US8030888B2 - Wireless charging system for vehicles - Google Patents

Wireless charging system for vehicles Download PDF

Info

Publication number
US8030888B2
US8030888B2 US12/190,439 US19043908A US8030888B2 US 8030888 B2 US8030888 B2 US 8030888B2 US 19043908 A US19043908 A US 19043908A US 8030888 B2 US8030888 B2 US 8030888B2
Authority
US
United States
Prior art keywords
system
transmitter
power
vehicle
vehicles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US12/190,439
Other versions
US20090045773A1 (en
Inventor
Ravi A. Pandya
Ashish A. Pandya
Original Assignee
Pandya Ravi A
Pandya Ashish A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US96463907P priority Critical
Application filed by Pandya Ravi A, Pandya Ashish A filed Critical Pandya Ravi A
Priority to US12/190,439 priority patent/US8030888B2/en
Publication of US20090045773A1 publication Critical patent/US20090045773A1/en
Application granted granted Critical
Publication of US8030888B2 publication Critical patent/US8030888B2/en
Application status is Active legal-status Critical
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • B60L11/1809
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/32Constructional details of charging stations by charging in short intervals along the itinerary, e.g. during short stops
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/022Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter
    • H02J7/025Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters characterised by the type of converter using non-contact coupling, e.g. inductive, capacitive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • Y02T10/7011Lithium ion battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7005Batteries
    • Y02T10/7016Lead acid battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage for electromobility
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • Y02T10/7088Charging stations
    • Y02T10/7094Charging stations with the energy being of renewable origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/121Electric charging stations by conductive energy transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/122Electric charging stations by inductive energy transmission
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/12Electric charging stations
    • Y02T90/128Energy exchange control or determination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies related to electric vehicle charging
    • Y02T90/14Plug-in electric vehicles

Abstract

A system of energy storage and charging usable in vehicles and other applications that eliminate the battery capacity and automotive range issues is described. In our invention, vehicles are equipped with charging mechanisms to charge and recharge onboard batteries using wireless electricity and power transmission using magnetic resonant coupling between tuned electromagnetic circuits. The batteries may be charged using wireless charging systems installed along the roads while the vehicle is in use on the road. Charging system may optionally utilize infrared laser beam radiation to transmit power for charging the batteries on board a vehicle while it is in use as well. The onboard vehicle batteries may also be charged when the vehicle is not being driven either by plugging in the vehicle into wall electricity using wired power connection or may be wirelessly charged using the magnetic resonant coupling. By locating the charging circuits on roads, a continuous operation of electric-only mode of hybrid vehicles or pure electric-only vehicles can be accomplished and fully eliminate the need for gasoline usage.

Description

RELATED APPLICATIONS

Priority is claimed to Provisional Application Ser. No. 60/964,639, filed on Aug. 13, 2007, which is incorporated herein fully by reference.

BACKGROUND OF THE INVENTION

This invention relates generally to alternative energy technologies and in particular to rechargeable batteries for vehicles.

A significant amount of research and development resources are being devoted towards alternative energy technologies. Global warming issues driven from the carbon released in the atmosphere from burning of fossil fuels and other green house gases has led to a significant worldwide interest from scientists and researchers to address the issues. Alternative energy technologies like wind, solar, electrochemical, magnetic, geothermal, biomass, nuclear and the like are being pursued aggressively for large scale commercialization to mitigate the impact of fossil fuel based energy resources on climate change as well as over cost of such fuels.

Electrochemical batteries and fuel cells have been considered as most promising energy research area by their supporters. These small and non-polluting devices that produce energy without combustion could help many residential power needs, but their most exciting application is in transportation. These devices are used in the automotive market in hybrid vehicles that have seen a 20 fold increase in their sales from 10,000 units in 2000 to over 200,000 cars in 2005. The key driving force behind the development and the sale of hybrid vehicles is the improvement in fuel efficiency and economy. Hybrid vehicles comprise of both an internal combustion engine and an electric motor which run on gasoline and battery power respectively. Today's commercially available hybrid vehicles use small batteries or fuel cells which can store 1-2 kilowatt-hours of energy. The electric battery power is primarily used for shorter distances with stop and go traffic where the gasoline fuel economy is very low. However, if the battery capacity of the hybrid vehicles is increased to include 6-8 kilowatt-hours of energy storage, the vehicle could operate in an electric-only mode for up to 50 miles. However, development of battery technology for use of such vehicles in electric-only mode for distances larger than 50 miles is considered extremely difficult by leading scientists. This would practically prevent creation of pure electric-only vehicles that give comparable driving range as presently available gasoline vehicles without recharging or refueling.

Today's hybrid vehicles utilize Nickel Metal Hydride (Ni-MH) batteries, however Lithium-ion (Li-ion) batteries can be used to double the energy efficiency and power over Ni-MH batteries. However for pure electric only vehicles at least a doubling of battery capacity over Li-ion batteries is required which is considered a nontrivial undertaking by leading research organizations.

Our inventions show a system of energy storage and charging usable in vehicles and other applications that eliminate the battery capacity and automotive range issues discussed above.

SUMMARY OF THE INVENTION

This invention relates generally to alternative energy technologies and in particular to rechargeable batteries for vehicles.

Today's hybrid vehicles utilize Ni-MH batteries with a capacity in the range of 1-2 Kilowatt-hours that allow it to operate for 10 to 20 miles without using any gasoline. This range can be increased to 40 to 50 miles of electric-only operation by increasing battery capacity to 6-8 kilowatt-hours as is achievable using Li-Ion battery technology. Such driving distance is sufficient for many local driving usage patterns where the battery may get recharged each night before local driving and thus may avoid using gasoline for the hybrid vehicle. However, whenever the driving distance is more than the range of 40 to 50 miles, gasoline has to be used. Thus green-house gases would still be generated in large portions and would continue to create transportation driven global warming issues.

We show a system of energy storage and charging usable in vehicles and other applications that eliminate the battery capacity and automotive range issues. In our invention, vehicles are equipped with charging mechanisms to charge and recharge onboard batteries while the vehicle is being driven on the road using wireless electricity and power transmission using magnetic resonant coupling between tuned electromagnetic circuits. The charging system may optionally utilize infrared laser beam radiation to transmit power for charging the batteries on board a vehicle while it is in use.

By locating the charging circuits at appropriate places as illustrated and described below, a continuous operation of electric-only mode of hybrid vehicles or pure electric-only vehicles can be accomplished and completely eliminate the need for gasoline usage. Thus our invention can truly solve the global warming and green house gases issue created from transportation methods that use fossil fuels.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A illustrates magnetic resonant coupled wireless charger for vehicle battery.

FIG. 1B illustrates magnetic resonant coupled wireless charger for dual mode vehicle batteries.

FIG. 2A illustrates magnetic resonant coupled wireless charger for vehicles.

FIG. 2B illustrates magnetic resonant coupled wireless charging system embedded on a road.

FIG. 3A illustrates Wireless chargers on a road built in segments

FIG. 3B illustrates Continuous Wireless Chargers on a road

FIG. 3C illustrates Segments of Wireless chargers on a road activated using sensors

FIG. 4A illustrates Laser beam coupled wireless charger for vehicle battery

FIG. 4B illustrates Laser beam coupled wireless charger for dual mode vehicle batteries

FIG. 5A illustrates Laser beam coupled Wireless charger for vehicles

FIG. 5B illustrates Laser beam coupled Wireless charger for vehicles embedded on a road

FIG. 6A illustrates Laser Wireless Chargers on the road built in segments

FIG. 6B illustrates Continuous laser wireless chargers on a road

FIG. 6C illustrates Segments of Laser Wireless Chargers on a road activated using sensors

DESCRIPTION

This invention relates generally to alternative energy technologies and in particular to rechargeable batteries for vehicles.

We show a system of energy storage and charging usable in vehicles and other applications that eliminate the battery capacity and automotive range issues. In our invention, vehicles are equipped with charging mechanisms to charge and recharge onboard batteries using wireless electricity and power transmission using magnetic resonant coupling between tuned electromagnetic circuits while the vehicle is being driven on the road. The charging system may optionally utilize infrared laser beam radiation to transmit power for charging the batteries on board a vehicle while it is in use as described below. The onboard vehicle batteries may also be charged when the vehicle is not being driven either by plugging in the vehicle into wall electricity using wired power connection or may be wirelessly charged using the magnetic resonant coupling.

By locating the charging circuits at on roads as illustrated and described below, a continuous operation of electric-only mode of hybrid vehicles or pure electric-only vehicles can be accomplished and fully eliminate the need for gasoline usage. Thus our invention can truly solve the global warming and green house issue created by transportation methods that use fossil fuels.

PREFERRED EMBODIMENTS AND DETAILED DESCRIPTION

Today's hybrid vehicles deploy 1-2 kilowatt-hour rechargeable batteries which give them an electric only mode operation for 10 to 20 miles. This range can be extended to 40 to 50 miles using 6 to 8 Kilowatt-hour batteries using Li-Ion batteries. The batteries cannot be used until they are recharged once they are used for their target range. Such range of operation in electric only mode can be useful for local travel, however for longer distance travel gasoline has to be used which continues to add green house gases in the atmosphere.

To extend the battery capacity to store more energy is a difficult problem to solve and may even require new battery technology and materials to be invented. Our invention does not require invention of any new battery technology. Our invention works with existing rechargeable battery technologies like NiMH, Li-Ion and the like or fuel cells.

The rechargeable batteries of the hybrid vehicles today may be charged by the owners at home or at work or at charging stations or the like by plugging in the batteries for charging to wired chargers at such locations extracting electricity from wall electric plugs and the like. During the period of charging a hybrid vehicle is not usable. These limitations prevent development of electric only vehicles that provide the same range as hybrid or gasoline only vehicles.

In our invention vehicles may be equipped with wireless battery charging systems to charge the rechargeable batteries onboard the vehicle. In our invention wireless battery charging systems are optionally laid out or built or embedded on the road surface or may be overhead on the roads or on the sides of the roads or the like. The road surface mounted wireless charging systems may be built on roads that may be specifically built to allow vehicles to drive over them. Similarly chargers may be mounted overhead on the roads where vehicles may be driven under them. When a vehicle equipped with a wireless battery charging system passes over or under or by the wireless charger systems on roads specifically built with such systems the onboard battery of the vehicle may be charged as described below. In this patent roads equipped with charging systems are also referred to as charging roads.

FIG. 1A illustrates magnetic resonant coupled wireless charger for vehicle battery. Transmitting power using wireless methods has been known for a long time. However, recently researchers at MIT demonstrated a wireless power transfer using strongly coupled magnetic resonant coils that use non-radiating megahertz frequency magnetic field using self-resonant copper magnetic coils to light a 60 Watt light bulb. This principle of wireless power transfer is used in this invention to wirelessly charge a vehicle battery. The power transmitter coil or device, 102, is strongly tuned and coupled magnetically to the power receiving coil or device, 105, using magnetic resonance to transfer power even when there is no physical connection between the two devices, 102 and 105. These coils or devices can be separated from each other for up to several meters and still achieve a large portion of transmitter power to be received. Further, unlike an inductive coupling mechanism that is used in traditional power supplies where a close proximity between coils is required to achieve a high power transfer efficiency, the strong magnetic resonance coupling can be used to achieve a high power transfer efficiency even when the distance between the transmitting and receiving devices are several meters. Such a method of power transfer can achieve orders of magnitude higher efficiency of power transfer at these distances compared to inductive coupling or radiated electromagnetic energy used in wireless communication devices. Further, resonant magnetically coupled non-radiating magnetic field does not interact strongly with objects that are not resonant to its frequency and are also not harmful to biological systems and hence do not pose a significant health hazard for people.

The transmitter coil, 102, is powered by a power supply, 101, which may draw its power from a power station or power source which may be generating its power using technologies like solar power, nuclear power, geothermal power, coal or wind or the like. The power supply generates current through the wires, 103 & 104, coupled to the transmitter coil, 102, to generate a non-radiating resonant magnetic field around the coil. The receiving coil, 105, is resonant to this magnetic field and receives the transmitted power when it is within a distance of a few meters of the transmitter coil, 102, without physical contact with the transmitter coil. The receiving coil is coupled to a rechargeable battery and its circuits, 110, through a switch 108, and the connecting wires, 107 and 106. When the switch, 108, is closed or turned-on, the circuit connectivity between the receiving coil and the battery circuit, 110, is established and a current flow is established which starts charging the battery. Once the battery, 110, is charged, the switch, 108, is turned-off to prevent the battery from overcharging. The figure does not illustrate all the control circuits that perform the functions of turning various switches and sensors in this invention on and off, so as to not obscure the invention. Design and implementation of controlling a switch to perform the on and off functions are well understood as may be obvious to one with ordinary skill in the art. Once the battery is charged the switch, 109, is closed or turned-on which establishes a circuit connection between the battery and a load, 111, which can then draw power from the battery to do its operation. In one embodiment of this invention, the load, 111, may optionally be an electric motor and its associated circuitry used to drive a vehicle. The vehicle may be a pure electric vehicle or may be a hybrid vehicle or the like. The rechargeable battery, 110, may optionally be made of NiMH or Li-Ion or Lead-acid or the like technologies. As discussed above, our invention is agnostic to the type of the rechargeable battery technology, except that appropriate battery circuits in 110 would need to be embodied to properly operate the battery.

FIG. 1B illustrates magnetic resonant coupled wireless charger for dual mode vehicle batteries. The circuits illustrated in this figure operate similar to those illustrated in FIG. 1A, however a few components are added in this illustration. A set of switches, 112 and 113, and another rechargeable battery, 114, is added in this illustration. Two rechargeable batteries in this operating mode can thus be used in dual modes, where in, when one battery is being charged the other may be used to operate the load, 111. For instance, when battery 110 is fully charged and is being used to operate the load, 111, the battery, 114, may be charged from the receiving coil 105, when the switch 112 is closed or turned-on to establish a circuit between the battery, 114, and the receiving coil, 105, through the wires, 106 and 107. During such operation, the switches 108 and 113 would be open or turned-off and the switch 109 would be closed or turned-on to establish connectivity between battery, 110, and load 111 and establish separate circuit connectivity between the coil, 105, and battery, 114. Similarly, when the battery 110, is being charged from the receiving coil, and the battery 114 is being used to operate the load 111, the switches 109 and 112 would be turned-off or be open whereas the switches 108 and 113 would be closed or turned-on. Thus the illustrated system of FIG. 1B can be used to operate a load at all times, from one or the other battery while the battery not be used to operate the load is being charged from the wireless charging elements of this illustration.

The vehicle batteries used today can hold 1-2 kilowatt-hours of energy, however Li-ion batteries can hold 6-8 kilowatt-hours of energy to enable electric only travel mode for 40 to 50 miles. In our invention, unlike the MIT demonstration of 60 W power transfer, a much higher level of power transfer may optionally be performed to charge the batteries in a short time period. The power transfer may be in the range to 6 to 8 Kilowatts or more using multiple transmit and receive coils and use parallel paths from such coils to charge the batteries in a short time period as may be appreciated by one with ordinary skill in the art.

FIG. 2A illustrates a Magnetic resonant coupled wireless charger for vehicles. The figure illustrates a vehicle, 201, with onboard rechargeable batteries, 110 and 114, along with the receive coil or device, 105 and the appropriate switches 108, 109, 112 and 113 which are described above for illustration in FIG. 1B. The wireless power transmitting components, like 101 and 102, along with their connecting circuits are left off from the vehicle. When the vehicle comes within the magnetic resonant coupling distance of the power transmit device or coil, 102, it can start receiving power to charge its battery or operate a load or the like. The transmit coil may be deployed in homes, offices, charging stations or the like where a vehicle using the onboard wireless power receiving device, 105, can draw power from the transmit coil to recharge its on board battery or batteries. When the wireless power transmitter is deployed at locations like a home or an office or a charging station or a like at fixed designated charging locations, the vehicle cannot be used while it is being charged. Under such a scenario a wireless charging device may not add a lot of value to a user of an electric vehicle or a hybrid vehicle, compared to today's wired charging solutions, except that a close contact with the charging devices may not be required if a wireless charging technology is used as described in this patent. However, the limitation of the usage of hybrid vehicle with regards to the driving range of 40 to 50 miles only in an electric only mode would continue to remain.

FIG. 2B illustrates magnetic resonant coupled wireless charging system embedded on a road. In this embodiment of our invention, one or more power transmitting devices, 102, are built or embedded on the road, 202 or the road surface or the like. In other embodiments of this invention the power transmitting devices may be above the road over the vehicles or on the side of the road as described above. Even though the figure illustrates the power supply elements, 101, of the wireless power transmitter subsystems, 203(1) through 203(n), are illustrated to be embedded in the road next to the transmitting coils, 102, it is possible and may be preferred to have the power supplies be located at a facility away from the road, like at a power station or the like and the wires, 103 and 104, connecting the power supply, 101 to the transmitting device or coil, 102, be run from such locations to the transmitting coils or devices, 102. When a vehicle, 201, equipped with a wireless receiving device and rechargeable batteries and the like comes in magnetic resonance coupling distance of the power transmitter subsystem like 203 (1), it can receive power to charge its on board rechargeable battery while it is in the coupling distance which may be a few meters. If only one such power transmitter subsystem, like 203(1) is present, when the vehicle is moving, the vehicle may stay in the coupling distance for a few seconds depending on the speed of the vehicle and would certainly not be sufficient to charge its battery. However, as illustrated in this figure, if multiple power transmitter subsystems are embedded on the road where the vehicle is traveling, the vehicle's onboard power receiving coil or device, 105, may be coupled to at least one of the wireless power transmitter subsystems thereby creating an effect of the receiving coil to be constantly coupled to a power transmitting device as if the vehicle is stationary near a wireless power transmitter. Thus using the invention of this patent, a vehicle can continue to be charged while it is in motion as long as the vehicle is in the magnetic resonance coupling distance of the wireless transmitter device. This can drastically lower or eliminate the need of vehicles to operate on fossil fuels even for longer distances comparable to the range of today's gasoline fueled vehicles, if charging roads with appropriate sections of wireless power transmitter subsystems are available.

FIG. 3A illustrates wireless chargers on a road built in segments. In this illustration the wireless power transmitter subsystems are embedded on sections of the roads which may each stretch for distances of a few miles to 30 miles or more. For example, when a vehicle 201 enters the section 301, it may be able to wirelessly start charging one or more of its on board batteries, while using one of the charged batteries to continue to drive on the charging road section 301. If section 301, stretches for say 50 miles, and the vehicle is driven at a speed of 50 miles per hour, then the onboard rechargeable batteries can be wirelessly charged for a period of one hour which may be sufficient to transfer a significant energy to the batteries to continue to drive on the road for a while before the next stretch or section, 302, of wireless charging road is reached, when the vehicle can start charging the batteries again. As described above the power transmitter subsystems would transmit significant power like for one embodiment of over 6 to 8 Kilowatt hour. Thus by using the inventions of this patent, vehicles can achieve electric-only mode of operation for long distance travel along with local travel and possibly eliminate or sharply reduce the need for gasoline.

FIG. 3B illustrates Continuous Wireless Chargers on a road. There may be special roads build with the wireless power transmitter subsystems built from one place to another place which can be used to wirelessly charge on board batteries of vehicles or even completely power such vehicles to operate using wireless power transmitted from the wireless transmitter subsystems. Such roads may be toll roads or built specifically for wireless power charging for vehicles with wireless power receivers.

FIG. 3C illustrates Segments of Wireless Chargers on a road activated using sensors. The vehicles with wireless power receiving devices onboard vehicles and the wireless power transmitter subsystems on the roads may optionally comprise of sensors or communication devices that can communicate with each other (not illustrated). Thus when a vehicle with a wireless power receiving device is in magnetic coupling distance of the wireless power transmitter subsystem the sensors or the communication devices communicate with each other such that only a small number of wireless power transmitter subsystems may need to be turned on to not waste power from power transmitter subsystems that may not be in a coupling distance of the vehicle. In one embodiment power transmitter devices within a few meters of the vehicle may be turned on in a sequence as the vehicle travels while those not in the coupling distance may be turned off there by saving power from being wasted. For example, when the vehicle comes near a section of the road like 304, the power transmitters of section 304 and optionally sections 305 or the like may be turned-on, however the transmitters in sections of road beyond 306 may be turned-off. However, as the vehicle moves forward for example to section 306, the power transmitters of sections 304 and 305 may be turned-off while the power transmitters of section 306, 307 and the like may be turned-on. The number of power transmitters turned-on around the vehicle may depend on many factors like the range of magnetic coupling, the strength of the magnetic fields, the length of the vehicle, the number of receiver devices on the vehicle and the like as may be appreciated by one with ordinary skill in the art. Further, if vehicles that do not posses the onboard wireless charging devices or may not need to charge their batteries or the like travel on the roads with wireless power transmitters, the power transmitters would not be turned on there by using their power only when necessary to charge a vehicle with wireless power receiver device and optionally only when such a vehicle needs its batteries to be charged.

FIG. 4A illustrates laser beam coupled wireless charger for vehicle battery. Solar panels are used to receive energy from the sunlight and convert it into electricity. However, this process is highly inefficient and also dependent on the weather condition for it to be effective for power generation. Though solar powered vehicles have been demonstrated they are not in widespread use for reasons outlined above as well as cost and other reasons. Solar panels have primarily been used as a way of generating power from sun light on buildings and fixed locations during periods of sunlight. The figure illustrates a receiving system that can convert energy from light (visible or invisible spectrum) to electricity using a panel of light detectors, 405, that convert the light in to electricity and are used to charge a battery system connected to it in a manner similar to that illustrated and described in FIG. 1A. In this invention one or more light or laser or infrared laser emitting power devices, 402(1) through 402(n), are used to transmit power using light or laser or infrared laser or the like preferably in invisible spectrum though it can also be in visible spectrum. The power transmitter laser devices, 402(1) through 402(n), are tuned and coupled to the power receiving panel of light detectors, 405, using light or laser or infrared laser or the like to transfer power even when there is no physical connection between the devices, 402(1) through 402(n) and 405. These devices can be separated from each other for up to several meters and still achieve a large portion of transmitter power to be received. When laser or infrared lasers are used a beam with a very tight directional control is used to transmit and receive power. Such a method of power transfer can achieve orders of magnitude higher efficiency of power transfer at these distances compared to visible light emitting devices without directional focus. Advances in current laser diode technologies is such that it is expected that within near future a 1 kilowatt per 1 cm diode laser bar will be achievable commercially doubling the current rating of 500 Watts per 1 cm diode laser. Thus a plurality of such lasers can be used to generate a significant amount of power which can be transmitted using the laser power emitting devices, 402(1) through 402(n), which can then be received by a panel of laser beam power detectors, 405, with a very high energy transfer efficiency compared to solar panels.

The power transmitter laser devices, 402(1) through 402(n), are powered by a power supply, 401, which may draw its power from a power station or power source which may be generating its power using technologies like hydroelectric power, solar power, nuclear power, geothermal power, coal or wind or the like. The power supply generates current through the wires, 403 & 404, coupled to the power transmitter laser devices, 402, to generate a focused beam of laser or light or infrared laser or the like. The receiving laser detector panel, 405, is tuned to the appropriate laser or light frequencies and receives the transmitted power when it is within a distance of a visibility of the transmitter laser devices without physical contact with the transmitter devices. The receiving laser detector panel is coupled to a rechargeable battery and its circuits, 110, through a switch 108, and the connecting wires, 107 and 106. When the switch, 108, is closed or turned-on, the circuit connectivity between the receiving detector panel and the battery circuit, 110, is established and a current flow is established which starts charging the battery. Once the battery, 110, is charged, the switch, 108, is turned-off to prevent the battery from overcharging. The figure does not illustrate all the control circuits that perform the functions of turning various switches and sensors in this invention on and off, so as to not obscure the invention. Design and implementation of controlling a switch to perform the on and off functions are well understood as may be obvious to one with ordinary skill in the art. Once the battery is charged the switch, 109, is closed or turned-on which establishes a circuit connection between the battery and a load, 111, which can then draw power from the battery to do its operation. In one embodiment of this invention, the load, 111, may optionally be an electric motor and its associated circuitry used to drive a vehicle. The vehicle may be a pure electric vehicle or may be a hybrid vehicle or the like. The rechargeable battery, 110, may optionally be made of NiMH or Li-Ion or Lead-acid or the like technologies. As discussed above, our invention is agnostic to the type of the rechargeable battery technology, except that appropriate battery circuits in 110 would need to be embodied to properly operate the battery.

FIG. 4B illustrates laser beam coupled wireless charger for dual mode vehicle batteries. The circuits illustrated in this figure operate similar to those illustrated in FIG. 1A, however a few components are added in this illustration. A set of switches, 112 and 113, and another rechargeable battery, 114, is added in this illustration. Two rechargeable batteries in this operating mode can thus be used in dual modes, where in, when one battery is being charged the other may be used to operate the load, 111. For instance, when battery 110 is fully charged and is being used to operate the load, 111, the battery, 114, may be charged from the receiving coil 105, when the switch 112 is closed or turned-on to establish a circuit between the battery, 114, and the receiving coil, 105, through the wires, 106 and 107. During such operation, the switches 108 and 113 would be open or turned-off and the switch 109 would be closed or turned-on to establish connectivity between battery, 110, and load 111 and establish separate circuit connectivity between the coil, 105, and battery, 114. Similarly, when the battery 110, is being charged from the receiving laser detector panel, and the battery 114 is being used to operate the load 111, the switches 109 and 112 would be turned-off or be open whereas the switches 108 and 113 would be closed or turned-on. Thus the illustrated system of FIG. 1B can be used to operate a load at all times, from one or the other battery while the battery not be used to operate the load is being charged from the wireless charging elements of this illustration.

The vehicle batteries used today can hold 1-2 kilowatt-hours of energy, however Li-Ion batteries can hold 6-8 kilowatt-hours of energy to enable electric only travel mode for 40 to 50 miles. The power transfer may be in the range to 6 to 8 Kilowatts or more using multiple transmitter laser devices and receive panel detectors and use parallel paths from receiving panels to charge the batteries in a short time period as may be appreciated by one with ordinary skill in the art.

FIG. 5A illustrates a laser beam coupled wireless charger for vehicles. The figure illustrates a vehicle, 501, with onboard rechargeable batteries, 110 and 114, along with the receive detector panel or device, 405 and the appropriate switches 108, 109, 112 and 113 which are described above for illustration in FIG. 1B. The laser power transmitting components, like 401 and 402, along with their connecting circuits are left off from the vehicle. When the vehicle comes within the laser beam coupling distance of the power transmit device, 402, it can start receiving power to charge its battery or operate a load or the like. The transmit device may be deployed in homes, offices, charging stations or the like where a vehicle using the onboard laser power receiving device, 405, can draw power from to recharge its on board battery or batteries.

FIG. 5B illustrates laser beam coupled wireless charging system embedded on a road. In this embodiment of our invention, one or more laser power transmitting devices, 402, are built or embedded on the road, 502 or the road surface or the like. In other embodiments of this invention the laser power transmitting devices may be above the road over the vehicles or on the side of the road as described above. Even though the figure illustrates the power supply elements, 401, of the laser power transmitter subsystems, 503(1) through 503(n), are illustrated to be embedded in the road next to the transmitting devices, 402, it is possible and may be preferred to have the power supplies be located at a facility away from the road, like at a power station or the like and the wires, 403 and 404, connecting the power supply, 401 to the transmitting device, 402, be run from such locations to the transmitting devices, 402. When a vehicle, 501, equipped with a laser receiving device and rechargeable batteries and the like comes in coupling distance of the power transmitter subsystem like 503 (1), it can receive power to charge its on board rechargeable battery while it is in the coupling distance. If only one such power transmitter subsystem, like 503(1) is present, when the vehicle is moving, the vehicle may stay in the coupling distance for a few seconds depending on the speed of the vehicle and would certainly not be sufficient to charge its battery. However, as illustrated in this figure, if multiple power transmitter subsystems are embedded on the road where the vehicle is traveling, the vehicle's onboard power receiving device, 405, may be coupled to at least one of the laser power transmitter subsystems thereby creating an effect of the receiving panel to be constantly coupled to a power transmitting device as if the vehicle is stationary near a laser power transmitter. Thus using the invention of this patent, a vehicle can continue to be charged while it is in motion as long as the vehicle is in the laser coupling distance of the laser transmitter device. This can drastically lower or eliminate the need of vehicles to operate on fossil fuels even for longer distances comparable to the range of today's gasoline fueled vehicles, provided charging roads with appropriate sections of laser power transmitter subsystems are available.

FIG. 6A illustrates laser wireless chargers on a road built in segments. In this illustration the laser power transmitter subsystems are embedded on sections of the roads which may each stretch for distances of a few miles to 30 miles or more. For example, when a vehicle 501 enters the section 601, it may be able to start charging one or more of it's on board batteries, while using one of the charged batteries to continue to drive on the charging road section 601. If section 601, stretches for say 50 miles, and the vehicle is driven at a speed of 50 miles per hour, then the onboard rechargeable batteries can be charged for a period of one hour which may be sufficient to transfer a significant amount energy to the batteries to continue to drive on the road for a while before the next stretch or section, 602, of charging road is reached, when the vehicle can start charging the batteries again. As described above the power transmitter subsystems would transmit significant power like for one embodiment of over 6 to 8 Kilowatt hour. Thus by using the inventions of this patent, vehicles can achieve electric-only mode of operation for long distance travel along with local travel and possibly eliminate or sharply reduce the need for gasoline.

FIG. 6B illustrates Continuous laser Wireless Chargers on a road. There may be special roads build with the laser power transmitter subsystems built from one place to another place which can be used to charge on board batteries of vehicles or even completely power such vehicles to operate using wireless power transmitted from the laser transmitter subsystems. Such roads may be toll roads or built specifically for wireless power charging for vehicles with wireless power receivers.

FIG. 6C illustrates Segments of laser Wireless Chargers on a road activated using sensors. The vehicles with wireless laser power receiving devices onboard vehicles and the wireless laser power transmitter subsystems on the roads may optionally comprise of sensors or communication devices that can communicate with each other (not illustrated). Thus when a vehicle with a wireless power receiving device is in laser coupling distance of the wireless laser power transmitter subsystem the sensors or the communication devices communicate with each other such that only a small number of wireless laser power transmitter subsystems may need to be turned on to not waste power from power transmitter subsystems that may not be in a coupling distance of the vehicle. In one embodiment power transmitter devices within a few meters of the vehicle may be turned on in a sequence as the vehicle travels while those not in the coupling distance may be turned off there by saving power from being wasted. For example, when the vehicle comes near a section of the road like 604, the power transmitters of section 604 and optionally sections 605 or the like may be turned-on, however the transmitters in sections of road beyond 605 may be turned-off. However, as the vehicle moves forward for example to section 605, the power transmitters of sections 604 may be turned-off while the power transmitters of section 605, and the like may be turned-on. The number of power transmitters turned-on around the vehicle may depend on many factors like the range of laser coupling, the strength of the lasers, the length of the vehicle, the number of receiver devices on the vehicle, the legal laser safety limits and the like as may be appreciated by one with ordinary skill in the art. Further, if vehicles that do not posses the onboard wireless charging devices or may not need to charge their batteries or the like travel on the roads with wireless power transmitters, the power transmitters would not be turned on there by using their power only when necessary to charge a vehicle with wireless laser power receiver device and optionally only when such a vehicle needs its batteries to be charged.

Even though the illustrations in this patent application illustrate two batteries on board a vehicle, one with ordinary skill in the art will appreciate that a vehicle with one or more batteries based systems may also be devised using the teachings of this patent application and all such variations are within the scope and spirit of this invention. When only a single battery is used, the battery may not optionally be used to drive the load and just be used to charge the battery and when it is being charged a fuel engine or the like may be used to drive the vehicle.

While the foregoing has been with reference to particular embodiments of the invention, it will be appreciated by those skilled in the art that changes in these embodiments may be made without departing from the principles and spirit of the invention.

Claims (5)

1. A road way system comprising a wireless charging system for vehicles, said wireless charging system comprising a transmitter system and further comprising a receiver system, said transmitter system to wirelessly transmit power to said receiver system, said transmitter system wirelessly coupled to the said receiver system using magnetic resonant coupling, said transmitter and receiver systems comprising tuned electromagnetic circuits to perform wireless power transfer from said transmitter system to said receiver system, said transmitter system embedded under, or over, or by the side of the said road way system, and the said receiver system installed in said vehicles used on said road way system, said receiver system comprising a rechargeable battery system wirelessly coupled to said transmitter system to charge a rechargeable battery, and said receiver system further comprising electric motor powered by said rechargeable battery to drive said vehicle operated by said rechargeable battery system, when said rechargeable battery is charged.
2. The road way system of claim 1, comprising a plurality of transmitter systems where a first group of said transmitter systems get turned on to transmit the power to said receiver system to charge said rechargeable battery when one of said vehicles is within a pre-selected distance from said group of transmitter systems, and a second group of transmitter systems that are turned off when said vehicle is at least said pre-selected distance away from said second group of transmitter systems.
3. A wireless charging system for vehicles, said wireless charging system comprising a transmitter system and further comprising a receiver system, said transmitter system to wirelessly transmit power to said receiver system, said transmitter system comprising a light or laser or infrared laser transmitting device coupled to said receiver system using visible or invisible light spectrum coupling, said receiver system comprising a visible or invisible light detector panel to receive the energy transmitted by said transmitter, said receiver system further comprising a rechargeable battery system wirelessly coupled to said transmitter system to charge z rechargeable battery, and said receiver system further comprising a load operated by said rechargeable battery system, when said rechargeable battery is charged, said wireless charging system for vehicles for use in a road way system, said road way system comprising said transmitter system embedded under, or over, or by the side of said road way system, and said receiver system installed in said vehicles used on said road way system, said receiver system comprising said rechargeable battery system wirelessly coupled to said transmitter system to charge said rechargeable battery, and said receiver system further comprising electric motor powered by said rechargeable battery to drive said vehicle operated by said rechargeable battery system, when said rechargeable battery is charged.
4. The road way system of claim 3, comprising a plurality of transmitter systems where a first group of said transmitter systems get turned on to transmit the power to the said receiver system to charge said rechargeable battery when one of said vehicles is within a pre-selected distance from said group of transmitter systems, and a second group of transmitter systems that are turned off when said vehicle is said pre-selected distance away from said second group of transmitter systems.
5. The light or laser or infrared laser transmitting device of claim 3, comprising a focusing or directional power transmitting apparatus to focus the transmitted power in a preset direction to maximize said transmit power to said receiver system.
US12/190,439 2007-08-13 2008-08-12 Wireless charging system for vehicles Active 2029-12-27 US8030888B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US96463907P true 2007-08-13 2007-08-13
US12/190,439 US8030888B2 (en) 2007-08-13 2008-08-12 Wireless charging system for vehicles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/190,439 US8030888B2 (en) 2007-08-13 2008-08-12 Wireless charging system for vehicles
US13/208,174 US20110291615A1 (en) 2007-08-13 2011-08-11 Wireless charging system for vehicles

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/208,174 Continuation US20110291615A1 (en) 2007-08-13 2011-08-11 Wireless charging system for vehicles

Publications (2)

Publication Number Publication Date
US20090045773A1 US20090045773A1 (en) 2009-02-19
US8030888B2 true US8030888B2 (en) 2011-10-04

Family

ID=40362431

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/190,439 Active 2029-12-27 US8030888B2 (en) 2007-08-13 2008-08-12 Wireless charging system for vehicles
US13/208,174 Abandoned US20110291615A1 (en) 2007-08-13 2011-08-11 Wireless charging system for vehicles

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/208,174 Abandoned US20110291615A1 (en) 2007-08-13 2011-08-11 Wireless charging system for vehicles

Country Status (1)

Country Link
US (2) US8030888B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090271047A1 (en) * 2008-04-28 2009-10-29 Masataka Wakamatsu Power transmitting apparatus, power receiving apparatus, power transmission method, program, and power transmission system
US20110052317A1 (en) * 2009-09-03 2011-03-03 Jeter Philip L Embedded Module for Linear Synchronous Motor
US20110193520A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Moving Object, Wireless Power Feeding System, and Wireless Power Feeding Method
US20110199028A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Moving Object, Wireless Power Feeding System, and Wireless Power Feeding Method
US20120293109A1 (en) * 2011-05-19 2012-11-22 Yariv Glazer Method and System for Efficiently Exploiting Renewable Electrical Energy Sources
US20120318586A1 (en) * 2010-03-04 2012-12-20 Honda Motor Co., Ltd. Electric vehicle
US20130134794A1 (en) * 2011-11-25 2013-05-30 Korea Electro Technology Research Institute Wireless power transmitter and method of transmitting power thereof
US20130234530A1 (en) * 2012-03-07 2013-09-12 Hitachi Maxell, Ltd. Wireless power transfer system and wireless power transfer method
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US20140225560A1 (en) * 2009-11-30 2014-08-14 Broadcom Corporation Battery with integrated wireless power receiver and/or rfid
US20140292264A1 (en) * 2007-05-10 2014-10-02 Auckland Uniservices Limited Multi power sourced electric vehicle
US8880501B2 (en) 2006-11-13 2014-11-04 Ip Reservoir, Llc Method and system for high performance integration, processing and searching of structured and unstructured data using coprocessors
US20150035482A1 (en) * 2013-07-30 2015-02-05 Honda Motor Co., Ltd. Non-contact charging system
US8994224B2 (en) 2012-01-27 2015-03-31 Building Materials Investment Corporation Solar roof shingles and underlayment with wireless power transfer
US9073442B2 (en) 2010-03-16 2015-07-07 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9142998B2 (en) 2011-10-03 2015-09-22 The Board Of Trustees Of The Leland Stanford Junior University Wireless energy transfer
US9176775B2 (en) 2003-05-23 2015-11-03 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9287722B2 (en) 2013-03-15 2016-03-15 Donald S. Williams Personal e-port apparatus
US9323794B2 (en) 2006-11-13 2016-04-26 Ip Reservoir, Llc Method and system for high performance pattern indexing
US9365104B2 (en) 2010-04-21 2016-06-14 Toyota Jidosha Kabushiki Kaisha Parking assist device for vehicle and electrically powered vehicle including the same
US9547680B2 (en) 2005-03-03 2017-01-17 Washington University Method and apparatus for performing similarity searching
US20170136903A1 (en) * 2015-11-13 2017-05-18 NextEv USA, Inc. Electric vehicle emergency charging system and method of use
US20170288426A1 (en) * 2016-03-31 2017-10-05 Pincraft Engineering Inc. Multi charging device enabled by current and voltage control
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10005367B2 (en) 2015-07-30 2018-06-26 Toyota Motor Engineering & Manufacturing North America, Inc. Wireless charging of a vehicle power source
US10062115B2 (en) 2008-12-15 2018-08-28 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10325717B2 (en) 2009-08-07 2019-06-18 Auckland Uniservices Limited Roadway powered electric vehicle system

Families Citing this family (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120181973A1 (en) * 2003-08-29 2012-07-19 Robert Lyden Solar array resembling natural foliage including means for wireless transmission of electric power
US9346397B2 (en) * 2006-02-22 2016-05-24 Federal Signal Corporation Self-powered light bar
US8294286B2 (en) * 2008-07-15 2012-10-23 F3 & I2, Llc Network of energy generating modules for transfer of energy outputs
US7619319B1 (en) * 2008-07-15 2009-11-17 F3 & I2, Llc Network of energy generating modules for transfer of energy outputs
US7608934B1 (en) * 2008-08-14 2009-10-27 F3 & I2, Llc Power packaging with railcars
US8294285B2 (en) 2008-08-14 2012-10-23 F3 & I2, Llc Power packaging with railcars
US20120112538A1 (en) * 2008-09-27 2012-05-10 Kesler Morris P Wireless energy transfer for vehicle applications
US8427100B2 (en) * 2009-02-06 2013-04-23 Broadcom Corporation Increasing efficiency of wireless power transfer
SE533865C2 (en) * 2009-04-20 2011-02-15 Oestergoetlands Fastighetsservice El & Larm I Norrkoeping Ab A trolley magnetic loop
DE102009033239B4 (en) * 2009-07-14 2018-02-08 Conductix-Wampfler Gmbh Device for inductive transmission of electric energy
US20110031047A1 (en) * 2009-08-04 2011-02-10 Tarr Energy Group, Llc In-motion inductive charging system having a wheel-mounted secondary coil
CN102481855B (en) * 2009-10-14 2014-08-20 松下电器产业株式会社 Electric machine and power supply system having battery pack
KR20110041307A (en) * 2009-10-15 2011-04-21 한국과학기술원 Method and device for segmented power supplying for electric vehicle
KR101016209B1 (en) 2009-10-16 2011-02-25 한국과학기술원 Feeding segmentation of on-line electric vehicle, method for installation and controlling thereof
JP5909714B2 (en) * 2009-11-13 2016-04-27 パナソニックIpマネジメント株式会社 Charging and power supply system for a vehicle
KR101039368B1 (en) * 2009-12-11 2011-06-08 한국과학기술원 System and method for information transmitting
CN102118069B (en) * 2009-12-31 2014-12-17 上海汽车集团股份有限公司 High-efficiency non-contact charging system and vehicle charged by same
KR101060316B1 (en) 2010-02-12 2011-08-29 부경대학교 산학협력단 Segment switching devices in the online electric vehicle system and its control method
JP5290228B2 (en) * 2010-03-30 2013-09-18 株式会社日本自動車部品総合研究所 Voltage detector, the abnormality detecting device, the non-contact power transmitting device, a non-contact power receiving apparatus, a contactless power supply system and a vehicle
WO2011128969A1 (en) * 2010-04-13 2011-10-20 富士通株式会社 Power supply system, power transmitter, and power receiver
JP5211103B2 (en) * 2010-05-14 2013-06-12 株式会社豊田自動織機 Resonance type non-contact power supply system for a vehicle
JP5524724B2 (en) * 2010-06-08 2014-06-18 株式会社東海理化電機製作所 Vehicle power supply apparatus
KR101156034B1 (en) * 2010-07-15 2012-06-18 한국과학기술원 Method and apparatus for designing power supply system and collector device for online electric vehicle
WO2012009492A2 (en) 2010-07-15 2012-01-19 Blue Wheel Technologies, Inc. Systems and methods for powering a vehicle, and generating and distributing energy in a roadway
JP5530848B2 (en) * 2010-07-28 2014-06-25 トヨタ自動車株式会社 Coil unit, contactless power transmission apparatus, a contactless power receiving apparatus, a vehicle and the non-contact power feeding system
EP2598363A1 (en) * 2010-07-29 2013-06-05 Kabushiki Kaisha Toyota Jidoshokki Resonance type non-contact power supply system
FR2964266B1 (en) * 2010-09-01 2012-08-31 Renault Sa motor vehicle electrical team a charger with or without contact
US8816636B2 (en) * 2010-09-14 2014-08-26 Toyoda Gosei Co., Ltd. Console door pocket for electronic devices
CN101984537A (en) * 2010-11-19 2011-03-09 武汉中原电子集团有限公司 Magnetic resonance wireless charging device for electric vehicles
RU2535951C1 (en) 2010-12-01 2014-12-20 Тойота Дзидося Кабусики Кайся Wireless power supply equipment, vehicle and method of controlling wireless power supply system
CN103370217B (en) * 2011-02-15 2016-01-20 丰田自动车株式会社 Vehicle and external power supply device
US8733252B2 (en) * 2011-03-04 2014-05-27 GM Global Technology Operations LLC Electric monorail part carrier
EP2685588B1 (en) * 2011-03-07 2016-05-18 Panasonic Intellectual Property Management Co., Ltd. In-vehicle charger, and program therefor
WO2012158184A1 (en) 2011-05-19 2012-11-22 Blue Wheel Technologies, Inc. Systems and methods for powering a vehicle
US20120326523A1 (en) * 2011-06-22 2012-12-27 Noriyuki Fukushima Wireless power feeder, wireless power receiver, and wireless power transmission system
EP2737594B1 (en) 2011-07-26 2019-02-13 Gogoro Inc. Apparatus, method and article for a power storage device compartment
US9182244B2 (en) 2011-07-26 2015-11-10 Gogoro Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries
JP2014525230A (en) 2011-07-26 2014-09-25 ゴゴロ インク Dynamic restriction of vehicle operation for the best effort Economy
WO2013016564A2 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for reserving power storage devices at reserving power storage device collection, charging and distribution machines
US20130030920A1 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for providing information regarding availability of power storage devices at a power storage device collection, charging and distribution machine
TWI618019B (en) * 2011-07-26 2018-03-11 Gogoro Inc Method, system and medium for portable electrical energy storage devices
US10186094B2 (en) 2011-07-26 2019-01-22 Gogoro Inc. Apparatus, method and article for providing locations of power storage device collection, charging and distribution machines
WO2013016570A1 (en) 2011-07-26 2013-01-31 Gogoro, Inc. Apparatus, method and article for authentication, security and control of power storage devices, such as batteries, based on user profiles
JP6162696B2 (en) 2011-07-26 2017-07-12 ゴゴロ インク Device for power storage device compartment, methods, and articles
DE102011083020A1 (en) * 2011-09-20 2013-03-21 Robert Bosch Gmbh Charging device, especially for motor vehicles, processes and motor vehicle
KR101327049B1 (en) * 2011-09-22 2013-11-20 엘지이노텍 주식회사 A wireless power reception apparatus and a wireless charging system using the same
US9184598B2 (en) * 2011-10-26 2015-11-10 Leggett & Platt Canada Co. Signal discrimination for wireless key fobs and interacting systems
CN103117585B (en) * 2011-11-16 2016-02-10 长丰集团有限责任公司 Charging an electric vehicle hybrid energy storage system
EP2612784B1 (en) * 2012-01-09 2014-05-14 Alcatel Lucent A method and a device for determining information about efficiency of an inductive charging system, having a primary coil embedded in a road infrastructure
US8933589B2 (en) 2012-02-07 2015-01-13 The Gillette Company Wireless power transfer using separately tunable resonators
WO2013122703A1 (en) * 2012-02-14 2013-08-22 Ut-Battelle, Llc Wireless power charging using point of load controlled high frequency power converters
JP2013172548A (en) * 2012-02-21 2013-09-02 Furukawa Electric Co Ltd:The Dust removal device of contact-less power transmission device
EP2848453B1 (en) * 2012-05-09 2017-10-11 Toyota Jidosha Kabushiki Kaisha Vehicle comprising power reception coil
US20140125286A1 (en) * 2012-05-14 2014-05-08 Korea Advanced Institute Of Science And Technology Method for controlling the charging of segments for an online electric vehicle
TWI545866B (en) * 2012-05-25 2016-08-11 Wcube Co Ltd Wireless charging system
US20130328387A1 (en) * 2012-06-08 2013-12-12 Sagar Venkateswaran Supercapacitor vehicle and roadway system
ITLE20120006A1 (en) * 2012-07-04 2014-01-05 Alfredo Sonnante Power system and wireless electric charging for electric and hybrid vehicles while driving on the road
DE102012013498B3 (en) 2012-07-06 2013-01-17 Audi Ag Device for inductive transmission of electrical energy from primary coil to secondary coil of e.g. motor vehicle, has solenoid coil pick-up portions of primary and secondary coils for adjusting coil length for inductive energy transfer
CN102856964B (en) * 2012-10-10 2014-12-10 中国矿业大学 Three-phase wireless charging system and charging method for electric automobile
CN104937807B (en) * 2012-11-12 2018-07-03 奥克兰联合服务有限公司 Vehicle or moving object detection
EP2730451A1 (en) * 2012-11-13 2014-05-14 Alcatel Lucent A device and a method for controlling an induction coil
BR112015011290A2 (en) 2012-11-16 2017-07-11 Gogoro Inc apparatus, method, and article for performing carrier signal curve
FR2998427B1 (en) * 2012-11-21 2015-07-17 Renault Sa without contact charging system for a battery of a vehicle in motion
GB2508924A (en) * 2012-12-17 2014-06-18 Bombardier Transp Gmbh Inductive power transfer system having array of sensing capacitors
JP6001471B2 (en) * 2013-02-05 2016-10-05 トヨタ自動車株式会社 Power transmitting device and the power receiving device
US9397518B1 (en) * 2013-02-22 2016-07-19 Daniel Theobald Wirelessly transferring energy to a mobile device
WO2014196933A1 (en) * 2013-06-06 2014-12-11 Nanyang Technological University Battery charging devices, battery charging methods, battery systems, and methods for controlling batteries
US20150091495A1 (en) * 2013-09-27 2015-04-02 Rashed Mahameed Electronic device having wireless laser charging
GB2521676B (en) * 2013-12-31 2016-08-03 Electric Road Ltd System and method for powering an electric vehicle on a road
FR3016257A1 (en) * 2014-01-09 2015-07-10 Alex Hr Roustaei Conversion, production, storage, transport and distribution of solar energy for road with intelligent management with led signaling and wireless recharging system for electric vehicles
JP2015159693A (en) * 2014-02-25 2015-09-03 株式会社豊田自動織機 Non-contact power transmission system and power reception device
US9511674B2 (en) * 2014-04-18 2016-12-06 Qualcomm Incorporated Base distribution network for dynamic wireless charging
WO2015165036A1 (en) * 2014-04-29 2015-11-05 中国科学院自动化研究所 Wireless charging platform based on natural energy electrical storage
JP6390176B2 (en) * 2014-06-06 2018-09-19 日産自動車株式会社 Mobile power feeding system and mobile power feeding method
US20160023557A1 (en) * 2014-07-25 2016-01-28 Qualcomm Incorporated Devices, systems, and method for dynamic electric vehicle charging with position detection
CN104158478B (en) * 2014-08-05 2016-08-24 中国空间技术研究院 Conductive rotating joint space power wireless energy transfer based on the electromagnetic coupling
US9407024B2 (en) 2014-08-11 2016-08-02 Gogoro Inc. Multidirectional electrical connector, plug and system
TW201617251A (en) 2014-09-04 2016-05-16 Gogoro Inc Apparatus, system, and method for vending, charging, and two-way distribution of electrical energy storage devices
KR20160036228A (en) 2014-09-25 2016-04-04 삼성전자주식회사 A method for recharging one or more eelectronic devices and a recharging apparatus therefor
CN106662081A (en) * 2014-10-16 2017-05-10 阿西斯 S·S·德 Drive-in electric turbine (d-iet)
FR3029661B1 (en) 2014-12-04 2016-12-09 Stmicroelectronics (Rousset) Sas Processes transmission and reception of a binary signal over a serial link, in particular for the detection of the transmission speed, and corresponding devices
JP6492839B2 (en) * 2015-03-23 2019-04-03 日産自動車株式会社 Optical power feeding system and optical power feeding system abnormality detection method
CN104757705B (en) * 2015-04-24 2019-05-21 北京希格玛和芯微电子技术有限公司 The electronic cigarette microphone and its charging method and device of support wireless charging
WO2017016822A1 (en) * 2015-07-27 2017-02-02 Philips Lighting Holding B.V. Light emitting device for generating light with embedded information
US10160339B2 (en) 2015-11-13 2018-12-25 Nio Usa, Inc. Smart grid management
US10131238B2 (en) 2015-11-13 2018-11-20 Nio Usa, Inc. Charging transmission line under roadway for moving electric vehicle
US20170136889A1 (en) 2015-11-13 2017-05-18 NextEv USA, Inc. Distributed processing network for rechargeable electric vehicle tracking and routing
EP3187362A1 (en) * 2015-12-29 2017-07-05 STILL GmbH Battery loading device for industrial truck
WO2017116333A1 (en) 2015-12-30 2017-07-06 Gebze Teknik Universitesi A charging system for wireless charging of electric vehicles and an electric vehicle operating suitably with this system
US20170203655A1 (en) * 2016-01-19 2017-07-20 Ford Global Technologies, Llc Controlling operation of electrified vehicle travelling on inductive roadway to influence electrical grid
US10000134B2 (en) * 2016-03-28 2018-06-19 Denso International America, Inc. Wireless charging system for charging vehicular battery
CN106004485B (en) * 2016-05-26 2018-09-14 河海大学常州校区 Species olev control system based on the sensor output energy
CN106627174A (en) * 2016-11-08 2017-05-10 江宣霖 Automatic continuous power supply system used for self-driving electric motorcade
US20180141449A1 (en) * 2016-11-22 2018-05-24 Qinertech Limited Infrared automobile charging system
CN106427522A (en) * 2016-11-24 2017-02-22 湖北民族学院 Design of intelligent energy management trolley based on STM32
CN106592371A (en) * 2016-12-16 2017-04-26 武汉理工大学 Asphalt pavement capable of providing charging function for vehicles in driving process
CN106965689A (en) * 2017-03-20 2017-07-21 江南大学 Wireless electric energy transmission system in dynamic operation of electric automobile
US20180334039A1 (en) * 2017-05-22 2018-11-22 Wellen Sham Enhanced wireless charging
US20190097466A1 (en) * 2017-09-28 2019-03-28 Rockwell Automation Technologies, Inc. Method and Apparatus for Power Transfer to an Independent Moving Cart During Travel Along a Track

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578875A (en) * 1993-06-02 1996-11-26 Vtech Communications, Ltd. Dual battery recharger with backup power feature for use in systems having a base unit and battery-powered portable unit
US20040023678A1 (en) * 2000-09-12 2004-02-05 Lars-Berno Fredriksson Arrangement with a number of units that can communicate with each other via a wireless connection system and a method for use with such a system
US6816087B2 (en) * 2002-08-06 2004-11-09 Lane Michael W Flight attendant actuated warning system and method
US20080001572A9 (en) * 1999-06-21 2008-01-03 Baarman David W Vehicle interface

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5341083A (en) * 1991-09-27 1994-08-23 Electric Power Research Institute, Inc. Contactless battery charging system
JP2996559B2 (en) * 1992-01-29 2000-01-11 本田技研工業株式会社 Of electric vehicle charging status display system
US5426360A (en) * 1994-02-17 1995-06-20 Niagara Mohawk Power Corporation Secondary electrical power line parameter monitoring apparatus and system
US6100663A (en) * 1996-05-03 2000-08-08 Auckland Uniservices Limited Inductively powered battery charger
JP2001110659A (en) * 1999-10-05 2001-04-20 Toyota Autom Loom Works Ltd Receptacle for electrical charge for charging
JP2001167958A (en) * 1999-12-10 2001-06-22 Toyota Autom Loom Works Ltd Coil wiring structure for feeding coupler and feeding device
US6925395B2 (en) * 2002-10-15 2005-08-02 Canberra Aquila, Inc. Apparatus and method for measuring the torque applied to bolts
US20040189246A1 (en) * 2002-12-23 2004-09-30 Claudiu Bulai System and method for inductive charging a wireless mouse
US7249705B2 (en) * 2004-11-29 2007-07-31 Joseph Dudley Theft preventative mailbox having remote unlocking activation mechanism
CN101371467B (en) * 2006-01-11 2013-01-02 高通股份有限公司 Methods and apparatus relating to wireless terminal beacon signal generation, transmission, and/or use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5578875A (en) * 1993-06-02 1996-11-26 Vtech Communications, Ltd. Dual battery recharger with backup power feature for use in systems having a base unit and battery-powered portable unit
US20080001572A9 (en) * 1999-06-21 2008-01-03 Baarman David W Vehicle interface
US20040023678A1 (en) * 2000-09-12 2004-02-05 Lars-Berno Fredriksson Arrangement with a number of units that can communicate with each other via a wireless connection system and a method for use with such a system
US6816087B2 (en) * 2002-08-06 2004-11-09 Lane Michael W Flight attendant actuated warning system and method

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10346181B2 (en) 2003-05-23 2019-07-09 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9898312B2 (en) 2003-05-23 2018-02-20 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9176775B2 (en) 2003-05-23 2015-11-03 Ip Reservoir, Llc Intelligent data storage and processing using FPGA devices
US9547680B2 (en) 2005-03-03 2017-01-17 Washington University Method and apparatus for performing similarity searching
US9323794B2 (en) 2006-11-13 2016-04-26 Ip Reservoir, Llc Method and system for high performance pattern indexing
US8880501B2 (en) 2006-11-13 2014-11-04 Ip Reservoir, Llc Method and system for high performance integration, processing and searching of structured and unstructured data using coprocessors
US9396222B2 (en) 2006-11-13 2016-07-19 Ip Reservoir, Llc Method and system for high performance integration, processing and searching of structured and unstructured data using coprocessors
US10191974B2 (en) 2006-11-13 2019-01-29 Ip Reservoir, Llc Method and system for high performance integration, processing and searching of structured and unstructured data
US20140292264A1 (en) * 2007-05-10 2014-10-02 Auckland Uniservices Limited Multi power sourced electric vehicle
US9466419B2 (en) * 2007-05-10 2016-10-11 Auckland Uniservices Limited Apparatus and system for charging a battery
US20090271047A1 (en) * 2008-04-28 2009-10-29 Masataka Wakamatsu Power transmitting apparatus, power receiving apparatus, power transmission method, program, and power transmission system
US8577479B2 (en) * 2008-04-28 2013-11-05 Sony Corporation Power transmitting apparatus, power receiving apparatus, power transmission method, program, and power transmission system
US9767955B2 (en) 2008-05-09 2017-09-19 Auckland Uniservices Limited Multi power sourced electric vehicle
US9902271B2 (en) 2008-11-07 2018-02-27 Toyota Jidosha Kabushiki Kaisha Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US10062115B2 (en) 2008-12-15 2018-08-28 Ip Reservoir, Llc Method and apparatus for high-speed processing of financial market depth data
US10325717B2 (en) 2009-08-07 2019-06-18 Auckland Uniservices Limited Roadway powered electric vehicle system
US20110052317A1 (en) * 2009-09-03 2011-03-03 Jeter Philip L Embedded Module for Linear Synchronous Motor
US8221024B2 (en) * 2009-09-03 2012-07-17 General Atomics Embedded module for linear synchronous motor
US20140225560A1 (en) * 2009-11-30 2014-08-14 Broadcom Corporation Battery with integrated wireless power receiver and/or rfid
US8952655B2 (en) * 2009-11-30 2015-02-10 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
US8624548B2 (en) 2010-02-05 2014-01-07 Semiconductor Energy Laboratory Co., Ltd. Moving object, wireless power feeding system, and wireless power feeding method
US9114718B2 (en) 2010-02-05 2015-08-25 Semiconductor Energy Laboratory Co., Inc. Moving object, wireless power feeding system, and wireless power feeding method
US20110193520A1 (en) * 2010-02-05 2011-08-11 Semiconductor Energy Laboratory Co., Ltd. Moving Object, Wireless Power Feeding System, and Wireless Power Feeding Method
US20110199028A1 (en) * 2010-02-12 2011-08-18 Semiconductor Energy Laboratory Co., Ltd. Moving Object, Wireless Power Feeding System, and Wireless Power Feeding Method
US9887568B2 (en) * 2010-02-12 2018-02-06 Semiconductor Energy Laboratory Co., Ltd. Moving object, wireless power feeding system, and wireless power feeding method
US8517126B2 (en) * 2010-03-04 2013-08-27 Honda Motor Co., Ltd. Electric vehicle
US20120318586A1 (en) * 2010-03-04 2012-12-20 Honda Motor Co., Ltd. Electric vehicle
US9981566B2 (en) 2010-03-16 2018-05-29 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9073442B2 (en) 2010-03-16 2015-07-07 Toyota Jidosha Kabushiki Kaisha Inductively charged vehicle with automatic positioning
US9365104B2 (en) 2010-04-21 2016-06-14 Toyota Jidosha Kabushiki Kaisha Parking assist device for vehicle and electrically powered vehicle including the same
US10124691B1 (en) 2010-06-02 2018-11-13 Bryan Marc Failing Energy transfer with vehicles
US9393878B1 (en) 2010-06-02 2016-07-19 Bryan Marc Failing Energy transfer with vehicles
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
US9114719B1 (en) 2010-06-02 2015-08-25 Bryan Marc Failing Increasing vehicle security
US8725330B2 (en) 2010-06-02 2014-05-13 Bryan Marc Failing Increasing vehicle security
US20120293109A1 (en) * 2011-05-19 2012-11-22 Yariv Glazer Method and System for Efficiently Exploiting Renewable Electrical Energy Sources
US9142998B2 (en) 2011-10-03 2015-09-22 The Board Of Trustees Of The Leland Stanford Junior University Wireless energy transfer
US9287736B2 (en) * 2011-11-25 2016-03-15 Lg Innotek Co., Ltd. Wireless power transmitter and method of transmitting power thereof
US20130134794A1 (en) * 2011-11-25 2013-05-30 Korea Electro Technology Research Institute Wireless power transmitter and method of transmitting power thereof
US8994224B2 (en) 2012-01-27 2015-03-31 Building Materials Investment Corporation Solar roof shingles and underlayment with wireless power transfer
US20130234530A1 (en) * 2012-03-07 2013-09-12 Hitachi Maxell, Ltd. Wireless power transfer system and wireless power transfer method
US9287722B2 (en) 2013-03-15 2016-03-15 Donald S. Williams Personal e-port apparatus
US20150035482A1 (en) * 2013-07-30 2015-02-05 Honda Motor Co., Ltd. Non-contact charging system
US9333870B2 (en) * 2013-07-30 2016-05-10 Honda Motor Co., Ltd. Non-contact charging system
US10005367B2 (en) 2015-07-30 2018-06-26 Toyota Motor Engineering & Manufacturing North America, Inc. Wireless charging of a vehicle power source
US10220717B2 (en) * 2015-11-13 2019-03-05 Nio Usa, Inc. Electric vehicle emergency charging system and method of use
US20170136903A1 (en) * 2015-11-13 2017-05-18 NextEv USA, Inc. Electric vehicle emergency charging system and method of use
US20170288426A1 (en) * 2016-03-31 2017-10-05 Pincraft Engineering Inc. Multi charging device enabled by current and voltage control

Also Published As

Publication number Publication date
US20090045773A1 (en) 2009-02-19
US20110291615A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
Hebner et al. Flywheel batteries come around again
KR101197349B1 (en) Method of power management for plug-in hybrid and electric vehicle
Maggetto et al. Electric and electric hybrid vehicle technology: a survey
US8890472B2 (en) Self-charging electric vehicles and aircraft, and wireless energy distribution system
CN102848924B (en) And electric vehicle power supply apparatus for vehicle
US8798829B2 (en) Power feeding system for vehicle, electrically powered vehicle and power feeding apparatus for vehicle
US9421877B2 (en) Power transmission system and power supply device for vehicles
JP5622518B2 (en) Electric machines and power system including a battery pack
US6114834A (en) Remote charging system for a vehicle
JP4947241B2 (en) Coil unit, the non-contact power receiving apparatus, the non-contact power transmitting device, a non-contact power supply system and a vehicle
KR101830454B1 (en) Wireless power antenna alignment adjustment system for vehicles
US20140035526A1 (en) Selective communication based on distance from a plurality of electric vehicle wireless charging stations in a facility
CN102856964B (en) Three-phase wireless charging system and charging method for electric automobile
KR101171024B1 (en) Non-contact power reception device and vehicle including the same
Wu et al. A review on inductive charging for electric vehicles
CN101657336B (en) Motor-driven travelling body and high-speed charge method for motor-driven travelling body
Tie et al. A review of energy sources and energy management system in electric vehicles
US20130049674A1 (en) Integrated photo voltaic solar plant and electric vehicle charging station and method of operation
US8768533B2 (en) Vehicle, communication system, and communication device
KR20100017582A (en) Multi power sourced electric vehicle
CZ100099A3 (en) Power system with fuel element
US20110080050A1 (en) Systems and Methods for Directional Reactive Power Ground Plane Transmission
US20100181957A1 (en) Solar powered, grid independent EV charging system
US8947046B2 (en) Power feeding system and vehicle
GB2497828A (en) Electrical roadway with cables disposed in transverse slots

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY