CN109289860B - 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用 - Google Patents

工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用 Download PDF

Info

Publication number
CN109289860B
CN109289860B CN201811145517.4A CN201811145517A CN109289860B CN 109289860 B CN109289860 B CN 109289860B CN 201811145517 A CN201811145517 A CN 201811145517A CN 109289860 B CN109289860 B CN 109289860B
Authority
CN
China
Prior art keywords
naphthalene
catalyst
temperature
industrial
tetrahydronaphthalene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811145517.4A
Other languages
English (en)
Other versions
CN109289860A (zh
Inventor
唐明兴
李学宽
杜明仙
周立功
杨英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi Institute of Coal Chemistry of CAS
Original Assignee
Shanxi Institute of Coal Chemistry of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi Institute of Coal Chemistry of CAS filed Critical Shanxi Institute of Coal Chemistry of CAS
Priority to CN201811145517.4A priority Critical patent/CN109289860B/zh
Publication of CN109289860A publication Critical patent/CN109289860A/zh
Application granted granted Critical
Publication of CN109289860B publication Critical patent/CN109289860B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/882Molybdenum and cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/883Molybdenum and nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/005Processes comprising at least two steps in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/148Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound
    • C07C7/163Purification; Separation; Use of additives by treatment giving rise to a chemical modification of at least one compound by hydrogenation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/882Molybdenum and cobalt
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
    • C07C2523/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/85Chromium, molybdenum or tungsten
    • C07C2523/88Molybdenum
    • C07C2523/883Molybdenum and nickel
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2602/00Systems containing two condensed rings
    • C07C2602/02Systems containing two condensed rings the rings having only two atoms in common
    • C07C2602/04One of the condensed rings being a six-membered aromatic ring
    • C07C2602/10One of the condensed rings being a six-membered aromatic ring the other ring being six-membered, e.g. tetraline

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种工业萘加氢精制生产精萘副产四氢萘的催化剂由活性组份氧化物,助剂氧化物和载体组成,其中活性组份金属为2‑8wt%,助剂金属Mo为8‑20wt%,余量为载体。催化剂的酸量为0.1‑1.5mmol NH3/g,比表面积为50‑400m2/g,孔体积为0.2‑1.2cm3/g,其中孔径在5‑50nm的孔占总孔道的50‑80%。本发明具有产品精萘中硫含量小于1ppm,改变工艺参数可灵活副产0.1%‑50%四氢萘的优点。

Description

工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用
技术领域
本发明属于煤化工领域,具体涉及一种利用工业粗萘加氢精制生产精萘同时可控副产四氢萘的催化剂及制备方法和应用。
技术背景
精萘是工业萘进一步提纯制得的含萘98.45%以上、结晶点不低于79.3℃的萘产品。精萘用于制造有机颜料中间体、樟脑丸、皮革和木材保护剂等,其中产能最大的品种是2-萘酚和H酸。
工业萘中的杂质主要是与萘沸点较接近的四氢萘、硫杂茚、二甲酚等。如萘的沸点(218℃)和硫茚的沸点(219.9℃)相差不到2℃,因此为了制造纯度更高的精萘,就要利用萘与这些杂质熔点不同的物理性质进行分离,或者利用化学方法来改变它们的化学组成。当前精萘的生产方法,有结晶法、加氢精制法、酸洗蒸馏法、升华法等。传统的方法是酸洗法,由于产生废酸,造成环境污染,如今被结晶法和加氢精制法取代。结晶法是目前生产精萘普遍采用的方法,如专利CN201510081853.7采用多级结晶对萘进行精制,生产的工业萘的纯度可达99.5%。按其是否使用溶剂分为熔融结晶法和溶剂结晶法。其特点是工艺流程和设备及操作都比较简单,设备投资少,操作费用和能耗都比较低,产品质量可用结晶循环次数加以调节,灵活性较大,生产工艺较成熟,产品质量稳定。但其中的苯并噻吩含量仍较高,会对后续加工利用产生不利影响。加氢精制法利用催化剂将粗萘中的杂原子脱除,其产品质量好且便于连续化生产,所生产的精萘是目前工业上质量最好的。加氢精制法多采用Co-Mo催化剂,也有采用Ni-Mo催化剂的。使萘中的硫茚、苯甲腈、茚、酚等杂质转化成易于除去的物质加以分离。通常在萘加氢净化过程中会副产部分四氢萘,但四氢化萘的量通常低于5wt%(按萘量算)且很难根据市场需求精准调控。四氢化萘是一种具有与萘相似的气味的无色液体,熔点(℃):-35.8,沸点(℃):207.6,不溶于水,易溶于乙醇、乙醚。常用作溶剂、内燃机燃料,也可作为上光剂和涂料中松节油的代用品。虽然四氢萘具有一些特殊的物理化学性质非常适用于某些特定的行业,如用于煤和植物纤维液化的供氢溶剂。
因此,采用加氢精制技术生产精萘并且根据市场需求灵活调节四氢萘的产量,充分利用我国丰富的粗萘资源,大规模连续化生产高品质、高附加值的精萘和四氢萘,有利于增加焦化企业利润,具有重要的现实意义。本发明通过催化剂及反应条件的配合能方便的在0.1%-50%范围内调整四氢萘的产量,经检索未发现有相关报道。
发明内容
本发明的目的在于提供一种通过催化剂及反应条件的配合能方便的在0.1%-50%范围内调整四氢萘产量的利用工业粗萘加氢精制生产精萘同时可控副产四氢萘的催化剂及制备方法和应用。
本发明催化剂组成为:活性组份氧化物,助剂氧化物和载体组成,其中活性组份金属为2-8wt%,助剂金属Mo为8-20wt%,余量为载体。
如上所述的催化剂的酸量为0.1-1.5mmol NH3/g,比表面积为50-400m2/g,孔体积为0.2-1.2cm3/g,其中孔径在5-50nm的孔占总孔道的50-80%。
如上所述的载体为Al2O3、SiO2-Al2O3或Al2O3-TiO2,其中Al2O3含量不低于80wt%。
如上所述的活性组份的金属为Ni或Co。
本发明催化剂的制备方法,包括如下步骤:
(1)将活性组分可溶性前驱物、助剂可溶性前驱物及促进剂配成混合水溶液,混合水溶液总浓度为0.2-3.5mol/L,将混合溶液加热至15-80℃之间;
(2)加入酸或碱,调节步骤(1)所得混合溶液,使其pH在8.0-13.0之间;
(3)将载体置于步骤(2)所得溶液中,浸渍2-24h,浸渍过程中不断搅拌;
(4)将步骤(3)所得样品干燥,干燥时从室温以10-20℃/min的升温速率升高到100-150℃,在此温度下干燥6-24h,于400-600℃下焙烧3-12h,得到催化剂。
如上所述促进剂为氨水、乙二胺、蔗糖、可溶性淀粉或柠檬酸,促进剂在混合水溶液中的浓度为0.06-0.25g/ml。
本发明催化剂的应用,包括如下步骤:
(一)催化剂在使用前需要经过硫化活化,硫化条件如下:
(a)催化剂在氢气下,催化剂以10-20℃/min的升温速率升温到100-200℃,开始进硫化油,硫化油的体积空速为1.0-2.0h-1,氢油体积比为200-500,在此温度下硫化1-6h;
(b)以10-20℃/min的升温速率升温到201-300℃,在此温度下硫化1-6h;
(c)以10-20℃/min的升温速率升温到301-400℃,在此温度下硫化1-6h,活化结束,降温到反应温度;
如上所述的硫化油中硫含量为1000-5000ppm,溶剂为饱和烷烃。
(二)催化剂的应用
(1)先采用过滤,或活性炭、氧化铝或白土的吸附方法,对工业粗萘进行原料预处理,经处理后工业粗萘中的固体颗粒物质量百分含量小于0.5wt%,胶质含量小于100mg/100g;
(2)加氢反应,加氢条件为:温度100-350℃,压力1-10MPa,萘的质量空速为0.2-4.0h-1,H2/萘体积比为50-1000。
加氢精制的目的是脱除剩余杂质及副产四氢萘,通常萘加氢会副产部分四氢萘,但其产量很难根据市场需求调整。本发明通过催化剂及反应条件的配合能方便的调整四氢萘的产量。工业萘中含有一些杂质,会对加氢催化剂活性、选择性和寿命造成很大的负面影响,需要通过原料预处理加以脱除。
本发明通过对活性组分负载量、催化剂酸碱性及枳构特征的精准调控实现催化剂活性控制,使其活性适中,以便调整四氢萘产量。
按照本发明提供的工艺及反应条件,产品精萘中硫含量小于1ppm,改变工艺参数可灵活副产0.1%-50%四氢萘。精萘杂质含量远低于目前技术所能达到是水平,可满足后续精萘深加工生产高附加值化学品需要。四氢萘质量也远超目前现有技术,最重要的是其产量能在很大的范围内灵活调控,方便厂家根据市场需求灵活调整生产计划。
本发明的优点
本发明提供的一种工业萘加氢精制生产精萘灵活副产四氢萘技术,采用硫化态非贵金属催化剂,催化剂成本较低;产品纯度高、杂质含量少;工艺灵活,可根据市场需求调整四氢萘产量;采用固定床反应器,反应条件温和,操作简单,适合连续化大批量工业生产,操作成本低。
具体实施方式
用下面实施例进一步说明本发明,但发明并不受其限制。本发明实施例原料工业萘硫含量为2600ppm,酸性硫<10ppm,氮含量80ppm,氧含量为2500ppm,胶质含量为20mg/100g,溴价为5gBr/100g,As<1ppb,Pb<0.1ppm。
实施例1:
2wt%Ni-20wt%Mo/Al2O3制备:取4.73g醋酸镍,24.52g七钼酸铵,加入5g氨水,加入去离子水使溶液体积为78.95ml,将混合溶液加热到80℃,用0.5mol/L硝酸调节pH值为8.0。加入78g氧化铝浸渍2h,浸渍过程中不断搅拌,使其浸渍均匀。2h后滤出样品干燥,干燥时从室温以10℃/min的升温速率缓慢升高到100℃,在此温度下干燥24h。所得样品在400℃下焙烧12h得所需催化剂。
将催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为1MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量为1000ppm。以20℃/时的升温速率升温,在150℃下活化1h。以20℃/时的升温速率升温,升高到230℃,硫化6h。以20℃/时的升温速率,升高到301℃,硫化1h。硫化油体积空速为1.0h-1,氢油比(体积)为500。硫化结束后将温度降低到200℃。
将工业萘经过预处理单元过滤脱除固体颗粒物和部分胶质,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.5wt%,胶质含量为100mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为1MPa,温度降到200℃,萘的质量空速为0.2h-1,H2/萘体积比为50,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例2
2wt%Co-20wt%Mo/SiO2-Al2O3制备:取7.01g硝酸钴,24.52g七钼酸铵,加入20g乙二胺,加入去离子水使溶液体积为80.12ml,将混合溶液加热到50℃,用0.5mol/L氨水调节pH值为13.0。加入78g SiO2-Al2O3(Al2O3含量为80wt%)浸渍24h,浸渍过程中不断搅拌,使其浸渍均匀。24h后滤出样品干燥,干燥时从室温以20℃/min的升温速率缓慢升高到150℃,在此温度下干燥6h。所得样品在600℃下焙烧3h。将所得催化剂破碎成20-40目。
取5g装入固定床反应器中硫化,氢气压力为5MPa,硫化剂为二甲二硫,载体油为正己烷,其中的硫含量为5000ppm。以10℃/时的升温速率升温,在100℃下活化6h。以10℃/时的升温速率升温,升高到201℃,硫化1h。以10℃/时的升温速率,升高到400℃,硫化6h。硫化油体积空速为2.0h-1,氢油比(体积)为200。硫化结束后将温度降低到350℃。
将工业萘通过装有10ml氧化铝的预处理单元进行吸附处理,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.2wt%,胶质含量为20mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为5MPa,温度为350℃,萘的质量空速为4.0h-1,H2/萘体积比为1000,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例3
8wt%Ni-20wt%Mo/Al2O3-TiO2制备:取31.13g硝酸镍,24.52g七钼酸铵,加入15g蔗糖,加入去离子水使溶液体积为78.95ml,此时混合溶液温度为15℃,用0.5mol/L氨水调节pH值为10.0。加入72g Al2O3-TiO2(Al2O3含量为90wt%)浸渍12h,浸渍过程中不断搅拌,使其浸渍均匀。12h后滤出样品干燥,干燥时从室温以15℃/min的升温速率缓慢升高到120℃,在此温度下干燥12h。所得样品在500℃下焙烧8h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为8MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量为2000ppm。以15℃/时的升温速率升温,在200℃下活化2h。以15℃/时的升温速率升温,升高到300℃,硫化3h。以15℃/时的升温速率,升高到350℃,硫化4h。硫化油体积空速为1.5h-1,氢油比(体积)为200。硫化结束后将温度降低到280℃。
将工业萘通过装有10ml活性炭的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.1wt%,胶质含量为10mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为8MPa,温度降到280℃,萘的质量空速为2.0h-1,H2/萘体积比为800,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例4
6wt%Co-10wt%Mo/Al2O3-TiO2制备:取7.01g硝酸钴,12.26g七钼酸铵,加入13g可溶性淀粉,加入去离子水使溶液体积为86.15ml,将混合溶液加热到75℃,用0.5mol/L氨水调节pH值为9.0。加入84g Al2O3-TiO2(Al2O3含量为95wt%)浸渍8h,浸渍过程中不断搅拌,使其浸渍均匀。8h后滤出样品干燥,干燥时从室温以10℃/min的升温速率缓慢升高到110℃,在此温度下干燥8h。所得样品在450℃下焙烧6h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为10MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量为2000ppm。以15℃/时的升温速率升温,在150℃下活化3h。以10℃/时的升温速率升温,升高到250℃,硫化2h。以20℃/时的升温速率,升高到310℃,硫化5h。硫化油体积空速为1.8h-1,氢油比(体积)为300。硫化结束后将温度降低到300℃。
将工业萘通过装有10ml白土的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.3wt%,胶质含量为40mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为10MPa,温度降到300℃,萘的质量空速为3.0h-1,H2/萘体积比为300,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例5
6wt%Co-15wt%Mo/Al2O3-TiO2制备:取7.01g硝酸钴,18.39g七钼酸铵,加入12g可柠檬酸,加入去离子水使溶液体积为82.35ml,将混合溶液加热到50℃,用0.5mol/L氨水调节pH值为12.0。加入79g Al2O3-TiO2(Al2O3含量为85wt%)浸渍6h,浸渍过程中不断搅拌,使其浸渍均匀。6h后滤出样品干燥,干燥时从室温以12℃/min的升温速率缓慢升高到130℃,在此温度下干燥6h。所得样品在420℃下焙烧11.5h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为2MPa,硫化剂为二甲二硫,载体油为正庚烷,其中的硫含量为4000ppm。以12℃/时的升温速率升温,在140℃下活化2h。以12℃/时的升温速率升温,升高到220℃,硫化3h。以12℃/时的升温速率,升高到330℃,硫化4h。硫化油体积空速为1.9h-1,氢油比(体积)为400。硫化结束后将温度降低到320℃。
将工业萘通过装有10ml白土的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.4wt%,胶质含量小于50mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为2MPa,温度降到320℃,萘的质量空速为0.3h-1,H2/萘体积比为500,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例6
4wt%Ni-8wt%Mo/Al2O3制备:取15.56g硝酸镍,9.81g七钼酸铵,加入13g柠檬酸,加入去离子水使溶液体积为90.21ml,将混合溶液加热到70℃,用0.5mol/L氨水调节pH值为11.0。加入88g Al2O3浸渍9h,浸渍过程中不断搅拌,使其浸渍均匀。9h后滤出样品干燥,干燥时从室温以10℃/min的升温速率缓慢升高到140℃,在此温度下干燥20h。所得样品在440℃下焙烧10h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为3MPa,硫化剂为二甲二硫,载体油为C6抽余油,其中的硫含量为3500ppm。以10℃/时的升温速率升温,在120℃下活化5h。以10℃/时的升温速率升温,升高到290℃,硫化5h。以10℃/时的升温速率,升高到380℃,硫化5h。硫化油体积空速为1.6h-1,氢油比(体积)为250。硫化结束后将温度降低到340℃。
将工业萘通过装有10ml白土的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.3wt%,胶质含量小于80mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为3MPa,温度降到340℃,萘的质量空速为0.4h-1,H2/萘体积比为400,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例7
3wt%Ni-12wt%Mo/Al2O3制备:取11.67g硝酸镍,14.71g七钼酸铵,加入15g蔗糖,加入去离子水使溶液体积为86.41ml,将混合溶液加热到75℃,用0.5mol/L氨水调节pH值为10.0。加入85g Al2O3浸渍8h,浸渍过程中不断搅拌,使其浸渍均匀。8h后滤出样品干燥,干燥时从室温以20℃/min的升温速率缓慢升高到130℃,在此温度下干燥18h。所得样品在480℃下焙烧11h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为4MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量约为1500ppm。以10℃/时的升温速率升温,在120℃下活化5h。以10℃/时的升温速率升温,升高到270℃,硫化5h。以10℃/时的升温速率,升高到370℃,硫化3h。硫化油体积空速为1.2h-1,氢油比(体积)为220。硫化结束后将温度降低到330℃。
将工业萘通过装有10ml白土的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.3wt%,胶质含量小于60mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为4MPa,温度降到330℃,萘的质量空速为0.5h-1,H2/萘体积比为200,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例8
催化剂及其他条件同实施例7,反应温度由330℃降低到260℃,萘转化率由43.6%降低到6.9%,说明通过催化剂与温度的配合能有效调控四氢萘的生成量,具体反应条件及结果如表2所示。
实施例9
5wt%Co-12wt%Mo/SiO2-Al2O3制备:取17.53g硝酸钴,14.71g七钼酸铵,加入15g氨水,加入去离子水使溶液体积为84.36ml,将混合溶液加热到60℃,用0.5mol/L氨水调节pH值为12.0。加入83g SiO2-Al2O3(Al2O3含量为85wt%)浸渍16h,浸渍过程中不断搅拌,使其浸渍均匀。16h后滤出样品干燥,干燥时从室温以10℃/min的升温速率缓慢升高到150℃,在此温度下干燥6h。所得样品在550℃下焙烧3h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为6MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量为1800ppm。以10℃/时的升温速率升温,在100℃下活化3h。以10℃/时的升温速率升温,升高到201℃,硫化1h。以10℃/时的升温速率,升高到400℃,硫化3h。硫化油体积空速为1.0h-1,氢油比(体积)为200。硫化结束后将温度降低到310℃。
将工业萘通过装有10ml氧化铝的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.4wt%,胶质含量小于70mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为6MPa,温度降到310℃,萘的质量空速为0.7h-1,H2/萘体积比为600,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例10
催化剂及硫化条件同实施例9,反应压力由6MPa降低到1MPa,萘质量空速由0.7h-1升高到1.0h-1,其他条件同实施例9,萘转化率由19.6%降低到1.4%,说明催化剂与反应压力、空速的配合能有效调节萘的转化率,具体条件及结果如表2所示。
实施例11
7wt%Co-18wt%Mo/SiO2-Al2O3制备:取24.55g硝酸钴,22.07g七钼酸铵,加入10g氨水,加入去离子水使溶液体积为76.54ml,将混合溶液加热到70℃,用0.5mol/L氨水调节pH值为10.0。加入75g SiO2-Al2O3(Al2O3含量为88wt%)浸渍15h,浸渍过程中不断搅拌,使其浸渍均匀。15h后滤出样品干燥,干燥时从室温以10℃/min的升温速率缓慢升高到120℃,在此温度下干燥8h。所得样品在500℃下焙烧5h。
将所得催化剂破碎成20-40目,取5g装入固定床反应器中硫化,氢气压力为7MPa,硫化剂为二甲二硫,载体油为环己烷,其中的硫含量为2200ppm。以10℃/时的升温速率升温,在120℃下活化3h。以10℃/时的升温速率升温,升高到260℃,硫化1h。以10℃/时的升温速率,升高到320℃,硫化2h。硫化油体积空速为1.4h-1,氢油比(体积)为250。硫化结束后将温度降低到290℃。
将工业萘通过装有10ml氧化铝的预处理单元,经处理后工业粗萘的技术指标达到固体颗粒物质量百分含量为0.4wt%,胶质含量小于90mg/100g。所得物料进入加氢精制单元,反应条件为:氢气压力为7MPa,温度降到290℃,萘的质量空速为1.2h-1,H2/萘体积比为700,催化剂物化性质如表1所示,反应条件及结果如表2所示。
实施例12
催化剂及硫化条件同实施例11,反应温度由290℃降低到270℃,压力由7MPa降低到3MPa,萘质量空速由1.2h-1降低到0.3h-1,氢油比由700降低到550,萘转化率与实施例11相当,说明催化剂与反应温度、压力、空速和氢油比的配合能有效调节萘的转化率,具体条件及结果如表2所示。
表1催化剂物化性质
Figure BDA0001816719010000091
表2反应条件及结果
Figure BDA0001816719010000101

Claims (5)

1.一种工业萘加氢精制生产精萘副产四氢萘的催化剂的应用,其特征在于:该催化剂由活性组份金属氧化物、助剂和载体组成,其中活性组份金属氧化物为2-8wt%,助剂Mo的氧化物为8-20wt%,余量为载体,催化剂的酸量为0.1-1.5mmol NH3/g,比表面积为50-400m2/g,孔体积为0.2-1.2cm3/g,其中孔径在5-50nm的孔占总孔道的50-80%,所述的活性组份金属为Ni或Co,催化剂的制备方法如下
(1)将活性组分可溶性前驱物、助剂可溶性前驱物及促进剂配成混合水溶液,混合水溶液总浓度为0.2-3.5mol/L,将混合水溶液加热至15-80℃之间,所述促进剂为氨水、乙二胺、蔗糖、可溶性淀粉或柠檬酸,促进剂在混合水溶液中的浓度为0.06-0.25 g/ml;
(2)加入酸或碱,调节步骤(1)所得混合溶液,使其pH在8.0-13.0之间;
(3)将载体置于步骤(2)所得溶液中,浸渍2-24h,浸渍过程中不断搅拌;
(4)将步骤(3)所得样品干燥,干燥时从室温以10-20℃/min的升温速率升高到100-150℃,在此温度下干燥6-24h,于400-600℃下焙烧3-12h,得到催化剂。
2.如权利要求1所述的催化剂的应用,其特征在于:所述的载体为Al2O3、SiO2-Al2O3或Al2O3-TiO2
3.如权利要求2所述的催化剂的应用,其特征在于:SiO2-Al2O3或Al2O3-TiO2中Al2O3含量不低于80 wt%。
4.如权利要求1或2所述的催化剂的应用,其特征在于包括
(一)催化剂在使用前需要经过硫化活化,硫化条件如下:
(a)催化剂在氢气下,催化剂以10-20℃/min的升温速率升温到100-200℃,开始进硫化油,硫化油的体积空速为1.0-2.0h-1,氢油体积比为200-500,在此温度下硫化1-6h;
(b)以10-20℃/min的升温速率升温到201-300℃,在此温度下硫化1-6h;
(c)以10-20℃/min的升温速率升温到301-400℃,在此温度下硫化1-6h,活化结束,降温到工业萘加氢精制生产精萘副产四氢萘的反应温度;
(二)催化剂的应用
(1)先采用过滤或吸附方法对工业粗萘进行原料预处理,所述吸附方法为采用活性炭、氧化铝或白土的吸附方法,经预处理后工业粗萘中的固体颗粒物质量百分含量小于0.5wt%,胶质含量小于100mg/100g;
(2)加氢反应,加氢条件为:温度100-350℃,压力1-10MPa,萘的质量空速为0.2-4.0h-1,H2/萘体积比为50-1000。
5.如权利要求4所述的催化剂的应用,其特征在于:所述的硫化油中硫含量为1000-5000ppm。
CN201811145517.4A 2018-09-29 2018-09-29 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用 Active CN109289860B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811145517.4A CN109289860B (zh) 2018-09-29 2018-09-29 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811145517.4A CN109289860B (zh) 2018-09-29 2018-09-29 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用

Publications (2)

Publication Number Publication Date
CN109289860A CN109289860A (zh) 2019-02-01
CN109289860B true CN109289860B (zh) 2021-08-20

Family

ID=65165020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811145517.4A Active CN109289860B (zh) 2018-09-29 2018-09-29 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用

Country Status (1)

Country Link
CN (1) CN109289860B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398933B (zh) * 2020-03-16 2024-03-29 中国石油化工股份有限公司 一种用于二元腈加氢制二元胺的催化剂及其制备方法和应用
CN113278441B (zh) * 2021-07-06 2022-11-29 山东京博石油化工有限公司 一种用于延迟焦化或减粘裂化优化产品分布的助剂及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1053785A1 (fr) * 1999-05-18 2000-11-22 Total Raffinage Distribution S.A. Support catalytique à base d'oxyde d'un métal du groupe IVB de la classification périodique des éléments, sa préparation et ses utilisations
CN104128185A (zh) * 2014-07-07 2014-11-05 中国科学院山西煤炭化学研究所 一种合成四氢萘的催化剂及制备方法和应用
CN104148082A (zh) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 加氢精制催化剂的制备方法及用途
CN104741124A (zh) * 2015-03-09 2015-07-01 大连理工大学 一种铝基金属间化合物用于萘选择加氢催化剂及其制备方法
CN105749984A (zh) * 2014-12-16 2016-07-13 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和四氢萘的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1053785A1 (fr) * 1999-05-18 2000-11-22 Total Raffinage Distribution S.A. Support catalytique à base d'oxyde d'un métal du groupe IVB de la classification périodique des éléments, sa préparation et ses utilisations
CN104148082A (zh) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 加氢精制催化剂的制备方法及用途
CN104128185A (zh) * 2014-07-07 2014-11-05 中国科学院山西煤炭化学研究所 一种合成四氢萘的催化剂及制备方法和应用
CN105749984A (zh) * 2014-12-16 2016-07-13 中国石油化工股份有限公司 一种加氢催化剂及其制备方法和四氢萘的制备方法
CN104741124A (zh) * 2015-03-09 2015-07-01 大连理工大学 一种铝基金属间化合物用于萘选择加氢催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
工业萘两步催化加氢制十氢萘的研究;宋会;《中国优秀硕士学位论文全文数据库 工程科技I辑》;20160315(第3期);第16页第2.3节、第23页第3.2节、第19页第2.5节、第20页第3.1.1节 *

Also Published As

Publication number Publication date
CN109289860A (zh) 2019-02-01

Similar Documents

Publication Publication Date Title
CN109289860B (zh) 工业萘加氢精制生产精萘副产四氢萘的催化剂及制法和应用
CN1151238C (zh) 一种中油型加氢裂化催化剂及其制备方法
CN102463131B (zh) 一种加氢裂化催化剂及其制备方法
CN109289876B (zh) 一种深度脱硫催化剂及其制备方法和应用
WO2015007230A1 (zh) 一种铁基加氢催化剂及其应用
CN103100400A (zh) 一种加氢裂化催化剂的制备方法
CN110152663A (zh) 一种用于糠醛气相加氢制糠醇的催化剂及其制备和应用
CN112642465A (zh) 一种直馏柴油加氢裂化催化剂及其制备方法
CN109652122B (zh) 一种劣质高氮重馏分油深度加氢脱氮的方法
CN111234867B (zh) 一种用于裂解汽油的c9+馏分的加氢方法
CN111215068A (zh) 一种制备Cu/SiO2催化剂的方法
CN110129084B (zh) 一种生物质供氢-催化液化耦合方法和一种负载型生物质液化催化剂
CN111234869B (zh) 一种用于裂解汽油的c9+馏分的加氢方法
KR102283321B1 (ko) 구아이아콜의 수소첨가탈산화 반응용 촉매 및 이를 이용한 구아이아콜로부터 탄화수소 화합물의 선택적 제조방법
CN113797908B (zh) 一种催化剂载体材料及其制备方法和应用
CN112742389B (zh) 一种用于制备1,4-环己烷二甲醇的催化剂及其制备方法和应用
CN114315495B (zh) 一种由2,5-己二酮合成甲基环戊二烯的方法
CN112619676B (zh) 一种加氢精制催化剂及其制备方法
CN111068686B (zh) 一种由渣油加氢失活催化剂制备镍基催化剂的方法
CN115254083A (zh) 一种铝锆复合载体的制备方法、包含该载体的馏分油加氢精制催化剂
CN109294621B (zh) 一种润滑油基础油的加氢精制生产方法
CN108325517B (zh) 一种用于萘选择性加氢生产四氢萘的催化剂及其制备方法
CN112691681A (zh) 富芳轻质馏分油选择性加氢催化剂及其制备方法和应用
CN113444543B (zh) 生物航煤组分油及其制备方法
CN115318331B (zh) 一种糠醛加氢直接制二糠基醚的催化剂及其制备和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant