CN109378361B - 一种实现低电压下AlGaN探测器雪崩倍增的方法 - Google Patents

一种实现低电压下AlGaN探测器雪崩倍增的方法 Download PDF

Info

Publication number
CN109378361B
CN109378361B CN201811151586.6A CN201811151586A CN109378361B CN 109378361 B CN109378361 B CN 109378361B CN 201811151586 A CN201811151586 A CN 201811151586A CN 109378361 B CN109378361 B CN 109378361B
Authority
CN
China
Prior art keywords
algan layer
algan
temperature
avalanche multiplication
detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811151586.6A
Other languages
English (en)
Other versions
CN109378361A (zh
Inventor
孙晓娟
蒋科
黎大兵
贾玉萍
石芝铭
刘贺男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN201811151586.6A priority Critical patent/CN109378361B/zh
Publication of CN109378361A publication Critical patent/CN109378361A/zh
Application granted granted Critical
Publication of CN109378361B publication Critical patent/CN109378361B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种实现低电压下AlGaN探测器雪崩倍增的方法属于半导体技术领域,解决了AlGaN探测器在高电场下性能崩塌,难以实现雪崩探测的问题。该方法包括如下步骤:选择蓝宝石、硅、碳化硅等用于氮化物外延的衬底材料;在步骤一所述的衬底材料上制作AlN模板;在步骤二所述的AlN模板制作Al组分从1逐渐变为0.4的p型AlGaN层,温度从1300℃梯度减小到1200℃变化;在步骤三所述的p型AlGaN层上制作Al组分为0.4的本征AlGaN层结构,温度保持在1200℃;在步骤四所述的本征AlGaN层结构上制作Al组分从0.4逐渐变为1的n型AlGaN层,温度保持在1200℃,三甲基镓梯度减小;在p型AlGaN层和n型AlGaN层分别制备电极,并且在电极上加负偏压,实现低电压下雪崩倍增。本发明具有工艺简单,效果显著,应用前景广阔等优点。

Description

一种实现低电压下AlGaN探测器雪崩倍增的方法
技术领域
本发明属于半导体技术领域,具体涉及一种实现低电压下AlGaN探测器雪崩倍增的方法。
背景技术
波长处于200nm至280nm的太阳辐射极少能够到达地球表面,因而在军事及民用领域,单光子日盲紫外探测都有着非常重要的应用。AlGaN材料的禁带宽度在3.4eV至6.2eV连续可调,对应的波长在200nm至365nm,是日盲紫外探测器的重要基础材料之一。目前,多种基于AlGaN材料的紫外探测器被研究,其结构类型包括光电导型、肖特基型、MSM型、p-n结型以及雪崩倍增探测器(APD)型。对于光导型探测器,虽然具有增益的特性,但是其结构本身引起的响应速度慢的问题限制其应用;对于肖特基型、MSM型和p-n结型,具有快的响应速率,但是不具备增益的特性,难以实现对微弱信号的探测;APD基于材料在高场下碰撞电离产生大量电子空穴对,因而它具有极高的增益,又具有快的响应速率,被视为是能够实现对微弱信号进行探测,甚至实现单光子探测的一种探测器结构。但是APD对AlGaN材料质量及P型和N型掺杂效率要求很高,现有的材料生长方法难以满足其要求,因此,限制了AlGaN-APD型探测器的发展和应用。对于AlGaN材料而言,p型、n型掺杂激活能都随着Al组分含量的增加(0~1)而快速增加,当Al组分为1时,P-AlN材料的激活能已经高达600meV以上,掺Si的n型材料的激活能也高达200meV以上,因此载流子浓度非常低。为实现探测器的雪崩倍增,需要更大的工作电压。但是,由于AlGaN材料质量的限制(高密度缺陷),AlGaN雪崩探测器往往未实现雪崩倍增而器件漏电击穿,制约了AlGaN雪崩探测器的应用。
发明内容
为了解决现有技术存在的问题,本发明创新提出一种实现低电压下AlGaN探测器雪崩倍增的方法,利用Al组分渐变的p型和n型层,代替传统的Al组分不变的p型和n型层的方法,通过极化电荷产生强电场。同时,通过极化电荷提高空穴和电子浓度,实现AlGaN雪崩探测器在低电压下实现雪崩倍增。
本发明解决技术问题所采用的技术方案如下:
一种实现低电压下AlGaN探测器雪崩倍增的方法,该方法包括如下步骤:
步骤一:选择用于氮化物生长的材料作为衬底;
步骤二:在步骤一所述的衬底材料上生长AlN模板;
步骤三:在步骤二所述的AlN模板制作Al组分从1逐渐变为0.4的p型AlGaN层,温度从1300℃到1200℃变化;
步骤四;在步骤三所述的p型AlGaN层上制作Al组分为0.4的本征AlGaN层结构,温度保持在1200℃;
步骤五:在步骤四所述的本征AlGaN层结构上制作Al组分从0.4逐渐变为1的n型AlGaN层,温度保持在1200℃;
步骤六:在p型AlGaN层和n型AlGaN层分别制备电极,并且在电极上加负偏压,实现低电压下雪崩倍增。
优选的,所述步骤三中,Al组分从1逐渐变为0.4的过程为梯度降温方式,即从1-0.9、0.9-0.8、0.8-0.7、0.7-0.6、0.6-0.5、0.5-0.4,每个阶段内温度不变,从一个阶段进入下一个阶段温度下降20℃。每个阶段材料的生长等到温度稳定才能开始。
优选的,所述步骤三中,三甲基镓流量线性增加,三甲基铝流量不改变。
优选的,所述步骤五中,Al组分从0.4逐渐变为1的过程温度保持不变,三甲基镓流量线性减小,三甲基铝流量不改变。
优选的,沉积Ni、Au、ITO或Pt作为所述p型AlGaN层的欧姆接触电极材料。
优选的,沉积Ti、Al、Ni或Au作为所述n型AlGaN层的欧姆接触电极材料。
优选的,步骤一所述的衬底材料为蓝宝石、硅、碳化硅和氮化硅。
本发明的有益效果是:本发明是利用Al组分渐变引起的AlGaN的强自发极化和压电极化效应,提高AlGaN雪崩探测器p型层和n型层的载流子浓度。同时,由于极化电荷的存在,在p型和n型层中间的本征AlGaN层存在高的内建电场,实现一种发明AlGaN雪崩探测器,该AlGaN雪崩探测器可以在低电压下工作。解决目前AlGaN雪崩探测器p型和n型层载流子浓度低,并且低电压下无法工作的问题。本发明具有工艺简单,效果显著,应用前景广阔等优点。
附图说明
图1本发明利用极化效应实现低电压下AlGaN探测器雪崩倍增探测器材料外延层结构示意图
图2本发明利用极化效应实现低电压下AlGaN探测器雪崩倍增探测器结构示意图。
图中:1、蓝宝石衬底,2、AlN模板,3、p型AlxGa1-xN层,4、非故意掺杂Al0.4Ga0.6N层,5、n型AlxGa1-xN层,6、p型AlGaN欧姆接触电极,7、n型AlGaN欧姆接触电极,8、SiO2钝化层。
具体实施方式
下面结合附图和实施例对本发明进一步说明,但本发明不限于这些实施例。结合附图说明本实施方式,本发明适应于AlGaN探测器、发光二极管等光电子器件。图1为本发明提供的一种利用极化效应实现低电压下AlGaN探测器雪崩倍增探测器材料外延层结构示意图。
一种实现低电压下AlGaN探测器雪崩倍增的方法,该方法包括如下步骤:
步骤一:利用蓝宝石Sapphire、碳化硅SiC、硅Si、氮化铝AlN等常规用于氮化物生长的衬底材料,本实施例中,选择蓝宝石衬底1作为衬底材料。
步骤二:利用MOCVD或者HVPE的方法,在蓝宝石衬底1上,通过“两步法”,即先在蓝宝石衬底1上生长低温成核层再生长高温外延层的方法生长AlN模板2,从而获得高质量AlN/sapphire模板。AlN模板2最终应为Al极性面,其中蓝宝石衬底1和AlN模板2对AlGaN材料提供压应力,有利于位错抑制,可以提高外延层质量。
步骤三:在AlN模板2上生长Mg掺杂的p型AlxGa1-xN层3,厚度为100nm。Mg掺杂的AlxGa1-xN层3最终应该为金属面极性(Al、Ga)。Mg掺杂渐变AlxGa1-xN层3,Mg均匀掺杂,Al组分X从1逐渐减小至0.4。金属面外延Al组分逐渐减少的AlxGa1-xN层3将在渐变区域产生极化负电荷,从而诱导产生空穴载流子,提高该区域的空穴浓度。由于Al组分不同,AlxGa1-xN层3生长速率不同,可以分6个阶段进行,即X为1-0.9、0.9-0.8、0.8-0.7、0.7-0.6、0.6-0.5、0.5-0.4,从1300℃开始生长,1200℃结束,每个阶段内温度不变,从一个阶段进入下一个阶段温度下降20℃。每个阶段材料的生长必须等到温度稳定才能开始。通过线性增加TMGa流量来控制Al组分X线性减小,TMAl流量不改变。
步骤四:生长非故意掺杂Al0.4Ga0.6N层4,在1200℃生长,厚度为100nm。
步骤五:在非故意掺杂Al0.4Ga0.6N层4生长Si掺杂渐变n型AlxGa1-xN层5,厚度为100nm。Si均匀掺杂,Al组分X从0.4逐渐增加至1,Al组分逐渐增加的AlxGa1-xN层将在渐变区域产生极化正电荷,从而诱导产生电子载流子,提高该区域的电子浓度。生长温度保持1200℃不变,通过线性减少TMGa流量来控制Al组分X线性增加,TMAl流量不改变。
由于p型AlxGa1-xN层3具有大量极化负电荷,n型AlxGa1-xN层5有大量极化正电荷,导致非故意掺杂Al0.4Ga0.6N层4内部具有极强的内建电场,数量级达到3MV/cm以上,基本与高Al组分AlGaN材料的雪崩击穿电场同一数量级,可以实现在低电压下雪崩击穿的目的。
附图2为本发明提供的一种利用极化效应实现低电压下AlGaN探测器雪崩倍增探测器结构示意图。一种实现低电压下AlGaN探测器雪崩倍增的方法,除上述步骤一到步骤五,还包括如下步骤:
步骤六:探测器光敏面台面刻蚀:包括探测器外延片清洗,光敏面窗口光刻,台面刻蚀。优选的,台面刻蚀利用感应耦合等离子体(ICP)刻蚀技术,刻蚀气体为Cl2与BCl3。刻蚀深度至p型AlxGa1-xN层3,刻蚀深度由刻蚀时间决定。
步骤七:探测器P电极欧姆接触电极研制:利用光刻技术,在p型AlxGa1-xN层3上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积p型AlGaN欧姆接触电极6,选择如Ni、Au、ITO或Pt等金属材料,利用快速退火技术完成探测器P电极欧姆接触电极制备。
步骤七:探测器N电极欧姆接触电极研制:利用光刻技术,在AlxGa1-xN层5上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积n型AlGaN欧姆接触电极7,选择如Ti、Al、Ni或Au等金属材料,利用快速退火技术完成探测器N电极欧姆接触电极制备。
步骤八:探测器钝化层的研制:利用等离子体增强化学气相沉积(PECVD)技术生长介电钝化膜,优选的,生长SiO2钝化膜8,并再次利用光刻工艺,使钝化膜覆盖探测器的台面。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (7)

1.一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,该方法包括如下步骤:
步骤一:选择用于氮化物生长的材料作为衬底;
步骤二:在步骤一所述的衬底材料上生长AlN模板;
步骤三:在步骤二所述的AlN模板制作Al组分从1逐渐变为0.4的p型AlGaN层,温度从1300℃到1200℃变化;
步骤四;在步骤三所述的p型AlGaN层上制作Al组分为0.4的本征AlGaN层结构,温度保持在1200℃;
步骤五:在步骤四所述的本征AlGaN层结构上制作Al组分从0.4逐渐变为1的n型AlGaN层,温度保持在1200℃;
步骤六:在p型AlGaN层和n型AlGaN层分别制备电极,并且在电极上加负偏压,实现低电压下雪崩倍增。
2.根据权利要求1所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,所述步骤三中,Al组分从1逐渐变为0.4的过程为梯度降温方式,即从1-0.9、0.9-0.8、0.8-0.7、0.7-0.6、0.6-0.5、0.5-0.4六个阶段中,每个阶段内温度不变,从一个阶段进入下一个阶段温度下降20℃;每个阶段材料的生长等到温度稳定才能开始。
3.根据权利要求1或2所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,所述步骤三中,三甲基镓流量线性增加,三甲基铝流量不改变。
4.根据权利要求1所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,所述步骤五中,Al组分从0.4逐渐变为1的过程温度保持不变,三甲基镓流量线性减小,三甲基铝流量不改变。
5.根据权利要求1所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,沉积Ni、Au、ITO或Pt作为所述p型AlGaN层的欧姆接触电极材料。
6.根据权利要求1所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,沉积Ti、Al、Ni或Au作为所述n型AlGaN层的欧姆接触电极材料。
7.根据权利要求1所述的一种实现低电压下AlGaN探测器雪崩倍增的方法,其特征在于,步骤一所述的衬底材料为蓝宝石、硅、碳化硅或氮化硅。
CN201811151586.6A 2018-09-29 2018-09-29 一种实现低电压下AlGaN探测器雪崩倍增的方法 Active CN109378361B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811151586.6A CN109378361B (zh) 2018-09-29 2018-09-29 一种实现低电压下AlGaN探测器雪崩倍增的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811151586.6A CN109378361B (zh) 2018-09-29 2018-09-29 一种实现低电压下AlGaN探测器雪崩倍增的方法

Publications (2)

Publication Number Publication Date
CN109378361A CN109378361A (zh) 2019-02-22
CN109378361B true CN109378361B (zh) 2020-01-31

Family

ID=65402665

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811151586.6A Active CN109378361B (zh) 2018-09-29 2018-09-29 一种实现低电压下AlGaN探测器雪崩倍增的方法

Country Status (1)

Country Link
CN (1) CN109378361B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110993737B (zh) * 2019-12-12 2021-04-13 中国科学院长春光学精密机械与物理研究所 AlGaN基同质集成光电子芯片及其制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511706C (zh) * 2007-09-29 2009-07-08 西安电子科技大学 基于组份渐变GaN MISFET的GaN器件及制备方法
CN101814537B (zh) * 2009-02-19 2012-03-28 中国科学院半导体研究所 氮化镓基雪崩型探测器及其制作方法
US8269223B2 (en) * 2010-05-27 2012-09-18 The United States Of America As Represented By The Secretary Of The Army Polarization enhanced avalanche photodetector and method thereof
CN103824910A (zh) * 2014-03-12 2014-05-28 合肥彩虹蓝光科技有限公司 一种提高ⅲ-ⅴ族化合物半导体led芯片抗静电能力的外延生长方法
CN104009157B (zh) * 2014-06-18 2016-10-12 西安电子科技大学 基于双线性渐变Al组分AlGaN电子发射层GaN耿氏二极管及制作方法
CN105590971B (zh) * 2016-03-18 2017-02-08 南京大学 AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN106783547B (zh) * 2016-12-30 2020-08-21 东莞市中镓半导体科技有限公司 用于在硅衬底上制备高电子迁移率场效应晶体管的方法
CN107978661B (zh) * 2017-11-08 2019-12-24 吉林大学 一种带有极化诱导p型掺杂层的氮极性蓝紫光LED芯片及制备方法
CN108365069B (zh) * 2018-02-06 2020-06-12 华南师范大学 一种高亮度v型极化掺杂深紫外led制备方法

Also Published As

Publication number Publication date
CN109378361A (zh) 2019-02-22

Similar Documents

Publication Publication Date Title
JP4095066B2 (ja) 窒化ガリウムベース半導体の半導体構造
KR100830482B1 (ko) 화합물 반도체 및 그것을 이용한 화합물 반도체 디바이스
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN108400159B (zh) 具有多量子阱高阻缓冲层的hemt外延结构及制备方法
CN109585592B (zh) p-BN/i-AlGaN/n-AlGaN的紫外探测器及制作方法
CN102214705A (zh) AlGaN极化紫外光电探测器及其制作方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
JPH1032347A (ja) 窒素−3族元素化合物半導体発光素子
Ji et al. Pipin separate absorption and multiplication ultraviolet avalanche photodiodes
CN111403505A (zh) 一种双极型可见光探测器及其制备方法
CN109285914A (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN109300980B (zh) 一种高迁移率高空穴浓度P型AlGaN材料及其生长方法
CN109378361B (zh) 一种实现低电压下AlGaN探测器雪崩倍增的方法
CN110690323A (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN106783997B (zh) 一种高迁移率晶体管及其制备方法
CN109301027B (zh) 基于非极性InAlN/GaN异质结构的辐照探测器及其制备方法
CN116682850A (zh) 氮化镓基晶体管
CN110931547A (zh) 一种hemt器件及其制备方法
CN110993737B (zh) AlGaN基同质集成光电子芯片及其制备方法
CN115394833A (zh) 一种基于异质外延衬底的完全垂直型GaN功率二极管的器件结构及其制备方法
CN212209534U (zh) 一种氮化镓外延芯片
JP3184341B2 (ja) 窒素−3族元素化合物半導体発光素子及び製造方法
CN113871473A (zh) 一种控制范德瓦耳斯外延与远程外延生长模式的装置及方法
CN111628061A (zh) 一种氮化镓外延芯片及其制备方法
CN114497185B (zh) 一种碳掺杂绝缘层的制备方法、hemt器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant