至少部分地相互叠加和/或由三角连接件连接。每一个段中线圈27中的绕组的方向可以是相同的,因此,磁场具有沿着每一个段25的相同的相。线圈27可以包括三组线圈,在每一组中的线圈接收具有相同相移的AC电力,并且可以彼此并联。每一组可以从发电机22接收具有不同相移的AC电力。可以通过对应于三组线圈(或者根据相的数量的其他数量的组)的三组导体24a、24b和24c接收电力,每组导体从发电机22传导具有不同相移的AC电力,使得三(或者其他数量)组线圈的每一者从三组导体中的另一个接收电力,而导体传递具有特定相移的电力。在该例子中,每一个段25可以包括每组线圈的一个线圈,使得每一个段25构成三相载荷。
根据本发明的一个实施例,在三相配置中,每一个段25可以包括例如具有在所有三个线圈27中的相同电流方向的三个线圈,三个线圈可以布置成一个线圈与其他线圈部分重叠。图6A中示出这种三线圈段的电气布置的示意图。
根据本发明的另外实施例,在三相配置中,每一个段25包括例如具有交流电方向的六个线圈27。六个线圈可以布置成例如使得每一个线圈27重叠下一个线圈27的一半。在该布置中的两个重叠的线圈27可以具有相反的电流方向。这种布置可能更为昂贵。然而,该布置可以提供更大的磁通量和更均匀且强大的电力。在两个实施例中,线圈27之间的重叠域(overlap regime)(例如重叠的位置和量)和接收器线圈17之间的重叠域基本相等。图6B中示出这种六线圈段27的电气布置的示意图。
现在参照图5,图5是根据本发明的一些实施例的蓄电器系统300的示意性剖视图。蓄电器系统300可以包括嵌入道路30中的输电线20。输电线20可以放置在道路30中的沟槽32内。输电线20可以包括三组导体24a、24b和24c,并且线圈27可以布置为一个线圈至少部分地重叠另一个线圈。在沟槽32内,蓄电器系统300可以包括绝缘外壳29以使输电线20与例如除线圈27顶部外的所有侧面隔离,以例如使得输电线20能够仅仅通过线圈27的顶部传递电力。蓄电器系统300还可以包括例如粘接层26以将岩石或者柏油层33连接到输电线20上。
现在参照图6A、6B、6C和6D。图6A和6B分别是三线圈段25和六线圈段225的电气布置400a和400b的示意图。图6C和6D分别是三线圈段25和六线圈段225的俯视图。电气布置400a和400b的每一者可以包括含三相转换器21的发电机22,三相转换器21可以例如将从总电力网络接收的单相交流电力转换为每一者具有不同相移的三相电力(例如,三个电力传输)。或者,发电机22可以从三相中心电力网络接收电力。此外,发电机22可以包括可以将三相电力路由到三组导体24a、24b和24c的适配器23,使得每组导体传导具有不同相移的电力。在图6A中,在每一个段25中的三个线圈27可以具有相同的电流方向,如图6C所示。在图6B中,段25a中的三个线圈27可以具有相同的电流方向,而段25b中的三个线圈27可以具有相同的电流方向,该电流方向与段25a中电流方向相反,如图6D所示。在段25a或者25b每一者中的三个线圈27通过三角连接件连接,并且通过三组导体24a、24b和24c接收三相电力。
在本发明的一些实施例中,可以使用单相配置。现在参照图7,图7是根据本发明的一些实施例的单相接收器阵列10a和单相输电线20a的底层示意图,上述阵列可以替换本文描述的本发明的一些实施例中的接收器阵列10和输电线20。单相接收器阵列10a可以包括一个或者多个单个接收器线圈17a,每个接收器阵列自身构成接收器单元15。输电线20可以包括单相蓄电器段255,该蓄电器段255可以替换本文描述的本发明的一些实施例中的蓄电器段25,每一个单相蓄电器段可以包括若干蓄电器线圈,例如图7中所示的三个线圈。单个接收器线圈17的宽度可以符合整个蓄电器段25的宽度。每个蓄电器段25可以包括并联的若干蓄电器线圈以及可以具有两个出口导体。该布置可以减少接收器成本。此外,由于大尺寸接收器线圈17a,电力接收对沿着轴线A和沿着轴线Z的接收器阵列10的位置的敏感性可能较弱。
现在参照图8,图8是根据本发明的一些实施例用于驱动电动车50的系统100的更详细侧剖视图。系统100可以包括在道路30上或者在道路30内的输电线20,该输电线包括段25。如本文详细描述的,系统100还可以包括发电机22、协同电容器(coordinationcapacitor)84、通信单元82、三相电力源90和三组导体24a、24b和24c。系统100还可以包括安装在车辆50中的含至少两个追踪线圈13的接收器阵列10、至少一个三相接收器15、加速计19和通信线圈18。此外,系统100可以包括安装在车辆50中的协同电容器64、通信单元62、二极管电桥66、超级电容器68、蓄电器70和发动机/转换器72。加速计19可以检测接收器阵列10沿着轴线Z的运动。
由接收器阵列10接收的电力可以转换为DC电力并且可以传递给可以储存一些能量的蓄电器70和可以驱动车辆的发动机/转换器72。例如当没有足够的和/或不可获得道路中的蓄电器设施时或者当车辆偏离车道时,车辆50中的蓄电器70可以用作备用能量源。在一些实施例中,由道路中的输电线20提供的电力不足以在上坡路上行驶,以及所需的额外能量可以由蓄电器70提供。
超级电容器68可以在相对短的时间内使足够量的能量聚集。当车辆降速时,超级电容器68可以聚集电力。例如,超级电容器68可以聚集车辆50从100KM/h(千米每小时)突然制动期间释放的所有能量。超级电容器68可以储存车辆50制动期间聚集的能量。可以在例如当需要补充能量的情况下,利用超级电容器68中储存的能量。例如,储存在超级电容器68中的能量可以用于车辆50的加速。在本发明的一些实施例中,多余能量可以通过接收器阵列10返回到输电线20,之后返回到总电力系统或发电机22,以例如驱动输电线20上的其他车辆、向路灯提供电力和/或为了任何其他合适的用途。
为了使接收器阵列10能够相对于输电线20定位(例如在垂直于行驶方向的轴线A中),发电机22可以通过输电线20产生和/或传递引导信号。引导信号的产生和/或传输可以在发电机22完全启动之前和/或由发电机22完全传输电力之前执行。例如,通过对应的段25,指定的低电力发电机可以在后台持续地运行并且与发电机22发送信号同步地传递引导信号。在其他实施例中,发电机22可以包括开关86,可以将发电机22的运行模式从完全传递模式改变到引导发送信号模式(例如,当在蓄电器线圈上没有检测到接收器)以及从引导发送信号模式改变到完全传递模式(例如,当在蓄电器线圈上检测到接收器阵列10时)。例如,在启动向接收器阵列10完全传递电力之前,来自发电机22的电流可以通过电抗部件(例如,具有至少是线圈27电感十倍的电感的线圈,或者足够小以避免输电线20共振频率的电容器)提供给段25。AC开关86可以在需要时(例如,根据本发明的一些实施例,当接收器阵列10被恰当地放置并且可以接收电力时)短路电抗部件,使得在电抗部件没有阻抗的情况下,来自发电机22的电力可以传递给段25并且引入接收器阵列10。与本文描述的低电力引导信号相反(传递该信号用于接收器阵列10的初次定位),发电机22的完全启动和/或由发电机22进行的完全电力传输意味着发电机22传递用于为车辆50供电的电力。
可以通过两个或者更多追踪线圈13接收引导信号,追踪线圈可以位于接收器阵列10的侧面处。根据本发明的一些实施例,引导信号可以通过对应的蓄电器线圈27由追踪线圈13接收,并且可以用于接收器阵列10在输电线20上方的定位。一旦接收器阵列10以足够正确的方式定位在输电线20的上方,识别信号可以通过例如通信线圈18发送给到通信单元82。
例如,当在两个追踪线圈13处的平均能量值相同时(即,当接收器阵列10为了有效的电力传输而定位在输电线20上方的期望位置时),通信单元62可以通过通信线圈18将识别信号传递给输电线20以启动电力传输,正如本文详细描述的。
通信线圈18可以放置在车辆的行驶方向B中接收器阵列10的前方。通信线圈18可以实现与发电机22和/或系统100的操作者通信。例如,可能需要用于车辆标识的识别,对用户计费以及启动发电机。
如图8中所示,通信线圈18可以连接到行驶方向B上的接收器阵列10的前方。例如,通信线圈18可以具有两个绕组。通信线圈18可以在约1-10MHz的调制频率下工作。识别信号可以通过通信线圈18由通信单元62传递,并且引入蓄电器线圈27以及由发电机22中的通信单元82接收,该识别信号还可以进一步传递以进行信号处理。如果识别了来自通信线圈18的通信信号,则相关段25可以通过例如本文所述的相应的AC开关86被运行并且变为运行段25(例如段25上方放置相应的段15),并且可以通过电感将电力传输到段15。上述情形可以在段15在段25上方并且变压器200由蓄电器线圈27和接收器线圈17形成时发生。此外,为了在段15到达下一个段25上方的位置时准备将电力传输给接收器阵列10,可以运行相邻段25(例如车辆50的行驶方向B中的下一个段25)。因此,一旦识别来自通信线圈18的信号,就运行两个段25。当车辆50在方向B中行驶时,例如,除引导信号外,一旦段25上方没有识别到接收器段15,段25就可以停止接收和/或引起全电力。例如,可以由上文所述的相应的AC开关86执行上述停止,该开关可以打开短路,因此仅仅低电力引导信号可以由电抗部件从发电机22传递到段25。可以通过检查经过段25的电流识别段25上方是否有接收器段15,该识别在电力引入接收器阵列10或者没有引入接收器阵列10时通常具有不同的形式。一旦段15由下一个段25识别,下一个段25就变为运行段,正如讨论的,行驶方向中运行段25后面的段25也可以被启动,等等。
当接收器阵列10和输电线20之间的空心210相对大时(例如输电线20和接收器阵列10之间的距离d大于宽度l的四分之一),电力损失可能高。为了克服高的电力损失并且使电力传输更有效,接收器阵列10可以在共振下运行,例如遵循发电机22决定的频率。为了提高电力传输的效率,输电线20可以亚共振下工作。例如,电容器84可以与段25串联,这样可以具有比有相同共振频率的接收器阵列10所需的更大的电容。因此,例如,输电线20的共振频率可以小于例如接收器阵列10的共振频率的百分之八十。线圈中的磁场与电流强度和绕组数量成比例地形成。为了构建足够强的磁场,可以通过增加绕组的数量增加线圈的电感,这可能需要增加电压。此外,尽管绝缘材料可能很厚,但是增加线圈的电感可能需要非常薄的线圈电线。或者,为了构建足够强的电场,可以通过增加线圈电线的宽度增加电流。然而,在高电流下工作可能需要厚的导体,这可能会增加系统的成本。尽管系统会变得不稳定并且难以控制,但是在变压器200中共振下工作(例如通过增加与输电线20和/或接收器阵列10串联的合适的电容器)可以构建非常高强度的电流,因此电场可以显著增加。然而,在输电线20中在亚共振下工作在增加效率的同时,可以增加电流和磁场。因此,应当插入合适的电容器84以保持系统稳定。
接收器阵列10和输电线20之间的距离在行驶期间可能改变,该改变可能影响空气变压器200互相耦合系数的变化。耦合系数的变化可能影响共振频率。因此,例如,相对于接收器阵列10的运行共振频率,接收器阵列10和输电线20之间较小的距离d可以增加变压器200的共振频率,较大的距离d可以减小变压器200的共振频率。例如,相对于接收器阵列10的运行共振频率,接收器阵列10相对于输电线20的水平运动也可以减小变压器200的共振频率。变压器200的共振频率相对于接收器阵列10的运行共振频率的这些变化可以减小通过变压器200的电力传输。
本发明的一些实施例提供针对改变道路条件以防止和/或减轻由共振频率变化引起的电力传输减小的方案。为了最大化电力传输,如图9A所示,可以通过调节电路500改变接收器阵列10的电感。变压器K4可以对接收器阵列10的线圈17增加高达百分之一的电感。电感增加可以减小接收器线圈17的共振频率。开关M3到M7可以连接感应器或者从感应器断开,因此将电感值增加到变压器K4的电感或者从变压器K4的电感中减少电感值。因此,可以控制和/或调节线圈17的共振频率以符合变压器200的共振频率和/或输电线20的频率。
此外,接收器阵列10可以包括能在行驶期间实时检测高度的变化(例如竖直运动、朝地面(沿着Z轴线)的运动)的加速计19(如图8所示)。上述两个追踪线圈13可以实时检测接收器的移动,例如接收器阵列10相对于输电线20的水平运动。当检测到这种运动时,可以通过本文所述的电路500控制、校准和/或调节线圈17的共振频率。
在本发明的一些实施例中,可以通过输电线20的频率执行线圈17的共振频率的校准。在已知时间段内,在已知时间窗口中,可以在已知调制频率范围内改变输电线20的频率。例如,如图9B所示,蓄电器频率可以在1ms时间窗口中每100ms进行从100kHz到101kHz、从101kHz到99kHz以及从99kHz回到100kHz的改变。根据接收器阵列10的运行共振频率和最佳频率之间的差别,通过由上述电路500增加/减小电感,在该1ms时间窗口期间可以将接收器阵列10校准到引起最大能量传输的最佳频率。该校准可以保持至下一个1ms时间窗口。
每个发电机22可以负责(account for)数十米(例如高达约百米)的道路的特定区段。这种区段可以包括几十个段25,例如,每个段的长度可以约一米。每个发电机22可以被要求为例如双方向四车道道路区段产生至少100KW,大约十辆车在给定时刻以约100km/h的速度在该道路区段上移动,每辆车需要约10KW。发电机可以提供约400KHz或更小的正方形或者正弦波形和约1000v或更小的交变电压。
制动车辆(例如减小速度的车辆)可以作为发电机运行并且可以向输电线20提供电力(例如假设该车辆自己的蓄电器70已满)。当车辆50减小其速度时,可以将多余电力提供返回到蓄电器线圈27。这可能是有效的布置,其中,在道路上向下移动的车辆可以对在道路上向上移动的车辆提供电力,因此,可以更少消耗来自发电机22的总能量。除偶然损失和引导信号外,上方没有接收器段15的蓄电器段25(可以构成无载荷的变压器)可以基本不消耗能量。此外,为了安全的原因,可以仅仅在相应的接收器段15放置到蓄电器段上方时运行蓄电器段25(例如从发电机22接收全电力)。当接收器线圈17在相应蓄电器线圈27上方时的共振情形中,就可以形成高强度电流和强磁场。然而,这些磁场在距运行段25约20cm的距离时变得可以忽略。
为了连接输电线20(例如,通信以及被通信单元82识别),车辆必须在输电线20处于轮子之间时移动。可以自动地并且动态地执行接收器阵列10的准确定位(即通过沿着垂直于行驶方向的轴线A移动接收器阵列10)。在接收器阵列10包括若干接收器阵列10a的情形中,可以连续地执行输电线20和接收器阵列10之间的传输。
现在参照图10,图10是根据本发明的一些实施例的用于驱动在道路上车辆的方法的示意性流程图。如块820中显示的,通过至少单相的多相发电机产生至少单相的多相电力。如块820中显示的,该方法可以包括通过安装在道路中的输电线从多相发电机接收多相电力,输电线包括一系列蓄电器段,每一个段包括对应于相数量的至少一定数量的蓄电器线圈,并且线圈的每一者可以构造为接收具有不同相移的电力。该方法还可以包括通过对应于相数量的若干组导体运输电力,每一个组将具有不同相移的电力从多相发电机运输到输电线。如块830中显示的,该方法可以包括在通信单元处从位于至少一个蓄电器段上方车辆中的通信线圈中接收信号。如块840显示的,该方法可以包括运行相应蓄电器段以向连接在车辆的接收器提供电力。
在一些实施例中,该方法还可以包括通过蓄电器由发电机将待传输的引导信号提供在车辆处的接收器。
在一些实施例中,该方法还可以包括在车辆处的接收器到达在车辆行驶方向中的下一个蓄电器段上方的位置时,由通信单元运行该下一个蓄电器段。
在一些实施例中,该方法还可以包括一旦没有识别到特定蓄电器段上方的接收器,就停止向该特定蓄电器段传输全电力。
在一些实施例中,该方法还可以包括由相应的多相电力发生器单独为每一个蓄电器段供电。
在一些实施例中,该方法还可以包括当没有检测到蓄电器线圈上方的接收器时,开关将运行模式从完全传输模式改变到引导发送信号模式,当检测到蓄电器线圈上方的接收器时执行相反操作。
现在参照图11,图11是根据本发明的一些实施例用于向在道路上车辆提供电力的方法的示意性流程图。如块910中显示的,该方法可以包括当车辆在蓄电器线圈上方的道路上移动时,通过安装在车辆下的接收器阵列从安装在道路中的相应的蓄电器线圈接收至少单相的多相电力,接收器阵列包括至少一个多相接收器,该多相接收器至少包括对应于相数量的一定数量的接收器线圈(例如至少一个接收器线圈)。如块920中显示的,该方法可以包括由位于车辆行驶方向中的接收器阵列前方的通信线圈,通过相应蓄电器线圈中的一个向通信单元发送识别信号。
在一些实施例中,该方法还可以包括通过接收器线圈从相应蓄电器线圈接收具有不同相移的电力。
在一些实施例中,该方法还可以包括通过在至少一个多相接收器两侧的至少两个追踪线圈(定位在距至少一个多相接收器的中心相等距离处)接收相应的一个蓄电器线圈的引导信号,以及根据在至少两个追踪线圈处测量的平均能量将接收器阵列定位在蓄电器线圈上方。
在一些实施例中,该方法还包括当车辆减小其速度时,通过接收器阵列将多余电力返回到蓄电器线圈。
在一些实施例中,该方法还包括当车辆减小其速度时,通过超级电容器聚集电力。
在一些实施例中,该方法还包括通过调节电路改变每一个接收器线圈的电感以通过调节电路符合蓄电器段的共振频率,调节电路包括变压器以将电感增加到接收器线圈以及转换到连接或者断开感应器从而改变变压器的电感值。
在一些实施例中,该方法还包括实时检测接收器阵列竖直和水平运动,其中调节电路可以在检测到运动时调节接收器线圈的共振频率。
输电线20可以从中心电力系统接收电力并且将电力从系统100返回到中心电力系统,例如国家和/或地方电力系统。如本文详细讨论的,每一个接收器线圈17可以构造为当车辆50在相应蓄电器线圈27上方的道路上移动时从相应的蓄电器线圈27接收电力,以及将多余电力返回输电线20。可以通过输电线20将多余电力返回到中心电力系统和/或提供给其他车辆。因此,输电线20可以作为能量源以及能量蓄积器运行。例如,可以要求蓄电器20符合辐射安全要求。
现在参照图12A-图12D,这些图是根据本发明的实施例的输电线区段227或者227a的俯视图。输电线区段227和227a可以适于本发明实施例的单相构造,即,输电线区段227和227a的线圈27可以在相同的相接收电力。在一些示例性实施例中,输电线区段227(即,输电线20的区段)可以包括四个线圈。在一些其他实施例中,如图12C中示出的区段227a,区段可以包括两个线圈。在其他实施例中,输电线区段227可以包括任何其他合适数量的线圈。在本发明的一些实施例中,两个相邻的蓄电器线圈27可以具有相反的电流方向,如图12A-图12D中由箭头w和w′所示出的。根据本发明的一些实施例,两个相邻蓄电器线圈27具有相反电流方向的情形中的布置可以有利于减少来自输电线20的辐射,由此系统100更安全。
通过包括具有相反电流方向的两个相邻蓄电器线圈27,由两个相邻线圈27构建的磁场260可以在距输电线20的纵向轴线的距离Dm较大时,在输电线20的区域外使彼此衰退。该衰退可能不损害能量从输电线20传递到接收器阵列10以及从接收器阵列10传递到输电线20。因此,在这种实施例中,每两个相邻的线圈27可以使彼此的磁场衰退。在这种布置中可能发生的一个问题是能量传递可能是不均匀的,并且在两个相邻线圈27之间的过渡区域处(例如两个相邻线圈相遇的地方)具有强度降低265。在本发明的一些实施例中,为了克服这些强度降低,可以将电容器(例如超级电容器)安装为与接收器阵列117(未显示)相连,这可以平滑以及介导从输电线20接收的电力。
如上文提到的,在一些示例性实施例中,如图12A、12B和12D中所示,输电线区段227可以包括四个线圈27。这种输电线区段227的长度可以大约是100-130cm。线圈27之间的交界点增强相邻线圈27的互感,从而增强输电线区段227和/或随后的输电线区段227的总电感。图12B示出三个随后的输电线区段227。
图12C和12D分别示出输电线区段227a和227中串联连接的随后的线圈27中线圈27的电线275卷曲方式,以及由导体238串联连接的随后的线圈27之间的连接方式。随后的或者之前的输电线区段227a或者227之间的过渡由箭头237示出,该过渡描绘与随后或者之前输电线区段227a或者227的连接。随后的或者之前的输电线区段227a或者227之间的过渡的特征在于大电位差,这要求增强的电绝缘。这种卷曲和连接的方式可以与图13A和13B中示出的接收器阵列117和117a的线圈17的相似。
现在参照图13A和13B,这些图分别是根据本发明的一些实施例在车辆50下方的接收器阵列117和117a的示意图。接收器阵列117可以包括若干列127,每一列构成接收器线圈17的阵列。例如根据车辆50的长度和/或任何其他合适的考虑,列127可以包括任何合适数量的接收器线圈17。此外,列127可以包括能放置在车辆的行驶方向B中接收器17前方的通信线圈18。例如根据车辆50的宽度和/或任何其他合适的考虑,接收器阵列117可以包括任何合适数量的列127。与输电线区段227或者227a一致,接收器阵列117可以适合于本发明实施例的单相构造。因此,列127中的两个相邻接收器线圈17可以具有相反的电流方向,例如由箭头w和w′所示出的,和/或阵列117的线圈17可以串联连接,例如,类似于图12C和12D中所示的输电线区段227或者227a的蓄电器线圈27的卷绕和连接。
或者,接收器阵列117a可以包括一系列椭圆或者矩形串联的长方形接收器线圈17a,其中,两个相邻接收器线圈17a可以具有相反的电流方向,例如由w和w′所示出的。长方形接收器线圈17a的宽度可以根据车辆50的宽度和/或任何其他合适的考虑来确定。接收器阵列117a还可以包括,例如,可以放置在车辆行驶方向B中的接收器线圈17a前方处的长方形通信线圈18a。
现在参照图14,该图是根据本发明的一些实施例的用于从接收器阵列117或者117a聚集能量的接收器电路700的示意图。尽管电路可以包括任何其他合适数量的线圈,但是电路700包括,例如,串联的两个线圈L1和L2。具有电感L1和L2的线圈L1和L2可以分别代表阵列117(或者117a)中两个连续的线圈17(或者17a)。如电路700中所示,线圈L1和L2可以与电容器C16、C19和C17并联,其中,电容器C16和C19串联连接并且总共具有等效电容C1。可以由二极管电桥D1通过电容器C18收集能量(即出口电压)。在该情形中,电路700的共振频率与(L1+L2)·(C17+C1)近似成反比例。
根据载荷要求,例如车辆50的发动机/转换器72的要求,电路700还可以包括用于调节接收器电路700的共振频率的机制。根据本发明的实施例,由接收器线圈17接收的能量直接提供给电力发动机/转换器72,并且除用于备用而例如在蓄电器70中储存一小部分能量外,不对电池或另一电力存储装置充电。通常,接收器电路700的共振频率高于输电线区段227(或者227a)的共振频率,因此,接收器阵列117或者117a和输电线区段227(或者227a)之间的能量传递可能不是最佳的。因此,电路700可以包括脉冲宽度调制器(PWM)控制器710、开关S1和额外的电容器C20,当S1关闭时电容器C20可以和电容器C19并联。PWM控制器710可以感测载荷何时需要更多电力和载荷何时需要更少电力。当开关S1打开以及PWN控制器710感测载荷需要更多电力时,可能关闭开关S1。由于关闭开关S1将电容器20并联至电容器C19,因此接收器电路700的共振频率可以减小至输电线区段227(或者227a)的共振频率,这可以改善能量传递并且增加电容器C18处的出口电压。当开关S1关闭以及PWN控制器710感测载荷需要更少电力时,可以打开开关S1并且由此,例如,电容器C20可以断开连接。当电容器C20断开连接时,接收器电路700的共振频率可以增加到输电线区段227(或者227a)之上,这可以减小电容器C18处的出口电压。可以动态地并且以足够大速度执行PWM控制器710的调制以提供足够稳定的电力供给。开关S1应当足够稳定以承受高电压差异。
现在参照图15A-图15F,它们是根据本发明的一些实施例的输电线20的机械安装和结构的示意图。可以对输电线20进行机械地以及电气地保护,并且针对湿气和/或潮湿密封输电线20。如本文详细描述的,输电线20可以由输电线基本安装单元250构成。
图15A和15B是根据本发明的一些实施例的输电线基本安装单元250的示意图。基本安装单元250可以是整体式单元,和/或可以包括输电线区段227(或227a)(如图15A所示)或者若干输电线区段227(或227a)(如图15B所示),以及从单元250的一端251伸出的导体240,导体将电流导入区段227(或227a)和/或导出区段227(或227a)。基本安装单元250可以包括若干输电线区段227(或227a)(如图15B所示),例如三个输电线区段227(或227a)或任何其他合适数量的输电线区段227(或227a)。可以在道路30中的沟槽32内将基本安装单元250按顺序放置为一列。
图15C和15D分别是根据本发明一些实施例的输电线20结构和安装件600的俯视图和正面剖视图。安装件600可以包括在道路30中挖掘的沟槽32。基本安装单元250可以按顺序地放置在沟槽32内。例如,第一安装单元250可以相对于本文详细描述的发电机22放置在沟槽的远端,例如,放置在远离发电机22的沟槽32的端部。从单元250的一端伸出的导体240可以在发电机22方向上放置在沟槽32中。例如,导体240所伸出单元250的段251放置在发电机22的方向上。例如,导体240相对于单元250的远端可以到达发电机22。与前面单元250相邻并且在相同方位上的每一个随后的单元250可以放置在前面(多个)单元的(多个)导体240上,即,使得导体240所伸出的单元250的端部放置在发电机22的方向上,和/或使得从单元250的一端伸出的导体240可以在发电机22方向放置在沟槽32中。以这种方式,可以从相对于发电机22的单元250的远端到相对于发电机22的单元250的近端一个接着另一个放置单元250。相对于单元250的导体240的远端可以到达发电机22。
如图15D所示,例如为了使输电线20仅仅通过线圈27的顶面传输电力,在沟槽32内,安装件600可以包括绝缘外壳29以使输电线区段227(或227a)与例如除线圈27顶面外的所有侧面绝缘。安装件600还可以包括例如粘接层26以将岩石或者柏油层33连接到输电线20上。从单元250伸出的导体240可以互相电绝缘地一个与另一相邻放置,并且为了防止导体电线打结(loop)和/或缠绕而将导体放置为有序的群。
图15E和15F分别是根据本发明一些实施例的基本安装单元250的结构和安装件600的详细俯视图和纵向剖视图,其中基本安装单元包括输电线区段227和导体240。输电线区段227可以放在例如聚碳酸酯或者任何其他合适的绝缘材料和/或防水材料的两个表面270之间,这不明显减小电感。此外,密封件271环绕在输电线区段227的周缘,该密封件针对湿气和电压突发(voltage outbreaks)密封输电线区段227。通过考虑电势而确定线圈27之间的距离以防止电压突发。区段227内连续的线圈27可以通过导体238彼此连接,例如以图12D所示的方式。
现在参照图16A-图16D,它们示意性地示出根据本发明的一些实施例的输电线区段227上方接收器阵列的列127位置上的蓄电器线圈27和接收器线圈17之间的能量传输的依赖关系。图16A和16B是根据本发明的一些实施例的接收器阵列的列127和输电线区段227的示意图。例如,接收器阵列的列127可以包括两个接收器线圈17和导体138,该导体138将两个线圈17串联连接。当底部具有接收器阵列117的车辆50经过在行驶方向B上的输电线区段227上方时,接收器阵列17有时候在相应蓄电器线圈27上方对齐(例如图16A中所示),使得能量传输最大,以及接收器线圈17有时候可以放置在连续的两个蓄电器线圈27之间的过渡区域上方(例如图16B中所示),在这种情况下将减小能量传输。图16C是能量传输对接收器阵列的列127在输电线区段227上方位置的示意图1600a。正如在示意图1600a所示,沿着输电线区段227的能量传输是不均匀的。图16D示出能量传输对接收器阵列的列127在输电线区段227上方位置的示意图1600b,由电容器介导。正如在示意图1600b所示,连接到接收器阵列的列127的电容器可以减小如示意图1600a所示的沿着输电线区段227的能量传输的差异。
如本文讨论的,本发明的一些实施例可以提供防止辐射从输电线20泄露的方案。如上所述,通过包含具有相反电流方向以及由此例如相反磁场的相邻线圈,磁场在输电线20的区域外衰退并且在输电线20的区域内更强。该方案适合于例如使用单相电力的本发明的实施例。
现在参照图17,该图是根据本发明的一些实施例的防止辐射从输电线20泄露的额外方案。输电线20可以具有环绕蓄电器线圈27的相反线圈绕组28,绕组的电流方向与线圈27中的电流方向相反。相反线圈绕组28中相反的电流方向可以减小线圈27周围的磁场。
现在参照图18,图18是根据本发明的一些实施例的防止辐射从输电线20和接收器阵列10或者117(或者117a)泄露的额外方案的示意图。在本发明的一些实施例中,可以使用保护材料以引导和/或遮蔽磁场。例如,接收器阵列10或117(或117a)可以包括在车辆50的绝缘板和底部之间的铝箔11,其中铝箔11包括向下折叠到接收器线圈17侧面的提示物(reminders)11a。由岩石或者柏油层33下的蓄电器线圈27构建的磁通(由箭头h所示)向上经过接收器线圈17并且引起电流。磁通与绝缘板12相遇而返回(由箭头I所示)并且向下行进(由箭头j所示)以闭合磁场圈(由箭头k所示)。然而,一部分磁通渗入绝缘板12并且转化为热,因此例如在铝箔提示物11a中产生涡流(由箭头p所示)。当铝箔提示物11a较长时,即更低,磁通泄露可以较小。
现在参照图19A和19B,这些图是根据本发明一些实施例的在输电线20中的段的输电线区段227的示意图。在图19A和19B中,尽管本发明在这方面没有进行限制,但是每一个输电线区段227可以包括三个蓄电器线圈27。使连续的输电线区段227i和227j通电,即从发电机22接收电力。每两个连续的蓄电器线圈27具有相反的电流方向(由箭头w和w′所示)。电流方向w和电流方向w′相反。因此,除了位于输电线20通电段末端的末端线圈27i和27j的磁场之外,两个连续的蓄电器线圈27(包括连续的输电线区段227i和227j)的磁场在线圈区域外使彼此衰退。末端线圈27i和27j的磁场不衰退,因此构成剩余辐射900的来源。
根据本发明的一些实施例,输电线20可以包括防护环800,其中,每个防护环800环绕两个连续输电线227的两个相邻的末端线圈27,如图19B所示。防护环800构成闭合导电环。环800缩短经过环800的磁场。当没有磁场经过环800时,或者当磁场在通电输电线区段227i和227j之间的环800中使彼此衰退时,环800是中性的和/或对输电线20的运行没有明显的影响。由于由末端线圈27i和27j构建的磁场不衰退,因此,单独的环800i和800j是激活的(active)并且捕获场以及减小剩余辐射。其他环800没有穿过自身的明显的磁场,从而保持中性。环800i和800j轻微减小由末端线圈27i和27i提供的电力,但是解决了剩余辐射的问题。可以在接收器阵列10或117(或117a)中以相似方式安装相似的环。在本申请的剩余部分中,在本文中示出了本发明的几个特定的非限制性的示例性实施例。
图20是示出根据本发明的一些实施例的系统的两个工作模式本质的示意性框图。配置2000A示出了电力工作模式,在该电力工作模式中,电网输入被提供到基站2010(在道路侧的电力传输器),基站2010进而将能源沿着电力线2030传送到操作区段。电力接收器2020(在车辆侧)接收电磁通量,该电磁通量随后被转换成直流(DC)并被提供给负载(电动机)。在通信工作模式2000B中,相同的基站2010现在充当通信接收器,同时电力接收器202现在充当通信传输器,采用用于在电力线(道路侧)上执行电力传输的相同区段是用于从车辆侧接收通信信号的相同区段的方式,将供电请求传输到电力线2030中。有利地,道路侧的区段的双重使用实现更有效的架构。
图21是示出根据本发明的一些实施例的线圈相关的一些方面的图解。如以上所讨论的,每个区段包括两对或更多对的相反相的线圈。每个线圈可以具有各种形状。发明人已发现除了圆形螺旋线圈2110以外,椭圆形螺旋线圈2120和方形螺旋线圈2130均可以有效地使用。相同区段中的线圈2140串联连接,其中每个相邻的线圈(例如,2140A和2140B)具有相反的相。在圆形线圈的情况下,优选为具有定位成彼此相距(线圈的)半径R的两个相邻的线圈。从机械的方面来看,眼镜状的形状2150可以使用于在可以由单一导线2170供电的线圈中的每一对线圈。在一些实施例中,蜂针状的连接器2160A和2160B在区段的两侧上,以用于能够使各区段有效串联,并且防止各区段未对齐。
图22是示出根据本发明的一些实施例的与线圈相关的其他方面。为了便于部署各区段的电力线,可以使用成卷2210的区段2220。使用柔性材料是确保在应用沥青之前易于部署电力线的一种方式。在一种构造中,可以使用非重叠的区段2230A和2230B。在另一实施例中,可以使用重叠的区段2240A、2240B和2240C。在重叠的区段中,两个相邻的线圈重叠。当接收器更靠近区段的边缘时,重叠的线圈的电磁通量被添加到重叠的线圈,这有助于低k耦合系数水平。
图23是示出根据本发明的一些实施例的与线圈相关的又一些方面的图解。显示了电力接收器(车辆侧)上的区段2310,其中的线圈与电力传输器(道路侧)上的线圈相同。预计在电力接收区段处的线圈的最小数量是两个。在一个非限定性的实施例中,4个电力接收器线圈A、B、C和D可以相距1.5R(R是线圈的半径),其中线圈A、B、C和D充当单独的电感器电路,电感器电路相互独立地接收电力。
可选地,线圈A和线圈C可以并联连接,并且线圈B和线圈D同样并联连接。在电力传输器区段2320上的线圈可以是如此布置的:电力接收器线圈A和C分别与电力传输器线圈1和2重叠,并且在电力接收器(车辆)向右移动的时候,电力接收器线圈B和D变得与电力传输器线圈2和4重叠。
在通信模式,通信传输器区段2330(车辆侧)具有线圈A和B(优选为不同于2310的线圈A和B),其可以并非同时传输,而是以相互排他的方式传输(当A传输时,B不传输,反之亦然)。通信接收器区段2340(道路侧)恰好使用电力传输器区段2320的线圈1-4中的线圈1-4,但另外通信电线2530B被添加到电力线2350A和2350B。在操作中,通过2330的A和B交替操作(传输)通信信号保证了在通信导线2350B处的连续电流,该连续电流在基站处被解释为在特定区段处的、来自车辆的供电请求。
图24是示出根据本发明的一些实施例的与基站相关的方面的图解。基站控制多个相互独立的区段。三相电网的输入被供给以在功率因数校正(PFC)模块2420处整流,功率因数校正模块2420向逆变器2430供给直流电(DC),逆变器2430继而生成频率为大约85-90KHz(这是电感电路在电力传输区段和电力接收区段处的优选的谐振频率)的交流电(AC),交流电经由相应的开关卡2440A、2440B和2440C向各区段供给,每个开关卡与不同的区段相关联,并且受中央控制器2410控制。在操作中,无论每个开关卡(例如,2440A)何时感测到来自其相应的区段(例如,区段N,未示出)的供电请求,开关卡(例如,2440A)均通知控制器2410,控制器2410继而(在验证身份和其他网络层考虑因素之后)命令开关卡(例如,2440A)允许85-90KHz电力信号到达对应的区段(例如,区段N)。
图25是示出根据本发明的一些实施例的开关卡的非限定性实施方式的框图。开关卡可以包括电流回路2550,电流回路2550环绕或者包围来自于道路侧上的通信接收器线圈的导线。当由电流传感器2540感测到电流的时候,通信接收器与控制器相互作用,该控制器在考虑到其它参数(诸如,网络可用性以及车辆的身份)的情况下,确定是否经由开关驱动器2510连接或者断开连接开关2520。
图26是示出根据本发明的一些方面的与接收器侧的供电方面相关的方面的图解。电力传输线圈1和2是受到道路侧上的通信模块2680命令的,以向相应的电力接收线圈A、B、C和D(每次仅有2个线圈(A和C、以及B和D)与1和2发生谐振)提供能源。在线圈A-C以及B-D中的每对线圈随后被分别供给到相应的谐振电容器2620和2610中,并且随后被供给于阻抗负载匹配电容器2630和2640、供给于整流器2660和2650,并且最终供给于稳压器2670,稳压器2680将直流电输出给作为车辆电动机(未示出)的负载。
图27是示出根据本发明的一些实施例的在车辆侧(接收器)处的稳压器机构相关的其他方面的电路图。稳压电路2700包括接收器线圈L1、谐振电容器C1、负载R1的阻抗负载匹配电容器C2。电容器C1和C2与线圈L1一起形成电流源,并且正因如此可能短路。其在本文中被称为馈源。因为馈源是电流源,输出电压取决于负载电阻器R1的值,因此在负载非常高的情况下或者在断路的情况下,输出电压将变成破坏性的数千伏。在调节期间,开关1(ON位置)经由二极管电桥D1、D2、D5、D6使馈源短路。当开关处于OFF位置时,经由二极管电桥D1、D2、D3、D4对馈源执行充分的整流。VDC输出控制电路对输出电压进行采样,并且当电压达到预定值时,将开关1切换到位置ON,负载R1本身无法“觉察”到短路,因此电容器C1保持其电压,并且仅经由R1放电。当电压值下降到预定义值时,开关1移位回到OFF,并且该过程一再重复。当开关1是可以处理负载和所需的电压的电子开关(诸如,IGBT或MOSFET)时,将会发生对输出电压的调节。有益的是经由绝缘推挽电路来操作对输出电压的调节,这是因为在开关1和VDC OUT控件之间具有电压差。
图28是示出根据本发明的一些实施例的在接收器(车辆侧)处免受过电压影响相关的其他方面的电路图。该电路并联连接于图27中描述的电路。当输出电压达到齐纳二极管D8的电压的时候,电容器C9经由电阻器R21充电。当电容器C9两端的电压越过二极管D7的放电点时,生成脉冲,并且该脉冲将会经由变压器X5的一次绕组流动,并且将会传到变压器的二次绕组。随后,晶体管Q1将会经受击穿,并且将会使开关1短路。因此,当VD7+VD8达到过电压保护值时,施加保护。这种短路将会保持,直到以如下两种可能性之一使经由Q1的电流停止为止:图25中所示的电路中的开关2处于OFF,或者跨晶体管Q1开始短路。
有益的是,该电路的独立的,并且不需要外部电压源。另外,这是非常可靠的,因为其具有非常少的部件,并且除了晶体管Q1以外,其中的所有部件是无源的。
图29显示了示出根据本发明的一些实施例的电力接收器(车辆侧)相关的方面的波形图2900。根据本发明的一些方面,有可能通过识别出在电力传输器区段处的电流的相位,在接收器处调节电压。波形A是(在基站处的)逆变器电压,而波形B、C和D是在接收器(车辆侧)处的负载“觉察”到的在电力传输器区段处的电流相位。相位B、C和D可以由以上讨论的图25中所示的电流传感器容易地检测到。
在操作中,并且如以上解释的那样,当开关1(诸如图27中所示的那种)短路时,电流传感器(诸如,图25中所示的那种)检测到相移(在本文中的波形D),并且响应于电流流过该区段而断开连接。电流的断开连接释放晶体管Q1(如图28中那样),并且切换到通信接收模式。在存在输入通信(例如,接收器位于存在一部分接收器的需求的电力传输区段的上方,因此存在供电请求信号)的情况下,因此(并且仅因此),开关2(如图25中所示的那样)将会移位到模式“ON”,从而允许电压在接收器处再次上升。这个过程自身重复几次,以用于调节电压。
图30是示出根据本发明的一些实施例的在接收器处的通信模式相关的其他方面的电路图。电路3000包括电压发生器V1,该电压发生器V1生成用于在电力传输区段处的谐振的~86KHz主频率。开关2代表主开关,用于启动电力传输区段。线圈L5和L6代表电力传输区段的两个线圈(在相反的相位)。电容器C13和C17代表电力传输区段的谐振频率的谐振电容器。线圈L8和L9代表处于通信频率(数百KHz)的(在车辆上的)通信传输天线。电容器C18和C19代表以通信频率操作的传输器(车辆侧)的谐振电容器。电容器C14和C15代表以通信频率操作的通信接收器(道路侧)的谐振电容器。注意到尽管L4和L5两者用作电力传输天线和通信接收天线(用于节约电力传输线的铜的成本),优选地将不同于用于车辆侧从其接收电力的线圈的其他线圈(例如,L8和L9)用作天线,以用于在车辆侧处传输通信。
在操作中,在车辆侧操作通信传输器的v2和v3不会同时工作。C14、C13的经由线圈L5的谐振电流以及C14、C17经由线圈L4的谐振电流总是经由电阻器R24流动。线圈L8和L9的交替操作保证了在区段上的两个线圈之间的不平衡(因此它们将不会相互抵消处于相反相位的对方)。因此,无论相对于电力传输器区段的线圈L5和L4来说天线L8和L9的位置如何,在电阻器R24的两端将会总是有电压降。除了上述之外,在开关设置于“ON”的情况下,在电路中不会有通信。
提供以上描述的本发明实施例是为了解释和说明。并不是为了穷举或者将本发明限制在公开的准确形式中。本领域技术人员应当领会,鉴于上述教导,可能还有很多修正、变型、替代、改变和等效。因此,应当理解,所附的权利要求是为了将所有这种修正与改变都涵盖在本发明的真正精神内。

Claims (13)

1.一种用于对路上车辆无线供电的系统,所述系统包括:
多个基站,其被配置成输出处于特定频率的交流电;
电力线,其位于路面下方,并且包括多个独立切换的电力传输区段,每个电力传输区段包括至少一对线圈,所述至少一对线圈串联电连接于至少一个电容器,并且经由开关串联电连接于所述基站之中的一个基站,形成切换电力传输电感电路;以及
至少一个车辆,其具有至少一个电力接收区段,所述电力接收区段具有至少两个线圈以及至少一个电容器,形成电力接收电感电路,
其中,所述至少一个车辆还包括通信传输器,所述通信传输器被配置成传输供电请求信号,
其中,所述电力传输区段的线圈被配置成接收所述供电请求信号;
其中,与所述电力传输区段的接收所述供电请求信号的线圈相关联的基站还被配置成响应于所述供电请求信号向所述电力传输区段供给处于所述特定频率的交流电,所述特定频率是所述电力传输电感电路和电力接收电感电路的谐振频率;
其中,所述供电请求信号由在与所述基站相关联的开关卡处的电流回路检测,其中,当在所述电流回路处检测到电流时,并且受到所述基站许可时,所述基站向在所述电力传输区段处的线圈供给。
2.根据权利要求1所述的系统,其中,在所述电力传输区段处的每对线圈之中的线圈是采用相反相位的方式操作的。
3.根据权利要求1所述的系统,其中,仅仅当至少在所述电力传输区段的线圈和在所述电力接收区段处的线圈之间存在部分重叠时,由所述车辆发送的所述供电请求信号被检测到。
4.根据权利要求1所述的系统,其中,所述供电请求信号被配置成在所述电流回路处生成交流电,并且其中所述检测通过相位检测来执行。
5.根据权利要求1所述的系统,其中,所述谐振频率是80kHz至100kHz,并且其中所述供电请求信号处于400kHz至1000kHz的频率。
6.根据权利要求1所述的系统,其中,车辆还包括在所述电力接收区段的两侧上的辅助电力接收区段。
7.根据权利要求6所述的系统,其中,所述辅助电力接收区段包括椭圆形的或者矩形的线圈。
8.根据权利要求1所述的系统,其中,所述车辆还包括电动机以及阻抗匹配电路,所述阻抗匹配电路被配置成接收来自所述电力接收电感电路的电流,并且向所述电动机递送阻抗匹配的电流。
9.根据权利要求8所述的系统,其中,所述车辆还包括超级电容器,其中,所述阻抗匹配电路经由所述超级电容器将所述阻抗匹配的电流递送到电动机。
10.根据权利要求8所述的系统,其中,所述车辆还包括稳压器,所述稳压器防止在所述电动机处的输出电压超过预定义值。
11.根据权利要求10所述的系统,其中,所述稳压器包括电路,该电路感测基准电压超过预定义值,并且使至少一个电容器重复放电,直到所述基准电压达到该预定义值以下为止。
12.根据权利要求2所述的系统,其中,在所述车辆处的所述通信传输器包括至少两个线圈,所述通信传输器的至少两个线圈以相互排他的方式传输,以便确保处于所述电力传输区段的充当通信接收电路的相反相位线圈处的非零信号。
13.根据权利要求1所述的系统,其中,在所述车辆产生电力的情况下,所述车辆还被重新配置成生成电力递送信号,响应于所述电力递送信号,在所述车辆处的谐振电路将电力传输到在所述电力线处的谐振电路并且传输到所述基站。
CN201780049842.8A 2013-12-31 2017-06-29 用于经由无线电力传输为路上电动车供电的系统和方法 Active CN109562695B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB1323160.0A GB2521676B (en) 2013-12-31 2013-12-31 System and method for powering an electric vehicle on a road
US15/198,844 2016-06-30
US15/198,844 US10449865B2 (en) 2013-12-31 2016-06-30 System and method for powering on-road electric vehicles via wireless power transfer
PCT/IL2017/050724 WO2018002931A1 (en) 2016-06-30 2017-06-29 System and method for powering on-road electric vehicles via wireless power transfer

Publications (2)

Publication Number Publication Date
CN109562695A CN109562695A (zh) 2019-04-02
CN109562695B true CN109562695B (zh) 2020-10-16

Family

ID=50114881

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480074444.8A Active CN106030979B (zh) 2013-12-31 2014-12-31 用于为在道路上的电动车供电的系统和方法
CN201780049842.8A Active CN109562695B (zh) 2013-12-31 2017-06-29 用于经由无线电力传输为路上电动车供电的系统和方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201480074444.8A Active CN106030979B (zh) 2013-12-31 2014-12-31 用于为在道路上的电动车供电的系统和方法

Country Status (10)

Country Link
US (3) US10449865B2 (zh)
EP (1) EP3089886B8 (zh)
JP (2) JP6671287B2 (zh)
KR (2) KR102319474B1 (zh)
CN (2) CN106030979B (zh)
AU (2) AU2014374947B2 (zh)
CA (2) CA2935330C (zh)
ES (1) ES2774744T3 (zh)
GB (1) GB2521676B (zh)
WO (1) WO2015101986A1 (zh)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2521676B (en) * 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
US9511674B2 (en) * 2014-04-18 2016-12-06 Qualcomm Incorporated Base distribution network for dynamic wireless charging
US11121740B2 (en) * 2014-09-05 2021-09-14 Momentum Dynamics Corporation Near field, full duplex data link for resonant induction wireless charging
US9771001B2 (en) * 2014-10-09 2017-09-26 The Boeing Company Hybrid electrically powered transportation system utilizing renewable energy stored in supercapacitors
WO2016160681A1 (en) * 2015-03-29 2016-10-06 Sanjaya Maniktala Wireless power transfer using multiple coil arrays
CN108136916B (zh) * 2015-10-07 2022-03-01 沃尔沃卡车集团 用于可在电气道路系统上运行的车辆的装置和方法
CN105406563B (zh) * 2015-11-24 2018-04-24 东南大学 一种电动汽车动态无线供电系统分段发射线圈切换方法
US11239027B2 (en) 2016-03-28 2022-02-01 Chargedge, Inc. Bent coil structure for wireless power transfer
EP4129754A1 (en) * 2016-03-29 2023-02-08 Elonroad AB Method and electric road system for enabling electrical power delivery to vehicles during travel
EP3478528B1 (en) * 2016-06-30 2021-02-24 Electric Road Ltd. System and method for powering on-road electric vehicles via wireless power transfer
US20180102675A1 (en) * 2016-10-11 2018-04-12 Qualcomm Incorporated Hybrid rectification for wireless power
CA3051447C (en) * 2016-11-21 2022-01-18 Clean Train Propulsion Battery leasing and wireless power transfer for passenger rail
CN106427653B (zh) * 2016-11-29 2019-03-26 哈尔滨工业大学 基于阵列线圈式无线能量传输的π型lcl结构及该结构的工作方法
EP3583480B1 (en) * 2017-02-14 2021-09-29 Volvo Truck Corporation A sensing arrangement for determining a displacement of a vehicle with respect to an electrical road system
US10421368B2 (en) 2017-04-26 2019-09-24 Witricity Corporation Static power derating for dynamic charging
CN107067914B (zh) * 2017-05-15 2023-01-20 天津中德应用技术大学 电磁感应与电磁谐振对比实验系统及其实验方法
US10483895B2 (en) * 2017-08-25 2019-11-19 Rockwell Automation Technologies, Inc. Method and apparatus for wireless power transfer to an independent moving cart
US10608469B2 (en) 2017-09-28 2020-03-31 Rockwell Automation Technologies, Inc. Method and apparatus for power transfer to an independent moving cart during travel along a track
JP2021511774A (ja) * 2018-01-26 2021-05-06 インディゴ テクノロジーズ, インク.Indigo Technologies, Inc. 統合されたインピーダンス整合を伴う無線電力伝達システム、およびそれを使用するための方法
JP7275648B2 (ja) * 2018-06-26 2023-05-18 株式会社デンソー 走行中非接触給電システム
CN108583360A (zh) * 2018-07-15 2018-09-28 北京动力京工科技有限公司 一种移动车辆无线充电装置及方法
GB2580082B (en) * 2018-12-20 2021-03-10 Electric Road Ltd Method and system for validating power metering of power over the air system for vehicles
CN109823222A (zh) * 2019-04-04 2019-05-31 哈尔滨工业大学 利用射频位置检测系统控制动态无线供电分段式导轨切换系统及其方法
CN112109706B (zh) * 2019-06-21 2022-06-24 华为技术有限公司 基于磁感通信的车辆控制的装置和方法
US11368051B2 (en) 2020-01-31 2022-06-21 Toyota Motor Engineering & Manufacturing North America, Inc. Distributed receiver coils for wireless power transfer system
CN111769656A (zh) * 2020-07-22 2020-10-13 太原理工大学 一种带式输送机巡检机器人的充电系统及其使用方法
CN112003579B (zh) * 2020-08-26 2021-04-27 广西电网有限责任公司电力科学研究院 一种物联网信号传输降噪系统
JP7409288B2 (ja) * 2020-11-02 2024-01-09 トヨタ自動車株式会社 制御装置、非接触給電プログラム、及び、非接触給電システム
KR102589050B1 (ko) 2021-03-08 2023-10-18 (주)와이파워원 정차 및 주행 중 무선 충전 전기도로의 급전장치 및 시스템 그리고 이를 이용한 집전장치
US20220363092A1 (en) * 2021-05-12 2022-11-17 David Alan Copeland Multiplex vehicle wheel assembly types
US11845347B2 (en) * 2021-05-12 2023-12-19 David Alan Copeland Precision charging control of an untethered vehicle with a modular vehicle charging roadway
FR3124651B1 (fr) 2021-06-23 2023-07-07 Renault Sas Système d’alimentation d’un véhicule électrique comprenant des bobines dans une route et dans le véhicule, et procédé de commande correspondant.
DE102021124122A1 (de) * 2021-09-17 2023-03-23 Beckhoff Automation Gmbh Induktive Energieübertragungseinrichtung für ein lineares Transportsystem
CN113665374A (zh) * 2021-09-28 2021-11-19 潍柴动力股份有限公司 车辆速度的控制方法、装置、设备及存储介质
WO2023223321A1 (en) * 2022-05-17 2023-11-23 Elssibony Asaf Manova Wireless power transfer system
KR20240028147A (ko) 2022-08-24 2024-03-05 현대자동차주식회사 충전 관리 시스템
JP2024034850A (ja) * 2022-09-01 2024-03-13 トヨタ自動車株式会社 地上給電装置及び配線
US11949278B1 (en) 2023-03-16 2024-04-02 Gideon Eden Fast-charging battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476497A (en) * 2009-12-23 2011-06-29 Bombardier Transp Gmbh Transferring electromagnetic energy to a vehicle
GB2496433A (en) * 2011-11-10 2013-05-15 Bombardier Transp Gmbh Inductively transferring energy to an electric vehicle

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6421600B1 (en) * 1994-05-05 2002-07-16 H. R. Ross Industries, Inc. Roadway-powered electric vehicle system having automatic guidance and demand-based dispatch features
JP3546279B2 (ja) * 1996-04-23 2004-07-21 株式会社ダイフク 移動体使用の搬送設備
US5821728A (en) * 1996-07-22 1998-10-13 Schwind; John P. Armature induction charging of moving electric vehicle batteries
FR2770349B1 (fr) 1997-10-24 2000-01-14 Valeo Equip Electr Moteur Dispositif pour la commande d'un demarreur de vehicule automobile
US5905440A (en) 1997-12-19 1999-05-18 Battelle Memorial Institute Acoustic emission severance detector and method
DE10216422C5 (de) 2002-04-12 2011-02-10 Conductix-Wampfler Ag Vorrichtung zur induktiven Energieversorgung und Führung eines beweglichen Objektes
US8069792B2 (en) * 2007-08-01 2011-12-06 Sandor Wayne Shapery System and method for capturing energy from a railcar
US8030888B2 (en) * 2007-08-13 2011-10-04 Pandya Ravi A Wireless charging system for vehicles
US7564165B2 (en) 2007-10-29 2009-07-21 The Procter & Gamble Company Actuating device having an integrated electronic control circuit
US8035260B2 (en) * 2008-04-04 2011-10-11 Cedar Ridge Research Llc Stepping motor with a coded pole pattern
GB2461577A (en) * 2008-07-04 2010-01-06 Bombardier Transp Gmbh System and method for transferring electric energy to a vehicle
GB2463693A (en) * 2008-09-19 2010-03-24 Bombardier Transp Gmbh A system for transferring electric energy to a vehicle
EP3127742B1 (en) * 2008-10-09 2021-03-24 Toyota Jidosha Kabushiki Kaisha Vehicle with non-contact power reception device
US20100201201A1 (en) * 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer in public places
EP2399330A1 (en) * 2009-02-20 2011-12-28 Numexia SA System and installation for transferring electrical energy without contact
KR101780758B1 (ko) * 2009-08-07 2017-09-21 오클랜드 유니서비시즈 리미티드 유도 전력 전송 장치
KR101543039B1 (ko) 2009-10-26 2015-08-10 현대자동차주식회사 임피던스 매칭법을 이용한 인버터 커패시터 모듈의 회로 구성방법
JP5304624B2 (ja) * 2009-12-10 2013-10-02 トヨタ自動車株式会社 給電装置、車両および車両給電システム
GB2476498A (en) * 2009-12-23 2011-06-29 Bombardier Transp Gmbh Transferring electromagnetic energy to plural vehicles
JP5077340B2 (ja) * 2009-12-25 2012-11-21 トヨタ自動車株式会社 非接触受電装置およびその製造方法
JP5600438B2 (ja) * 2010-01-18 2014-10-01 株式会社日立製作所 電力変換器の過電圧保護装置
US20110184842A1 (en) * 2010-01-28 2011-07-28 Roger D Melen Energy transfer systems and methods for mobile vehicles
JP5545229B2 (ja) * 2011-01-26 2014-07-09 株式会社デンソー 車載電源装置、路側電源装置、路車間電力伝送システム
CN102800496B (zh) * 2011-05-27 2015-10-28 同济大学 一种用于制动能量回收的车载超级电容组
US20130033229A1 (en) * 2011-08-06 2013-02-07 Delphi Technologies, Inc. Method and system to electrically charge and discharge a battery using an electrical charging system that electrically communicates with a regenerative braking electrical circuit
JP5691939B2 (ja) * 2011-08-30 2015-04-01 三菱自動車工業株式会社 ワイヤレス給電システム
KR20130099152A (ko) * 2011-09-22 2013-09-05 엔이씨 도낀 가부시끼가이샤 송전 장치, 수전 장치, 비접촉 전력 전송 시스템, 및, 비접촉 전력 전송 시스템에 있어서의 송전 전력의 제어 방법
GB2496187A (en) * 2011-11-04 2013-05-08 Bombardier Transp Gmbh Providing a vehicle with electric energy using a receiving device for an alternating electromagnetic field
GB201121938D0 (en) * 2011-12-21 2012-02-01 Dames Andrew N Supply of grid power to moving vehicles
JP6024106B2 (ja) * 2011-12-27 2016-11-09 株式会社Ihi 移載装置及び移動車両
EP2612784B1 (en) * 2012-01-09 2014-05-14 Alcatel Lucent A method and a device for determining information about efficiency of an inductive charging system, having a primary coil embedded in a road infrastructure
JP5903624B2 (ja) * 2012-03-09 2016-04-13 パナソニックIpマネジメント株式会社 非接触電力伝達装置の駆動方法及び非接触電力伝達装置
GB2501482A (en) * 2012-04-23 2013-10-30 Bombardier Transp Gmbh Providing a land vehicle with electric energy by magnetic induction
JP2013247811A (ja) * 2012-05-28 2013-12-09 Toyota Industries Corp 給電装置と充電装置、給電方法および給電プログラム
JP5794203B2 (ja) * 2012-05-22 2015-10-14 トヨタ自動車株式会社 送電装置、受電装置、車両、および非接触給電システム
JP2014166093A (ja) * 2013-02-27 2014-09-08 Toyota Industries Corp 受電機器及び非接触電力伝送装置
GB2521676B (en) 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
GB2522851A (en) * 2014-02-05 2015-08-12 Bombardier Transp Gmbh A method of communication between a vehicle and a wayside control unit for controlling an inductive energy transfer to the vehicle, a vehicle and an arrangeme
KR101716102B1 (ko) * 2014-04-08 2017-03-27 닛산 지도우샤 가부시키가이샤 비접촉 급전 시스템 및 비접촉 수전 장치
US9511674B2 (en) * 2014-04-18 2016-12-06 Qualcomm Incorporated Base distribution network for dynamic wireless charging
US9608465B2 (en) * 2014-04-18 2017-03-28 Qualcomm Incorporated Devices, systems, and method for power control of dynamic electric vehicle charging systems
JP6319667B2 (ja) * 2014-05-09 2018-05-09 パナソニックIpマネジメント株式会社 給電提供方法、課金処理方法、給電システム、給電コントローラ、給電装置、給電制御方法、管理サーバ、電気自動車および課金サーバ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476497A (en) * 2009-12-23 2011-06-29 Bombardier Transp Gmbh Transferring electromagnetic energy to a vehicle
GB2496433A (en) * 2011-11-10 2013-05-15 Bombardier Transp Gmbh Inductively transferring energy to an electric vehicle

Also Published As

Publication number Publication date
CA2935330A1 (en) 2015-07-09
JP2017509290A (ja) 2017-03-30
GB2521676B (en) 2016-08-03
CA2935330C (en) 2022-12-06
US20200047632A1 (en) 2020-02-13
EP3089886B1 (en) 2020-02-05
JP6671287B2 (ja) 2020-03-25
JP7211820B2 (ja) 2023-01-24
EP3089886B8 (en) 2020-03-11
CA3029153A1 (en) 2018-01-04
US20160339785A1 (en) 2016-11-24
US20220258612A1 (en) 2022-08-18
GB201323160D0 (en) 2014-02-12
KR20160132366A (ko) 2016-11-18
KR20190038818A (ko) 2019-04-09
CN109562695A (zh) 2019-04-02
CN106030979A (zh) 2016-10-12
AU2014374947A1 (en) 2016-08-11
GB2521676A (en) 2015-07-01
CN106030979B (zh) 2020-07-07
US10449865B2 (en) 2019-10-22
AU2017287002A1 (en) 2019-02-14
JP2019526219A (ja) 2019-09-12
WO2015101986A1 (en) 2015-07-09
AU2017287002B2 (en) 2020-05-21
EP3089886A1 (en) 2016-11-09
ES2774744T3 (es) 2020-07-22
KR102215784B1 (ko) 2021-02-17
US11318845B2 (en) 2022-05-03
AU2014374947B2 (en) 2019-12-05
KR102319474B1 (ko) 2021-11-01

Similar Documents

Publication Publication Date Title
CN109562695B (zh) 用于经由无线电力传输为路上电动车供电的系统和方法
US11651891B2 (en) Roadway powered electric vehicle system
RU2408476C2 (ru) Способ беспроводной передачи электрической энергии и устройство для его осуществления (варианты)
CN106663528B (zh) 适合于电动车辆的感应式电力系统
GB2512864A (en) Inductive power transfer pad and system for inductive power transfer
EP3478528B1 (en) System and method for powering on-road electric vehicles via wireless power transfer
WO2014166942A2 (en) Inductive power transfer pad and system for inductive power transfer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230224

Address after: North Tejanai, Israel

Patentee after: Electrotron Wireless Charging Co.,Ltd.

Address before: Israeli Rosh ha'ayin

Patentee before: ELECTRIC ROAD LTD.

TR01 Transfer of patent right