CN113881960A - 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法 - Google Patents

一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法 Download PDF

Info

Publication number
CN113881960A
CN113881960A CN202111160588.3A CN202111160588A CN113881960A CN 113881960 A CN113881960 A CN 113881960A CN 202111160588 A CN202111160588 A CN 202111160588A CN 113881960 A CN113881960 A CN 113881960A
Authority
CN
China
Prior art keywords
anode
manganese dioxide
low
spraying
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111160588.3A
Other languages
English (en)
Inventor
唐长斌
刘子龙
崔段段
俞永奇
李志港
于丽花
薛娟琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Architecture and Technology
Original Assignee
Xian University of Architecture and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Architecture and Technology filed Critical Xian University of Architecture and Technology
Priority to CN202111160588.3A priority Critical patent/CN113881960A/zh
Publication of CN113881960A publication Critical patent/CN113881960A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • C25B11/061Metal or alloy
    • C25B11/063Valve metal, e.g. titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,在钛基材表面电弧热喷涂制备出(Ti+Zr)N中间层,而后在其上阳极电沉积制备(Mn1‑xMox)O2+x‑WC活性层,获得Ti/(Ti+Zr)N/(Mn1‑xMox)O2+x‑WC形稳阳极。本发明利用(Ti+Zr)N取代IrO2中间层,且选用纳米尺度的碳化钨对掺Mo的二氧化锰氧化物活性层进行复合协同,有效利用了中间层优异的导电性,以及耐酸、碱、盐的抗腐蚀性,并经电弧喷涂制备使得表面粗化,比表面积明显增多,有助于活性表层具有更多的活性位点;产品表面裂纹宽度显著缩小,活性层细化、致密,且厚度增大,在实际工况下的析氧效率电解可达到99.9%。

Description

一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法
技术领域
本发明属于电催化形稳阳极材料制备技术领域,特别涉及一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法。
背景技术
氢能因具有燃烧热值高、来源丰富、运输和存储方便、反应产物绿色无污染的优点,被认为是未来最有潜力的能源载体和传统化石能源的最佳替代品。电解水制氢具有产氢纯度高等优势,被寄予厚望,而采用海水电解则避免了水纯化等额外成本,还可以直接利用广泛存在的海水或苦咸水进行制氢,因此,电解海水氢能开发更是被优先考虑。但实现海水电解制氢生产,既要求阳极不能释放有毒的氯气,还要求其必须具备高效率和长寿命的析氧反应特性。
然而,大量的研究事实已经证实几乎所有可用阳极材料在电解海水过程中都会优先产生氯气,目前已知,只有锰的氧化物可以在海水电解阳极反应中优先产生氧气,而尽管它的析氧效率仍不足以避免氯气的析出,但钛基MnO2涂层阳极依然成为海水环境中最有发展前景的阳极材料。
为了更好地做到工程应用,目前通常选择在钛基体与MnO2涂层之间添加一层贵金属氧化物(IrO2性能最佳)中间层,来阻挡活性氧的侵蚀从而防止钛基体表面生成绝缘的TiO2薄膜,利用其优异的导电和稳定性等特性。但贵金属氧化物除了制备工艺(热刷涂多次刷涂+热解)复杂以外,还存在储量稀少、价格高昂等多方面问题,从而极大地限制了它在实际工程上的应用。此外,对于表层MnO2活性层为了增强其导电性、析氧抑氯催化活性,通常还会通过掺杂Mo、W、Fe、V等元素以增强其析氧效率和避免氯气产生,但元素掺杂使得MnO2涂层导电性和活性增强的效果仍有限。
发明内容
为了克服上述的电解海水制氢用钛基二氧化锰涂层电极制备技术中存在的IrO2中间层成本高昂,制备工艺复杂以及仅通过元素掺杂并不能明显改变涂层导电性和催化活性的弊端,本发明的目的在于提供一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,采用大气气氛下电弧喷涂导电(Ti+Zr)N中间层代替贵金属氧化物IrO2热解层,电弧喷涂制备技术操作简便,易于操控,施涂迅速,工作效率高,制备成本显著降低;并鉴于既然少量的Mo等元素掺杂到MnO2涂层中能够提升析氧效率,考虑W的催化活性与Mn接近,且其较Mo具有更高的催化活性,选择具有类Pt等特性(碳化钨WC具有六方晶体结构,有类似于贵金属铂的电子表面结构,对氧反应显示出良好的催化性能,它自身具有优异的高硬度,耐腐蚀)的WC进行复合,以期协同Mo掺杂来实现对析氧催化活性和析氧效率的显著提升。本发明通过在钛基材上通过电弧喷涂TiN中间层,表面再电沉积制备WC复合的掺Mo二氧化锰涂层,最终得到Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极。这一形稳阳极具有高的析氧效率,良好的抑氯特性,电极耐久性好。
为了实现上述目的,本发明采用的技术方案是:
一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,首先在预处理好的钛基材表面利用电弧热喷涂制备出良好导电、耐蚀的(Ti+Zr)N中间层,而后在(Ti+Zr)N中间层上表面利用阳极复合电沉积制备WC复合的锰钼氧化物活性表层,最终得到析氧效率高,可长久使用的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC形稳涂层阳极,其中x为摩尔数,其值取0.1~0.2。
进一步地,所述钛基材的预处理是碱洗除油、草酸刻蚀和喷砂处理,使得表面形成凹凸不平的麻面层,呈灰色,失去金属光泽,获得无油污和氧化皮的洁净表面。
进一步地,所述电弧热喷涂采用两丝同送方式,所选取的喷涂丝材,一根为纯锆丝,另一根为纯钛丝,在大气环境中喷涂丝材穿过喷涂喷嘴中心,在围绕喷嘴和气罩形成的环形火焰中,金属丝的尖端被连续地被加热到其熔点。然后,通过气罩的压缩空气将其雾化,成喷射粒子,依靠空气流加速喷射到基体上,从而熔融的粒子冷却到塑性或半熔化状态,在雾化过程中与空气中氮气、氧气快速反应,形成金属锆和钛的氮/氧化物,熔覆沉积在预处理过的钛基体表面。
进一步地,可设定喷涂功率30-40kW,电弧电压5-35V,喷涂距离100-250mm,压缩空气压力0.3-1.0MPa,喷涂时间10-30s,喷涂过程中借助高温高速焰流,通过喷涂丝材与空气中氮气、氧气反应形成具有良好导电性,耐酸、碱、盐,且与钛基底结合紧密的(Ti+Zr)N中间层。
进一步地,所述纯锆丝和纯钛丝的直径为1.5-2.5mm。
进一步地,所述(Ti+Zr)N中间层厚度为30-200μm。
进一步地,为获得良好结合在制备中间层前首先对预处理后的钛基材进行电弧喷涂预热,温度控制为70-150℃。
电弧喷涂制备(Ti+Zr)N中间层的过程中,喷涂距离过长则离子到达基体时的温度及速率均会过低,颗粒沉积不上去,且粒子被氧化程度提高;过短则粒子在焰流中停留时间过短,未能充分加热和加速,因此,一般选择距离在10-20cm。
进一步地,所述复合电沉积制备WC复合的锰钼氧化物活性表层,是以Ti/(Ti+Zr)N为阳极,两块等面积的不锈钢板为阴极,置于含MnSO4、Na2MoO4、纳米级WC微粒及H2SO4的混合溶液中进行电沉积制备。之后将所制备的阳极用蒸馏水冲洗干净,热风吹干,得到表面致密、均匀、稳定性和活性均良好的Ti/(Ti+Zr)N/(Mn-Mo)Ox-WC形稳阳极材料。
进一步地,所述混合溶液中MnSO4浓度为0.2-0.3mol/L,Na2MoO4浓度为0.02-0.04mol/L,纳米级WC颗粒添加量为5-30g/L,用H2SO4调节溶液pH至0.5,电沉积温度为70-90℃,电沉积时间为20-60min,电流密度为400-800A·m-2
进一步地,在将阳极和阴极置于混合溶液之前,将阳极除油洁净,并经10-20%HNO3溶液中浸蚀2-3min。
进一步地,所述电沉积制备过程中保持对混合溶液进行机械搅拌,确保WC颗粒悬浮,搅拌速率控制在200-600rpm。
与目前公认的电解海水制氢用Ti/IrO2/(Mn1-xMox)O2+x阳极制备技术相比,本发明对钛基体利用电弧喷涂技术制备出(Ti+Zr)N中间层,然后利用阳极沉积技术制备出Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极。本发明利用(Ti+Zr)N取代贵金属氧化物IrO2中间层,且选用理化性质优异的纳米尺度的碳化钨对掺Mo的二氧化锰氧化物活性层((Mn1-xMox)O2+x)进行复合协同,有效地利用了(Ti+Zr)N中间层优异的导电性,以及耐酸、碱、盐的抗腐蚀性,并经过电弧喷涂制备使得表面粗化,比表面积明显增多,有助于活性表层具有更多的活性位点。电弧喷涂(Ti+Zr)N中间层制备大大地简化了以涂刷法制备IrO2中间层的繁琐环节,并有效地降低了以贵重金属Ir、Ru氧化物等作为中间体的成本,加之,电弧喷涂工艺操作方便,电弧喷涂是两丝同时送进,喷涂效率高,运行费用少,成本低。同时,将纳米WC复合技术与元素掺杂相结合引入到钛基二氧化锰改性阳极的制备中,可明显解决阳极催化活性低、稳定性差等问题。经WC复合的Ti/TiN/(Mn1-xMox)O2+x阳极,表面裂纹宽度显著缩小,活性层细化、致密,且厚度增大,从而使得Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极在实际工况下的析氧效率电解可达到99.9%,经200h使用后才出现下降,显现出良好的取代应用前景。
附图说明
图1是本发明电弧喷涂(Ti+Zr)N中间层制备示意图。
图2是本发明制备的(Ti+Zr)N中间层结构图示。
图3是本发明制备的(Ti+Zr)N中间层表面扫描电镜图。
图4是本发明制备的(Ti+Zr)N中间层剖面的扫描电镜图。
图5是本发明制备的(Ti+Zr)N中间层X射线衍射谱图。
图6是本发明方法制备的阳极表层X射线衍射谱图。
图7是本发明方法制备的阳极在90℃,pH 12的3.5wt%NaCl溶液中电解时析氧效率随时间的演化行为对比。
具体实施方式
下面结合附图和实施例详细说明本发明的实施方式。
实施例1
首先采用经过打磨、碱洗、酸洗的钛板为基体,然后采用电弧喷涂技术制备(Ti+Zr)N中间层,最后再以Ti/(Ti+Zr)N电极材料为阳极,等面积大小的不锈钢为阴极,阳极电氧化制备出(Mn1-xMox)O2+x-WC活性层,从而获得Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC电极。
(Ti+Zr)N中间层的制备如图1所示,采用两丝同送方式,喷涂丝材分别为纯锆丝和纯钛丝,在大气环境中喷涂丝材穿过喷涂喷嘴中心,在围绕喷嘴和气罩形成的环形火焰中,金属丝的尖端被连续地被加热到其熔点。然后,通过气罩的压缩空气将其雾化,成喷射粒子,依靠空气流加速喷射到基体上,从而熔融的粒子冷却到塑性或半熔化状态,在雾化过程中与空气中氮气、氧气快速反应,形成金属锆和钛的氮/氧化物,熔覆沉积在预处理过的钛基体表面。
本实施例中(Ti+Zr)N中间层制备工艺参数:钛、锆丝直径:1.8mm;预热温度80℃;喷涂功率36kW;工作电压30V;喷涂距离10cm。
(Mn1-xMox)O2+x-WC活性层阳极电沉积条件如下:沉积液配方为0.2mol/L MnSO4、0.03/L Na2MoO4·2H2O和10g/L纳米级WC,电流密度600A·m-2,温度80℃,沉积时间30min,电磁搅拌,用H2SO4调节溶液pH至0.5。将制备的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC电极用蒸馏水冲洗干净,冷风吹干,得到表面致密、均匀的形稳阳极。对电极结构进行观察,经过电弧喷涂(Ti+Zr)N中间层的Ti/(Ti+Zr)N基体相较于钛基体表面粗糙度更大,相应比表面积更多,制备的活性层具有更多的活性位点。
Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极相较于无WC复合的Ti/TiN/(Mn1-xMox)O2+x阳极,表面裂纹宽度显著缩小,活性层均匀且致密,且厚度增加,如图2、图3和图4所示。
对(Ti+Zr)N中间层表面进行XRD分析,如图5所示,可见所制备的(Ti+Zr)N中间层是以TiN和ZrN互溶体为主相的多相组成物,由于较高熔点的锆较于钛具有更高的氧亲和性,因此,中间层组成中呈现为较多锆氧化物的杂相。
对Ti/(Ti+Zr)N/(Mn1-xMox)O2+x和Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极表面进行XRD分析,如图6所示,可见所获得的涂层都是以γ-MnO2为主相(JCPDS No.30-0820)涂层,这与电沉积二氧化锰的一般晶体学特征保持一致。当涂层中引入纳米级碳化钨(JCPDS No.20-1316)颗粒进行复合后,受到WC衍射峰的影响,MnO2衍射峰(2θ为37.120、42.401、56.027、75.022和78.921)出现一定程度向右偏移的特征。同时,2θ角为62.027°处也显示出明显属于WC衍射的峰。
实施例2
电极长期的耐用性是通过以1000A·m-2的恒定电流密度在90℃和pH为12的3.5wt%NaCl溶液中持续电解来进行评估。在实际的海水电解中,阳极室和阴极室将被分开以避免氢气和氧气的混合。由于H+和OH-的产生,阳极电解液的pH值迅速降低,阴极电解的pH值则迅速升高。如果允许H+和OH-离子混合,它们会结合产生水分子,中和电解液的酸碱性。因此,实际电解过程中会定期将碱性的阴极电解液引入阳极室,在阳极室电解至pH值为7左右,再将电解液返回阴极电解液罐。因此,使用pH值为12的3.5wt%NaCl溶液来检查电极的耐用性。纯钛(>99.98%)电极用作电解过程中的对电极。析氧效率的测定是通过在300ml3.5wt%NaCl溶液中以1000A·m-2的恒定电流密度电解,直到通过300库仑电荷。释放氧气的含量是通过电解消耗的总电荷与电解过程中形成氯的电荷之间的差值来估算的,通过碘量法(GB 19106-2003)测定电解液中氯和次氯酸盐的生成量。
在实际工况下将本发明的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC和Ti/(Ti+Zr)N/(Mn1- xMox)O2+x电极与公认的电解海水用Ti/IrO2/(Mn1-xMox)O2+x析氧阳极进行对比测试,参考图7,从三种电极的电解析氧效率随时间变化的对比试验中可以看出,电弧喷涂(Ti+Zr)N中间层的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC和Ti/(Ti+Zr)N/(Mn1-xMox)O2+x阳极在电解初始阶段与含有贵金属氧化物中间层的Ti/IrO2/(Mn-Mo)Ox阳极的析氧效率都接近100%。其中,表层复合碳化钨的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC阳极表现出最优异的性能,电解初始阶段析氧效率可达到99.9%,在电解200h后电极性能才开始显著下降,表现为析氧性能的显著降低。而未掺杂WC的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x和Ti/IrO2/(Mn1-xMox)O2+x阳极在电解较短时间100h内析氧性能持续退化,其中Ti/(Ti+Zr)N/(Mn1-xMox)O2+x阳极在100h析氧性能仅为15.9%,可见采用本发明方法制备的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC电极在实际工况中应用效果很好,通过电弧喷涂制备的中间层可在短期内达到与贵金属氧化物中间层同样的效果。
以上对本发明实施所提供的一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法进行了详细介绍,文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;而对于本领域的一般技术人员,依据本发明的思想,在具体实范围施方式及应用上均会有改变之处,故本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,首先在预处理好的钛基材表面利用电弧热喷涂制备出(Ti+Zr)N中间层,而后在(Ti+Zr)N中间层上表面利用阳极复合电沉积制备WC复合的锰钼氧化物活性表层,最终得到Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC形稳涂层阳极,其中x为摩尔数,其值取0.1~0.2。
2.根据权利要求1所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述钛基材的预处理是碱洗除油、草酸刻蚀和喷砂处理,使得表面形成凹凸不平的麻面层,呈灰色,失去金属光泽,获得无油污和氧化皮的洁净表面。
3.根据权利要求1所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述电弧热喷涂采用两丝同送方式,所选取的喷涂丝材,一根为纯锆丝,另一根为纯钛丝,在大气环境中喷涂丝材穿过喷涂喷嘴中心,设定喷涂功率30-40kW,电弧电压5-35V,喷涂距离100-250mm,压缩空气压力0.3-1.0MPa,喷涂过程中借助高温高速焰流,通过喷涂丝材与空气中氮气、氧气反应形成(Ti+Zr)N中间层。
4.根据权利要求3所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,在制备中间层前首先对预处理后的钛基材进行电弧喷涂预热,温度控制为70-150℃。
5.根据权利要求1或3或4所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述(Ti+Zr)N中间层厚度为30-200μm。
6.根据权利要求1所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述复合电沉积制备WC复合的锰钼氧化物活性表层,是是以Ti/(Ti+Zr)N为阳极,两块等面积的不锈钢板为阴极,置于含MnSO4、Na2MoO4、纳米级WC微粒及H2SO4的混合溶液中进行电沉积制备。
7.根据权利要求1所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述混合溶液中MnSO4浓度为0.2-0.3mol/L,Na2MoO4浓度为0.02-0.04mol/L,纳米级WC颗粒添加量为5-30g/L,用H2SO4调节溶液pH至0.5,电沉积温度为70-90℃,电沉积时间为20-60min,电流密度为400-800A·m-2
8.根据权利要求6或7所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,完成沉积后,将所制备的阳极用蒸馏水冲洗干净,热风吹干,得到表面致密、均匀的Ti/(Ti+Zr)N/(Mn1-xMox)O2+x-WC形稳阳极材料。
9.根据权利要求6所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,在将阳极和阴极置于混合溶液之前,将阳极除油洁净,并经10-20%HNO3溶液中浸蚀2-3min。
10.根据权利要求6所述电解海水制氢用低成本钛基二氧化锰复合阳极制备方法,其特征在于,所述电沉积制备过程中保持对混合溶液进行机械搅拌,确保WC颗粒悬浮,搅拌速率控制在200-600rpm。
CN202111160588.3A 2021-09-30 2021-09-30 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法 Pending CN113881960A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111160588.3A CN113881960A (zh) 2021-09-30 2021-09-30 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111160588.3A CN113881960A (zh) 2021-09-30 2021-09-30 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法

Publications (1)

Publication Number Publication Date
CN113881960A true CN113881960A (zh) 2022-01-04

Family

ID=79004833

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111160588.3A Pending CN113881960A (zh) 2021-09-30 2021-09-30 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法

Country Status (1)

Country Link
CN (1) CN113881960A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110122A (zh) * 2022-04-11 2022-09-27 贵州大学 一种湿法冶金用柱状Pb基赝形稳阳极及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100686A (ja) * 1997-09-24 1999-04-13 Permelec Electrode Ltd 防食用電極及びその使用方法
CN101225526A (zh) * 2007-10-29 2008-07-23 北京科技大学 纳米晶二氧化锰涂层阳极及其制备方法
CN101736369A (zh) * 2009-12-29 2010-06-16 昆明理工大学 锌电积用新型铝基复合二氧化铅-二氧化锰阳极的制备方法
CN104962948A (zh) * 2015-05-29 2015-10-07 华北水利水电大学 一种钛基TiNx/IrO2-Ta2O5纳米涂层阳极
CN108505083A (zh) * 2018-04-28 2018-09-07 西安建筑科技大学 一种添加改性二氧化锰中间层制备钛基β-PbO2阳极的方法
CN109778100A (zh) * 2019-04-01 2019-05-21 西安建筑科技大学 一种延寿节能形稳PbO2阳极中间层的电弧热喷涂制备方法
US20200194770A1 (en) * 2018-12-14 2020-06-18 Guangxi University Titanium-based active electrodes with high stability coating layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100686A (ja) * 1997-09-24 1999-04-13 Permelec Electrode Ltd 防食用電極及びその使用方法
CN101225526A (zh) * 2007-10-29 2008-07-23 北京科技大学 纳米晶二氧化锰涂层阳极及其制备方法
CN101736369A (zh) * 2009-12-29 2010-06-16 昆明理工大学 锌电积用新型铝基复合二氧化铅-二氧化锰阳极的制备方法
CN104962948A (zh) * 2015-05-29 2015-10-07 华北水利水电大学 一种钛基TiNx/IrO2-Ta2O5纳米涂层阳极
CN108505083A (zh) * 2018-04-28 2018-09-07 西安建筑科技大学 一种添加改性二氧化锰中间层制备钛基β-PbO2阳极的方法
US20200194770A1 (en) * 2018-12-14 2020-06-18 Guangxi University Titanium-based active electrodes with high stability coating layer
CN109778100A (zh) * 2019-04-01 2019-05-21 西安建筑科技大学 一种延寿节能形稳PbO2阳极中间层的电弧热喷涂制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGBIN TANG ET AL.: "Enhancing the stability and electrocatalytic activity of Ti-based PbO 2 anodes by introduction of an arc-sprayed TiN interlayer", 《ELECTROCHIMICA ACTA》, vol. 399, 14 October 2021 (2021-10-14), pages 1 - 15 *
K. FUJIMURA ET AL.: "The durability of manganese–molybdenum oxide anodes for oxygen evolution in seawater electrolysis", 《ELECTROCHIMICA ACTA》, vol. 45, 31 December 2000 (2000-12-31), pages 2297 - 2303, XP004202245, DOI: 10.1016/S0013-4686(00)00316-9 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115110122A (zh) * 2022-04-11 2022-09-27 贵州大学 一种湿法冶金用柱状Pb基赝形稳阳极及其制备方法
CN115110122B (zh) * 2022-04-11 2024-01-26 贵州大学 一种湿法冶金用柱状Pb基赝形稳阳极及其制备方法

Similar Documents

Publication Publication Date Title
AU2005325733B2 (en) High efficiency hypochlorite anode coating
US9677183B2 (en) Electrocatalyst, electrode coating and electrode for the preparation of chlorine
AU657248B2 (en) Electrodes of improved service life
JP4346070B2 (ja) 水素発生用電極
US4618404A (en) Electrode for electrochemical processes, method for preparing the same and use thereof in electrolysis cells
JP5518900B2 (ja) 水又はアルカリ金属化合物の水溶液の電気分解用の陰極、アルカリ金属塩化物の電気分解用電解槽、及び水又はアルカリ金属化合物の水溶液の電気分解用の陰極の製造方法
JP4673628B2 (ja) 水素発生用陰極
CN110820030B (zh) 一种基于原位热反应制备导电陶瓷膜中间层的钛基PbO2阳极制备方法
TWI432607B (zh) Hydrogen generation cathode and its manufacturing method
CN109778100B (zh) 一种延寿节能形稳PbO2阳极中间层的电弧热喷涂制备方法
CA2501229A1 (en) Coatings for the inhibition of undesirable oxidation in an electrochemical cell
CN101343749A (zh) 一种金属氧化物涂层电极及其制备方法
EP0014596B1 (en) Method for producing electrodes having mixed metal oxide catalyst coatings
KR20200005828A (ko) 다공성 Ni-Al-Mo 알칼리 수전해용 음극 및 그 제조방법과 Ni-Al-Mo 용사코팅재
CA1246008A (en) Electrode with nickel substrate and coating of nickel and platinum group metal compounds
CN113881960A (zh) 一种电解海水制氢用低成本钛基二氧化锰复合阳极制备方法
CN112899715B (zh) 一种氧化钴纳米薄片析氯电极及其制备方法与应用
JPH02247392A (ja) 寸法安定性をもった陽極
US20220018032A1 (en) Electrode For Electrolysis
JP4284387B2 (ja) 電解用電極及びその製造方法
KR102360423B1 (ko) 다공성 Ni-Fe-Al 촉매층이 형성된 알칼리 수전해용 양극 및 그 제조방법
JP3621148B2 (ja) 電解用電極及びその製造方法
KR102358447B1 (ko) 전기분해 양극용 코팅액 조성물
CN110983398A (zh) 在金属电极表面熔盐电沉积三氧化二钒包覆层的方法及应用
Ghorbanzadeh et al. Water oxidation electrocatalyst: A new application area for Ruthner powder waste material

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination