CN109518168A - 一种高稳涂层的活性钛基电极板的制备方法 - Google Patents

一种高稳涂层的活性钛基电极板的制备方法 Download PDF

Info

Publication number
CN109518168A
CN109518168A CN201811536164.0A CN201811536164A CN109518168A CN 109518168 A CN109518168 A CN 109518168A CN 201811536164 A CN201811536164 A CN 201811536164A CN 109518168 A CN109518168 A CN 109518168A
Authority
CN
China
Prior art keywords
titanium
compound
electrode plate
ruthenium
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811536164.0A
Other languages
English (en)
Other versions
CN109518168B (zh
Inventor
刘新亮
王双飞
覃程荣
聂双喜
姚双全
梁辰
刘杨
王志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi University
Original Assignee
Guangxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi University filed Critical Guangxi University
Priority to CN201811536164.0A priority Critical patent/CN109518168B/zh
Priority to US16/264,958 priority patent/US20200194770A1/en
Priority to CA3038188A priority patent/CA3038188A1/en
Publication of CN109518168A publication Critical patent/CN109518168A/zh
Application granted granted Critical
Publication of CN109518168B publication Critical patent/CN109518168B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1258Spray pyrolysis
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/097Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds comprising two or more noble metals or noble metal alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/045Electrochemical coating; Electrochemical impregnation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/34Silver oxide or hydroxide electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Dispersion Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)

Abstract

本发明属于电化学技术领域,具体涉及的是一种高稳涂层的活性钛基电极板的制备方法。本发明以钛为基材,以多元金属催化层,以致密氧化物为保护层的高稳活性钛基阳极材料;所述多元金属催化层是利用热解法形成钛基催化层主体;所述致密氧化物保护层为结合溶胶‑凝胶法和电化学沉积法形成致密钛基保护层。本发明制备的高稳涂层的活性钛基电极板具有电催化活性高、寿命长、涂层致密不易脱落、活性位点多的优点,可用于氯碱工业,造纸工业、污水处理等领域。

Description

一种高稳涂层的活性钛基电极板的制备方法
技术领域
本发明属于电化学技术领域,具体涉及的是一种高稳涂层的活性钛基电极板的制备方法。
背景技术
涂覆钛基电极板是以钛或钛合金为基体,利用Ru、Sn、Mn、Ir、V、Ta、Nb等活性元素的金属氧化物对其表面进行涂覆处理,其具有电化学稳定性好,催化效率高,析氧电位高、析氯电位低等优点。涂覆钛基阳极板可以根据电极的不同用途和要求,有针对性的调整电极的涂层配方和设计涂层结构,以此来降低副反应的发生,提高目标产物的产率和电流效率。这种高稳活性钛基阳极板可广泛用于氯碱工业,造纸工业、污水处理等领域。
涂覆钛基电极板的制备方法包括热分解法、溶胶-凝胶法、电化学沉积法等方法。根据电极的不同用途和要求,利用热分解法、溶胶-凝胶法、电化学沉积法等不同方法设计不同结构的涂覆钛基阳极板,其活性不同、稳定性不同。
涂覆钛基电极板涂层制备方法多样,工艺简单,活性高,但其寿命较短,基材易钝化、涂层易发生龟裂脱落。
发明内容
本发明的目的在于提供一种融合热分解法、溶胶-凝胶法、电化学沉积法的涂层制备技术的高稳涂层的活性钛基阳极制备方法。利用本发明制备的高稳涂层的活性钛基阳极板具有电催化活性高、寿命长、涂层致密不易脱落、活性位点多的优点。
为解决涂覆钛基电极板的技术问题,本发明提出的技术方案如下:
一种高稳涂层的活性钛基电极板的制备方法,包括如下步骤:
(1)分别将钌化合物、铱化合物、钛化合物和锰化合物分散至的含浓盐酸的异丙醇或异丙醇中,得到钌化合物、铱化合物、钛化合物和锰化合物溶液;
(2)将上述钌化合物、铱化合物、钛化合物和锰化合物溶液在30-50℃,按一定比例混合,得到钌化合物、铱化合物、钛化合物和锰化合物溶液混合液;
(3)将步骤(2)中得到的混合液以刷涂方式或喷涂方式转移到电极板上,得到涂覆后的电极板;
(4)将步骤(3)得到涂覆后的电极板烘干;
(5)将烘干后的电极板进行退火煅烧固载;
(6)重复步骤(3)-步骤(5)数次,得到涂覆钛钌铱锰活性催化电极板;
(7)将钌、铱、石墨烯通过溶胶-凝胶法和电化学沉积法涂覆到涂层表面;
(8)将步骤(7)涂覆后电极转移至氮气气氛高温炉退火,即得高稳涂层的活性钛基电极板。
作为优选,所述的钌化合物为醋酸钌、氧化钌或三氯化钌;所述的铱化合物为二氧化铱、氯铱酸或四氯化铱;所述的钛化合物为四氯化钛;所述的锰化合物为高锰酸钾。
作为优选,步骤(1)中钌化合物、铱化合物、钛化合物和锰化合物溶液混合液中钌:铱:钛:锰元素的质量比为0.1-3:0.2-1:1-6:0.1-0.5。
作为优选,步骤(4)中烘干的温度为80-90℃。
作为优选,步骤(5)中所述退火煅烧温度为300-700℃。
作为优选,步骤(8)中所述退火煅烧温度为150-200℃。
与现有技术相比,本发明具有的有益效果为:
本发明以钛为基材,以多元金属催化层,以致密氧化物为保护层制备的高稳活性钛基阳极材料;所述多元金属催化层是利用热解法形成钛基催化层主体;所述致密氧化物保护层为结合溶胶-凝胶法和电化学沉积法形成致密钛基保护层。本发明制备的高稳涂层的活性钛基电极板具有电催化活性高、寿命长、涂层致密不易脱落、活性位点多的优点,可用于氯碱工业,造纸工业、污水处理等领域。
附图说明
图1为本发明的高稳涂层的活性钛基电极板的结构示意图;
图2为本发明的高稳涂层的活性钛基电极板的伏安循环曲线;
有关附图标记的说明:
1-钛基板;2-多元金属活性催化涂层;3-致密金属氧化物致密氧化物保护层。
具体实施方式
实施例1
如图1所示,一种高稳涂层的活性钛基电极板,包括:钛基板1、多元金属活性催化涂层2和致密金属氧化物致密氧化物保护层3。
所述的高稳涂层的活性钛基电极板的制备方法,包括如下步骤:
(1)先将钛基板经过喷砂抛光,去油和酸腐蚀;
(2)分别将四氯化钛、醋酸钌、氯铱酸、石墨烯分散在100ml异丙醇中,利用喷涂技术将混合液依次转移至钛基板上;所述的四氯化钛、醋酸钌、氯铱酸、石墨烯的质量比为20:11:3:3
(3)将涂覆后的钛基板在80℃环境中干燥,然后转移至500℃的氩气气氛的高温炉中退火5min;
(4)重复步骤(2)-步骤(3)15次,获得具有高催化活性的多金属催化活性钛基板;
(5)将上述步骤(4)制备的多金属催化活性钛基板为阴极,石墨电极为阳极,以RuCl3为前驱体,控制电流3mA/cm2,同时滴加NaOH,电沉积150min,在热解的龟裂缝中形成水和氧化钌保护层;
(6)将上述步骤(5)制备的水和氧化钌多金属催化活性钛基板转移到150℃氮气气氛高温炉退火5min,即制备得到高稳活性钛基电极板。
实施例2
如图1所示,一种高稳涂层的活性钛基电极板,包括:钛基板1、多元金属活性催化涂层2和致密金属氧化物致密氧化物保护层3。
所述的高稳涂层的活性钛基电极板的制备方法,包括如下步骤:
(1)先将钛基板经过喷砂抛光,去油和酸腐蚀;
(2)以RuCl3为前驱体,分散在盐酸的乙醇溶液中,经过陈化、预热,同时滴加NaOH,得到电解液;
(3)以钛基板为阳极,铂为辅助电极,电沉积250min,控制电流9mA/cm2,沉积形成水和氧化钌钛基板。
(4)分别将四氯化钛、三氯化钌、氧化石墨烯分散在异丙醇中,利用刷涂技术将混合液依次转移至步骤(3)中制得的水和氧化钌钛基板上;所述的四氯化钛、三氯化钌、氧化石墨烯的质量比为20:11:5
(5)将涂覆后的钛基板在90℃环境中干燥,然后转移至550℃的氩气气氛的高温炉中退火20min;
(6)重复步骤(4)-(5)20次,得到多金属催化活性氧化钌钛基板;
(7)以RuCl3为前驱液,滴入沸腾的盐酸溶液中,分离,制得氧化钌胶体溶液;
(8)将上述步骤(6)制备的多金属催化活性氧化钌钛基板浸渍于步骤(7)中制备的氧化钌胶体液中,获得胶体填充的多金属催化活性氧化钌钛基板;
(9)将上述步骤(8)制备的水和氧化钌多金属催化活性钛基板转移到200℃氮气气氛高温炉退火10min,即得到高稳涂层的活性钛基电极板。
实施例3
如图1所示,一种高稳涂层的活性钛基电极板,包括:钛基板1、多元金属活性催化涂层2和致密金属氧化物致密氧化物保护层3。
所述的高稳涂层的活性钛基电极板的制备方法,包括如下步骤:
(1)先将钛基板经过喷砂抛光,去油和酸腐蚀;
(2)分别将二氧化钛、五氧化二钒、三氯化钌、四氯化铱分散在100ml异丙醇中,利用喷涂技术将混合液依次转移至钛基板上;二氧化钛、五氧化二钒、三氯化钌、四氯化铱的质量比3:1:1:4
(3)将涂覆后的钛基板在85℃环境中干燥,然后转移至400℃的氩气气氛的高温炉中退火10min;
(4)重复步骤(2)-(3)17次;获得具有高催化活性的多金属催化活性钛基板;
(5)以RuCl3为前驱液,滴入沸腾的盐酸溶液中,分离,制得氧化钌胶体溶液;
(6)将上述步骤(4)制备的多金属催化活性氧化钌钛基板浸渍于(5)制备的氧化钌胶体液与石墨烯混合液中,获得胶体填充的多金属催化活性氧化钌钛基板;
(7)将上述步骤(6)制备的水和氧化钌多金属催化活性钛基板转移到160℃氮气气氛高温炉退火6in,即得到高稳活性钛基电极板。
如图2所示,伏安曲线比较平滑,无氧化还原峰。正向扫描出现析氧反应拐点,析氧电位约为1.25V/SCE。电压在-0.2-1.2V内,无析氧或吸氢反应。

Claims (6)

1.一种高稳涂层的活性钛基电极板的制备方法,其特征在于,包括如下步骤:
(1)分别将钌化合物、铱化合物、钛化合物和锰化合物分散至的含浓盐酸的异丙醇或异丙醇中,得到钌化合物、铱化合物、钛化合物和锰化合物溶液;
(2)将上述钌化合物、铱化合物、钛化合物和锰化合物溶液在30-50℃,按一定比例混合,得到钌化合物、铱化合物、钛化合物和锰化合物溶液混合液;
(3)将步骤(2)中得到的混合液以刷涂方式或喷涂方式转移到电极板上,得到涂覆后的电极板;
(4)将步骤(3)得到涂覆后的电极板烘干;
(5)将烘干后的电极板进行退火煅烧固载;
(6)重复步骤(3)-步骤(5)数次,得到涂覆钛钌铱锰活性催化电极板;
(7)将钌、铱、石墨烯通过溶胶-凝胶法和电化学沉积法涂覆到涂层表面;
(8)将步骤(7)涂覆后电极转移至氮气气氛高温炉退火,即得高稳涂层的活性钛基电极板。
2.根据权利要求1所述的高稳涂层的活性钛基电极板的制备方法,其特征在于,所述的钌化合物为醋酸钌、氧化钌或三氯化钌;所述的铱化合物为二氧化铱、氯铱酸或四氯化铱;所述的钛化合物为四氯化钛;所述的锰化合物为高锰酸钾。
3.根据权利要求1所述的高稳涂层的活性钛基电极板的制备方法,其特征在于,步骤(1)中钌化合物、铱化合物、钛化合物和锰化合物溶液混合液中钌:铱:钛:锰元素的质量比为0.1-3:0.2-1:1-6:0.1-0.5。
4.根据权利要求1所述的高稳涂层的活性钛基电极板的制备方法,其特征在于,步骤(4)中烘干的温度为80-90℃。
5.根据权利要求1所述的高稳涂层的活性钛基电极板的制备方法,其特征在于,步骤(5)中所述退火煅烧温度为300-700℃。
6.根据权利要求1所述的高稳涂层的活性钛基电极板的制备方法,其特征在于,步骤(8)中所述退火煅烧温度为150-200℃。
CN201811536164.0A 2018-12-14 2018-12-14 一种高稳涂层的活性钛基电极板的制备方法 Active CN109518168B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201811536164.0A CN109518168B (zh) 2018-12-14 2018-12-14 一种高稳涂层的活性钛基电极板的制备方法
US16/264,958 US20200194770A1 (en) 2018-12-14 2019-02-01 Titanium-based active electrodes with high stability coating layer
CA3038188A CA3038188A1 (en) 2018-12-14 2019-03-26 A method for preparing titanium-based active electrodes with high stability coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811536164.0A CN109518168B (zh) 2018-12-14 2018-12-14 一种高稳涂层的活性钛基电极板的制备方法

Publications (2)

Publication Number Publication Date
CN109518168A true CN109518168A (zh) 2019-03-26
CN109518168B CN109518168B (zh) 2020-11-03

Family

ID=65795852

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811536164.0A Active CN109518168B (zh) 2018-12-14 2018-12-14 一种高稳涂层的活性钛基电极板的制备方法

Country Status (3)

Country Link
US (1) US20200194770A1 (zh)
CN (1) CN109518168B (zh)
CA (1) CA3038188A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113699548A (zh) * 2021-08-25 2021-11-26 北京化工大学 弱酸盐层保护的析氧催化电极及其制备与用途、及提高析氧催化电极析氧反应稳定性的方法
CN114134346A (zh) * 2021-11-30 2022-03-04 大连理工大学 一种连续离子膜脱钠-沉钒的方法
CN114405794A (zh) * 2022-01-19 2022-04-29 西安西热水务环保有限公司 一种连续电除盐膜块钛电极涂层的制备方法
CN114438541A (zh) * 2020-10-19 2022-05-06 蓝星(北京)化工机械有限公司 含石墨烯析氯阳极

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111850601B (zh) * 2020-07-17 2023-10-31 北京凌云智能科技有限公司 一种新的电极加工工艺及设备
CN111926345B (zh) * 2020-09-08 2023-05-16 华北水利水电大学 具有TiN纳米管中间层的IrO2-Ta2O5阳极
CN113387418B (zh) * 2021-05-14 2022-12-13 上海泓济环保科技股份有限公司 一种降解废水用梯度金属氧化物电极
CN113881960A (zh) * 2021-09-30 2022-01-04 西安建筑科技大学 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189358A (en) * 1978-07-14 1980-02-19 The International Nickel Company, Inc. Electrodeposition of ruthenium-iridium alloy
JPH04191398A (ja) * 1990-11-26 1992-07-09 Nippon Steel Corp 不溶性電極
CN1118384A (zh) * 1994-09-08 1996-03-13 广州有色金属研究院 电解冶金工业用涂层电极
US20080149476A1 (en) * 2006-05-09 2008-06-26 Daiki Ataka Engineering Co., Ltd. Anode for electrochemical reaction
RU2385969C1 (ru) * 2008-08-06 2010-04-10 Общество с ограниченной ответственностью научно-производственное предприятие "ЭКОФЕС" Способ получения электрода для электрохимических процессов
CN101894675A (zh) * 2010-07-19 2010-11-24 南昌航空大学 一种钛基超级电容器薄膜电极的制作方法
CN101922016A (zh) * 2009-06-09 2010-12-22 明达实业(厦门)有限公司 一种用于氯发生器的钛电极及其制备方法
CN107829109A (zh) * 2017-10-20 2018-03-23 上海同臣环保有限公司 一种钛基二氧化铱涂层电极及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3711385A (en) * 1970-09-25 1973-01-16 Chemnor Corp Electrode having platinum metal oxide coating thereon,and method of use thereof
CA1225066A (en) * 1980-08-18 1987-08-04 Jean M. Hinden Electrode with surface film of oxide of valve metal incorporating platinum group metal or oxide
IL73536A (en) * 1984-09-13 1987-12-20 Eltech Systems Corp Composite catalytic material particularly for electrolysis electrodes,its manufacture and its use in electrolysis
DE102010043085A1 (de) * 2010-10-28 2012-05-03 Bayer Materialscience Aktiengesellschaft Elektrode für die elektrolytische Chlorherstellung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4189358A (en) * 1978-07-14 1980-02-19 The International Nickel Company, Inc. Electrodeposition of ruthenium-iridium alloy
JPH04191398A (ja) * 1990-11-26 1992-07-09 Nippon Steel Corp 不溶性電極
CN1118384A (zh) * 1994-09-08 1996-03-13 广州有色金属研究院 电解冶金工业用涂层电极
US20080149476A1 (en) * 2006-05-09 2008-06-26 Daiki Ataka Engineering Co., Ltd. Anode for electrochemical reaction
RU2385969C1 (ru) * 2008-08-06 2010-04-10 Общество с ограниченной ответственностью научно-производственное предприятие "ЭКОФЕС" Способ получения электрода для электрохимических процессов
CN101922016A (zh) * 2009-06-09 2010-12-22 明达实业(厦门)有限公司 一种用于氯发生器的钛电极及其制备方法
CN101894675A (zh) * 2010-07-19 2010-11-24 南昌航空大学 一种钛基超级电容器薄膜电极的制作方法
CN107829109A (zh) * 2017-10-20 2018-03-23 上海同臣环保有限公司 一种钛基二氧化铱涂层电极及其制备方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
V.PANIC ET AL.: ""The properties of carbon-supported hydrous ruthenium oxide obtained from RuOxHy sol"", 《ELECTROCHIMICA ACTA》 *
刘文武等: ""两种DSA电极的制备及其对有机废水降解的电催化性能"", 《环境化学》 *
姚颖悟等: ""钛基锡锑氧化物涂层电极的研究进展"", 《电镀与涂饰》 *
宋诗稳等: ""稀土金属-氧化石墨烯-PbO2/SnO2-Sb/Ti型稳阳极的制备及性能研究—钇、钕、铒、镧、镨"", 《中国环境科学学会科学技术年会论文集》 *
张瑞峰等: ""钌-钛金属氧化物涂层电极的电子能谱分析"", 《分析化学》 *
王海荣等: ""Ru/RGO改性DSA电极处理酸性橙II模拟废水的实验研究"", 《河南教育学院院报(自然科学版)》 *
王玲利等: ""钛基氧化物Ru(0.4-x)IrxTi0.6电极电化学性能研究"", 《电化学》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114438541A (zh) * 2020-10-19 2022-05-06 蓝星(北京)化工机械有限公司 含石墨烯析氯阳极
CN114438541B (zh) * 2020-10-19 2024-04-09 蓝星(北京)化工机械有限公司 含石墨烯析氯阳极
CN113699548A (zh) * 2021-08-25 2021-11-26 北京化工大学 弱酸盐层保护的析氧催化电极及其制备与用途、及提高析氧催化电极析氧反应稳定性的方法
CN114134346A (zh) * 2021-11-30 2022-03-04 大连理工大学 一种连续离子膜脱钠-沉钒的方法
CN114134346B (zh) * 2021-11-30 2022-08-12 大连理工大学 一种连续离子膜脱钠-沉钒的方法
CN114405794A (zh) * 2022-01-19 2022-04-29 西安西热水务环保有限公司 一种连续电除盐膜块钛电极涂层的制备方法

Also Published As

Publication number Publication date
US20200194770A1 (en) 2020-06-18
CN109518168B (zh) 2020-11-03
CA3038188A1 (en) 2020-06-14

Similar Documents

Publication Publication Date Title
CN109518168A (zh) 一种高稳涂层的活性钛基电极板的制备方法
Guo et al. CuO/Pd composite photocathodes for photoelectrochemical hydrogen evolution reaction
US11519088B2 (en) Titanium sub-oxide/ruthenium oxide composite electrode and preparation method and application thereof
Shan et al. A novel highly active nanostructured IrO2/Ti anode for water oxidation
US8946116B2 (en) Nanometer powder catalyst and its preparation method
Yousefpour Electrodeposition of TiO2–RuO2–IrO2 coating on titanium substrate
Cheng et al. Preparation of Ir0. 4Ru0. 6MoxOy for oxygen evolution by modified Adams’ fusion method
CN105239094A (zh) 一种掺石墨烯和镧改性的钛基二氧化铅电极及其制备方法
Doan et al. Influence of IrO2/TiO2 coated titanium porous transport layer on the performance of PEM water electrolysis
CN101191248A (zh) 在钛基底材料表面制备二氧化钛纳米管阵列层的方法
Park et al. Electrodeposition of high-surface-area IrO2 films on Ti felt as an efficient catalyst for the oxygen evolution reaction
CN103345958B (zh) 含反应等离子喷涂纳米TiN中间层的复合电极材料及其制备方法
Košević et al. A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode
Guo et al. Solvothermal fabrication of three-dimensionally sphere-stacking Sb–SnO2 electrode based on TiO2 nanotube arrays
CN106086989B (zh) 一种银改性二氧化钛纳米管复合阳极及其制备方法
CN104047043A (zh) TiO2/SnO2半导体双层复合膜光阳极的制备方法
CN113816468B (zh) 一种dsa电极及其制备方法与应用
Hayden et al. Electrode coatings from sprayed titanium dioxide nanoparticles–behaviour in NaOH solutions
CN106167290A (zh) 一种稀土Ce掺杂Ti/Sb‑SnO2电极的制备方法
CN102320683B (zh) 钛基锡锑铂氧化物电极材料及其制备方法
CN105671611A (zh) 一种石墨烯表面直接负载纳米氧化物的方法
CN107815705A (zh) 一种氢化钛纳米管‑钌钛氧化物涂层钛电极制备方法
CN104846399B (zh) 一种钛基TiNx/TiO2-RuO2纳米涂层阳极
Wu et al. Electrochemical properties of Ti/SnO2-Sb-Ir electrodes doped with a low iridium content for the oxygen evolution reaction in an acidic environment
JPH06330367A (ja) ガス電極の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant