CN109433251A - 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用 - Google Patents

一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用 Download PDF

Info

Publication number
CN109433251A
CN109433251A CN201811313653.XA CN201811313653A CN109433251A CN 109433251 A CN109433251 A CN 109433251A CN 201811313653 A CN201811313653 A CN 201811313653A CN 109433251 A CN109433251 A CN 109433251A
Authority
CN
China
Prior art keywords
catalyst
alkali metal
transition metal
supported catalyst
component supported
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811313653.XA
Other languages
English (en)
Other versions
CN109433251B (zh
Inventor
刘越
黄文佐
吴忠标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Tianlan Environmental Protection Technology Co Ltd
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201811313653.XA priority Critical patent/CN109433251B/zh
Publication of CN109433251A publication Critical patent/CN109433251A/zh
Application granted granted Critical
Publication of CN109433251B publication Critical patent/CN109433251B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/48Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing arsenic, antimony, bismuth, vanadium, niobium tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • F23G7/07Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases in which combustion takes place in the presence of catalytic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G2209/00Specific waste
    • F23G2209/14Gaseous waste or fumes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用,双组分负载型催化剂以氢型分子筛HZSM‑5作为载体、负载过渡金属为活性组分、碱金属为助剂;所述活性组分和助剂的总负载量为催化剂重量的0.1~10%。将含有烯烃的废气通过所述双组分负载型催化剂,在100‑300℃进行催化燃烧。本发明的制备方法简单易行,不会对人体健康和生态环境造成危害。本发明制备的催化剂能提高烯烃催化燃烧工艺的矿化率,降低积碳对催化剂过程的影响,延长催化剂的使用寿命。

Description

一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备 和应用
技术领域
本发明涉及环境催化领域,具体涉及一种用于烯烃催化燃烧工艺的碱金属和过渡金属双组分负载型催化剂及其应用。
背景技术
伴随着社会经济的高速发展,我国工业化、城镇化进程加快,资源能源消耗大量增加,大气污染成为不容忽视的严峻问题。近年来,随着一系列相关政策和法规的实施,全国环境空气质量持续改善,但细颗粒物(PM2.5)浓度仍处于高位,京津冀及周边地区远超过国家环境空气质量二级标准;同时,重点区域臭氧浓度呈现上升趋势,尤其是在夏秋季已成为部分城市的首要污染物。烯烃作为一类典型的挥发性有机物(Volatile OrganicCompounds,VOCs),是形成臭氧和细颗粒物污染的重要前体物。
烯烃在化工产业中用途广泛,因此工业有机废气排放是环境中烯烃的重要来源。有组织排放的工业有机废气一般可经过收集和处理有效减少尾气中烯烃的含量,高效末端处理技术的开发和应用是目前研究者的工作重点。目前常用的VOCs控制技术主要有热力燃烧法、催化燃烧法、吸附法、吸收法、冷凝法等,其中,催化燃烧技术凭借处理效率高、能耗低、热力可回收等特点成为最具应用前景的技术之一。早在上个世纪,科研人员就对贵金属和复合氧化物为基础的催化剂进行了深入的研究。为了改善催化性能,降低成本,替代材料的探索也已经兴起,其中广受关注的主要是过渡金属和沸石分子筛。
在烯烃的催化燃烧过程中,由于碳碳双键的存在,其在较低温度下极易发生聚合、烷基化和芳构化等反应,这些反应产生的大分子副产物积累在催化剂表面,覆盖了催化剂的活性位点或者堵塞催化剂孔道,使催化剂很快失活。同时,过渡金属类催化剂活性相比贵金属类催化剂较低,其在较低温度下深度氧化能力不足,导致反应矿化率较低。因此,开发一种具有优异的催化稳定性和CO2选择性的催化剂对于烯烃的催化燃烧工艺具有重要意义。
发明内容
为克服现有催化材料的不足,本发明提供一种用于烯烃催化燃烧工艺的碱金属和过渡金属双组分负载型催化剂,其具有优异的催化稳定性和CO2选择性。
一种用于烯烃催化燃烧工艺的双组分负载型催化剂,以氢型分子筛HZSM-5作为载体、负载过渡金属为活性组分、碱金属为助剂;所述活性组分和助剂的总负载量为催化剂重量的0.1~10%。
HZSM-5负载过渡金属后形成双功能催化剂,分子筛的酸性中心和过渡金属的活性中心协同作用使得催化剂具有较好的活性表现。碱金属的加入可以改变过渡金属在载体表面的存在状态,增强其分散性。同时作为一种电子助剂,碱金属可以提高催化剂的携氧能力和氧流动性能,增强其深度氧化能力,提高催化反应的矿化率。另外,碱金属还可以调节催化剂的表面酸性,减缓积碳的产生速率,提高催化剂的稳定性。这种双组分负载型催化剂可以兼顾催化反应的活性、稳定性和矿化率,因而在烯烃催化燃烧工艺中表现出良好的性能。
优选地,所述过渡金属为Cu、Mn、Ce中的一种。
优选地,所述碱金属为Na、K、Cs中的一种。
优选地,所述碱金属与过渡金属的质量比为1:1~20。
进一步优选地,所述碱金属和过渡金属占催化剂的质量百分比为0.1~5%,所述碱金属与过渡金属的质量比为1:1~20。
跟进一步优选地,所述碱金属和过渡金属占催化剂的质量百分比为2~4%,所述碱金属与过渡金属的质量比为1:1~4。
最优选地,所述碱金属和过渡金属占催化剂的质量百分比为3%,所述碱金属与过渡金属的质量比为1:2。
在该催化体系中,金属负载量过低时催化活性不足,负载量过高时会造成催化剂孔道堵塞、比表面积下降。同时,碱金属与过渡金属质量比过低时,催化剂酸性过强而氧化能力不足,易发生积碳失活;而质量比过高时,催化剂酸性过弱,对反应物吸附能力不足,造成催化活性下降。在优选范围内,催化剂可以在保留一定酸性的同时,降低碳质中间产物的产生和吸附,增强催化剂的氧化还原能力,从而降低积碳速率,增强催化反应稳定性。
优选地,所述碱金属和过渡金属在催化剂中以离子或氧化物形式存在。
优选地,所述HZSM-5的硅铝比为20~50、比表面积为300~500m2/g。
本发明还提供一种如所述双组分负载型催化剂的制备方法,包括如下步骤:
将碱金属和过渡金属的前驱体溶于去离子水中,然后将HZSM-5分子筛浸渍于碱金属和过渡金属的混合溶液中,连续搅拌3~5小时后,在75~85℃干燥8~12小时,然后在空气环境中煅烧2~5小时即得;
碱金属的前驱体、过渡金属的前驱体以及HZSM-5分子筛的配比以成品催化剂中碱金属和过渡金属的总负载量为0.1~10%计。
煅烧温度优选为400℃;碱金属和过渡金属前驱体是指碱金属和过渡金属的无机盐或配合物。
优选地,碱金属的前驱体与过渡金属的前驱体的配比以成品催化剂中碱金属与过渡金属的质量比为1:1~20计。
本发明还提供一种催化剂在烯烃催化燃烧工艺中的应用,即一种烯烃催化燃烧方法,包括如下步骤:
将含有烯烃的废气通过所述双组分负载型催化剂,在100-300℃进行催化燃烧。
优选地,废气的空速大于0h-1且小于等于30000h-1,烯烃的浓度大于0ppm且小于等于3000ppm,氧气的浓度大于5vol.%且小于等于20vol.%。
进一步优选地,催化燃烧温度在250~300℃,废气的空速大于0h-1且小于等于20000h-1,烯烃的浓度大于0ppm且小于等于1000ppm,氧气的浓度为10vol.%。
与现有催化剂相比,本发明的优点为:
(1)本发明制备方法简单易行,不会对人体健康和生态环境造成危害。
(2)本发明制备的催化剂中的碱金属作为电子供体,可以增强催化剂的携氧能力和氧移动性,从而增强催化剂的氧化还原能力,提高烯烃催化燃烧工艺的矿化率。
(3)本发明制备的催化剂中的碱金属可以调节催化剂表面的酸性,减弱催化剂对于反应副产物的吸附作用,减缓催化剂的积碳行为,增强催化反应的稳定性,延长催化剂寿命。
具体实施方式
以下结合实施例,进一步对本发明进行详细说明:
实施例1
取一定量三水硝酸铜溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于三水硝酸铜的水溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以铜为活性组分的催化剂,催化剂中铜的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例2
取一定量硝酸钠和三水硝酸铜溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于硝酸钠和三水硝酸铜的混合溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以铜为活性组分,以钠为助剂的催化剂,催化剂中钠的负载量为0.1wt.%,铜的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例3
其余与实施例2相同,除催化剂中钠的负载量为0.5wt.%。
实施例4
其余与实施例2相同,除催化剂中钠的负载量为1wt.%。
实施例5
其余与实施例2相同,除催化剂中钠的负载量为2wt.%。
实施例6
取一定量乙酸钾和三水硝酸铜溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于乙酸钾和三水硝酸铜的混合溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以铜为活性组分,以钾为助剂的催化剂,催化剂中钾的负载量为1wt.%,铜的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例7
取一定量乙酸铯和三水硝酸铜溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于乙酸铯和三水硝酸铜的混合溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以铜为活性组分,以铯为助剂的催化剂,催化剂中铯的负载量为1wt.%,铜的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例8
取一定量硝酸钠和乙酸锰溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于硝酸钠和乙酸锰的混合溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以锰为活性组分,以钠为助剂的催化剂,催化剂中钠的负载量为1wt.%,锰的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例9
取一定量硝酸钠和硝酸铈溶于40mL去离子水中,将硅铝比为30的HZSM-5分子筛浸渍于硝酸钠和硝酸铈的混合溶液中,连续搅拌4小时后,在80℃干燥12小时,然后在空气环境中400℃煅烧4小时,得到以铈为活性组分,以钠为助剂的催化剂,催化剂中钠的负载量为1wt.%,铈的负载量为2wt.%。将催化剂筛分至40-60目备用。
实施例10
催化剂的催化燃烧性能测试:取0.4mL上述催化剂放入石英反应管中,以100mL/min的速率通入模拟烟气,其成分包括1000ppm丙烯或正戊烯、10vol.%氧气和平衡气氮气。催化燃烧温度为280℃,空速为15000h-1,不同样品的催化活性、CO2选择性、稳定时长见表1。
表1不同催化剂在280℃的催化活性、CO2选择性和稳定时长
实验编号 丙烯转化率 CO<sub>2</sub>选择性 稳定时长
实施例1 100% 40% 50min
实施例2 100% 46% 80min
实施例3 100% 51% 120min
实施例4 100% 60% 大于1000min
实施例5 35% 84% 大于1000min
实施例6 100% 75% 大于1000min
实施例7 100% 66% 大于1000min
实施例8 85% 62% 大于1000min
实施例9 77% 71% 大于1000min
实施例9* 83% 65% 大于1000min
*测试对象为正戊烯,其他均为丙烯。
对比实施例1、2、3、4、5可知,碱金属钠的添加可以显著提高丙烯催化燃烧过程的矿化率,延长催化剂维持初始活性的时间,提升催化剂的稳定性。其中当钠与铜的质量比为1:2时,催化反应的综合表现最好;若铜与钠的质量比提升到2:2,则催化剂酸性过低,对反应物的吸附能力较弱,活性大幅下降。对比实施例4、6、7可知,碱金属对矿化率的提升作用为钾>铯>钠。对比实施例4、8、9可知,过渡金属的氧化性能为铜>锰>铈,但由于铈具有较强的储放氧能力,其对矿化率的提升效果有所增强。实施例9*也显示了该催化剂可以对其他烯烃有同样作用。以上结果证明了碱金属和过渡金属双组分负载型催化剂在催化降解烯烃过程中的优势所在。
以上所述仅为本发明专利的具体实施案例,但本发明专利的技术特征并不局限于此,任何相关领域的技术人员在本发明的领域内,所作的变化或修饰皆涵盖在本发明的专利范围之中。

Claims (10)

1.一种用于烯烃催化燃烧工艺的双组分负载型催化剂,其特征在于,以氢型分子筛HZSM-5作为载体、负载过渡金属为活性组分、碱金属为助剂;所述活性组分和助剂的总负载量为催化剂重量的0.1~10%。
2.根据权利要求1所述双组分负载型催化剂,其特征在于,所述过渡金属为Cu、Mn、Ce中的一种。
3.根据权利要求1所述双组分负载型催化剂,其特征在于,所述碱金属为Na、K、Cs中的一种。
4.根据权利要求1所述双组分负载型催化剂,其特征在于,所述碱金属与过渡金属的质量比为1:1~20。
5.根据权利要求1所述双组分负载型催化剂,其特征在于,所述碱金属和过渡金属在催化剂中以离子或氧化物形式存在。
6.根据权利要求1所述双组分负载型催化剂,其特征在于,所述HZSM-5的硅铝比为20~50、比表面积为300~500m2/g。
7.一种如权利要求1所述双组分负载型催化剂的制备方法,其特征在于,包括如下步骤:
将碱金属和过渡金属的前驱体溶于去离子水中,然后将HZSM-5分子筛浸渍于碱金属和过渡金属的混合溶液中,连续搅拌3~5小时后,在75~85℃干燥8~12小时,然后在空气环境中煅烧2~5小时即得;
碱金属的前驱体、过渡金属的前驱体以及HZSM-5分子筛的配比以成品催化剂中碱金属和过渡金属的总负载量为0.1~10%计。
8.根据权利要求7所述制备方法,其特征在于,碱金属的前驱体与过渡金属的前驱体的配比以成品催化剂中碱金属与过渡金属的质量比为1:1~20计。
9.一种烯烃催化燃烧方法,其特征在于,包括如下步骤:
将含有烯烃的废气通过如权利要求1~6任一项权利要求所述双组分负载型催化剂,在100-300℃进行催化燃烧。
10.根据权利要求9所述烯烃催化燃烧方法,其特征在于,废气的空速大于0h-1且小于等于30000h-1,烯烃的浓度大于0ppm且小于等于3000ppm,氧气的浓度大于5vol.%且小于等于20vol.%。
CN201811313653.XA 2018-11-06 2018-11-06 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用 Active CN109433251B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811313653.XA CN109433251B (zh) 2018-11-06 2018-11-06 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811313653.XA CN109433251B (zh) 2018-11-06 2018-11-06 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用

Publications (2)

Publication Number Publication Date
CN109433251A true CN109433251A (zh) 2019-03-08
CN109433251B CN109433251B (zh) 2020-07-07

Family

ID=65550881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811313653.XA Active CN109433251B (zh) 2018-11-06 2018-11-06 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用

Country Status (1)

Country Link
CN (1) CN109433251B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423735A (zh) * 2020-04-14 2020-07-17 四川路友交通物资发展有限公司 一种融雪沥青及其制备方法
CN114763611A (zh) * 2021-01-15 2022-07-19 通用电气公司 用于热烃流体的涂层制品和防止燃料热降解沉积物的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664690A (zh) * 2008-09-04 2010-03-10 北京石油化工学院 一种催化剂及其制备方法和用途
CN103212288A (zh) * 2013-04-01 2013-07-24 北京化工大学 一种用于脱除丙烯腈废气的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101664690A (zh) * 2008-09-04 2010-03-10 北京石油化工学院 一种催化剂及其制备方法和用途
CN103212288A (zh) * 2013-04-01 2013-07-24 北京化工大学 一种用于脱除丙烯腈废气的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张岳等: "掺碱金属对氧化锰催化剂活性影响的研究", 《环境化学》 *
田鹏辉等: "CuO-CeO2 /HZSM-5 催化剂催化燃烧甲苯性能及动力学研究", 《山东化工》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111423735A (zh) * 2020-04-14 2020-07-17 四川路友交通物资发展有限公司 一种融雪沥青及其制备方法
CN111423735B (zh) * 2020-04-14 2021-12-10 四川路友交通物资发展有限公司 一种融雪沥青及其制备方法
CN114763611A (zh) * 2021-01-15 2022-07-19 通用电气公司 用于热烃流体的涂层制品和防止燃料热降解沉积物的方法

Also Published As

Publication number Publication date
CN109433251B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
CN109126773B (zh) 一种垃圾焚烧烟气净化用催化剂及其制备方法
CN109482222B (zh) 一种脱硝催化剂及其制备方法
WO2015149499A1 (zh) 一种低温高效脱硝催化剂及其制备方法
CN105327698B (zh) 以含钛高炉渣为载体的新型scr烟气脱硝催化剂的制备方法
CN109603820A (zh) 一种氧气条件下常温降解甲醛的单原子催化剂制备方法
CN102824909B (zh) 一种低温催化燃烧挥发性有机物催化剂及其制备方法
CN109569587A (zh) 一种锰基低温烟气脱硝催化剂及其制备方法
CN111229208B (zh) 一种荷叶源生物炭负载金属氧化物的低温scr烟气脱硝催化剂及其制备方法与应用
CN104841472A (zh) 一种负载型室温空气净化非光催化剂及其制备方法
CN101972603A (zh) 一种脱除废气中氮氧化物的方法
CN105381801A (zh) 一种直接催化分解n2o催化剂
CN104923249B (zh) 一种免煅烧型MnO2‑Fe2O3‑Ce2O3‑CeO2/CNTs低温脱硝催化剂
CN108479762A (zh) 一种锰氧化物催化剂及其制备方法和应用
CN111085218A (zh) 一种用于VOCs消除的锰钴复合氧化物催化剂及制备方法和应用
CN101530786B (zh) 挥发性有机化合物废气丝网状催化剂制备
CN114950424B (zh) 一种循环气两段式脱硫催化剂、制备方法及其应用
CN106311245A (zh) 一种用于低温催化氧化的褐煤半焦基脱硝剂的制备方法
CN109433251A (zh) 一种用于烯烃催化燃烧工艺的双组分负载型催化剂及其制备和应用
CN107138168A (zh) 用于高浓度有机氮废水处理的臭氧催化剂
CN104307542A (zh) 一种炭基光催化氧化脱硝催化剂及其制备方法
CN102698765B (zh) 一种丙烯选择还原no的复合脱硝催化剂及其制备方法
CN103933970A (zh) 一种碳纳米管负载金属氧化物的低温scr烟气脱硝催化剂及其制备方法
Xu et al. Improvement of low-temperature NH3-SCR catalytic activity over Mn-Ce oxide catalysts supported on sewage sludge char activated with KOH and H3PO4
CN105903478B (zh) 一种较宽使用温度的中低温scr催化剂及其制备方法
CN102172523B (zh) 一种中低温选择性催化还原脱硝催化剂制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231025

Address after: Hangzhou City, Zhejiang province Xiaoshan District 311202 North Street Xingyi Village

Patentee after: ZHEJIANG TIANLAN ENVIRONMENTAL PROTECTION TECHNOLOGY Co.,Ltd.

Address before: 310013 Yuhang Tang Road, Xihu District, Hangzhou, Zhejiang 866

Patentee before: ZHEJIANG University