CN109174192B - 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用 - Google Patents

一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用 Download PDF

Info

Publication number
CN109174192B
CN109174192B CN201811205989.4A CN201811205989A CN109174192B CN 109174192 B CN109174192 B CN 109174192B CN 201811205989 A CN201811205989 A CN 201811205989A CN 109174192 B CN109174192 B CN 109174192B
Authority
CN
China
Prior art keywords
mof
nanosheet array
carbon dot
preparation
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811205989.4A
Other languages
English (en)
Other versions
CN109174192A (zh
Inventor
侯莹
匡轩
李辉
沈静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201811205989.4A priority Critical patent/CN109174192B/zh
Publication of CN109174192A publication Critical patent/CN109174192A/zh
Application granted granted Critical
Publication of CN109174192B publication Critical patent/CN109174192B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/348Electrochemical processes, e.g. electrochemical deposition or anodisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种Cu‑MOF/碳点纳米片阵列催化剂的制备方法以及该材料电解水析氧的应用,属于催化技术、复合材料技术领域。其主要步骤是将硝酸铜溶液与H6L配体及山梨醇共混,制得电沉积溶液;在三电极体系中,采用恒电位电沉积工艺,将得到的材料微波活化后,制得Cu‑MOF/碳点纳米片阵列催化剂。该催化剂制备所用原料成本低,工艺简单,反应能耗低,具有工业应用前景。该催化剂用于高效催化电解水析氧,具有良好的析氧电催化活性与电化学稳定性。

Description

一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用
技术领域
本发明公开了一种Cu-MOF/碳点纳米片阵列催化剂的制备方法以及该材料电解水析氧的应用,属于催化技术、复合材料技术领域。
背景技术
氢能源是一种理想的绿色能源,电催化分解水制氢具有重要的发展前景。水分解过程中的析氧半反应(OER),比析氢半反应过程更为困难,需经历一个复杂的电质耦合(proton-coulped electron transfer, PCET)过程, 过电位更高, 消耗能量更多,为电解水制氢的瓶颈,为此, 寻找一种能够有效降低析氧过电位的析氧催化剂至关重要。在已开发的氧电催化剂中,Ir和Ru氧化物用于OER是当前被认为活性最高的催化剂,但其价格高、储量资源低、稳定性差是其难以逾越的缺陷。金属有机框架物(MOF)具有组成、孔尺寸、功能可调可设计的重要特征,这为设计和制备高效氧电催化剂提供了重要途径。2010年Marker团队开始使用纯MOF开发OER电催化(Journal of Membrane Science, 2009, 328(1):165-173)。后来, Co-ZIF-9(Co2+-苯并咪唑)也作为OER电催化剂(富氮金属—有机骨架的合成与功能性研究[D]. 吉林: 吉林大学, 2014),研究表明它在很宽的pH范围内具有OER活性。除了直接作为电催化剂外,多孔MOF,也可涂覆其他活性物质物种进一步提高其电催化性能。
碳点是一类以碳为主要元素且含多功能官能团的新型纳米材料,其粒径通常小于10 nm,它不仅继承了碳基材料的低毒和生物相容性好等特性,还兼具高度优异的水溶性、抗光漂白能力强、合成工艺简单并表面易于功能化等诸多优势,在生物成像,药物运载光电器件以及分析检测等方面已显示出广阔的发展前景。当前,科学家相继开展了针对其制备方法、性能分析、机理探讨和拓展型应用等发面的研究,并取得了突破性进展。碳点因含有羧基等极性官能团,预计可以与金属离子配位镶嵌在MOF结构的空隙中,因碳点比表面积大,且MOF结构以及碳点均可暴露更多且不同的活性位点,具有MOF晶体和碳点的协同作用,易于电子的传递和离子的扩散,活性位点多,从而使该材料的催化性能大大提高。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种Cu-MOF/碳点纳米片阵列催化剂的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供所述催化剂的用途,即将该催化剂用于高效催化电解水析氧,具有良好的电催化活性与电化学稳定性。
为实现上述目的,本发明采用的技术方案如下:
1. 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法
将0.160-0.170 g的Cu (NO3)2·3 H2O溶于由2-3 mL DMA、2-3 mL DMSO、80-120 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025-0.035 g H6L配体、0.26-0.35 g的山梨醇与硝酸铜溶液共混,加入0.8-1.0 mL HBF4,超声1-3min,得到澄清的电沉积溶液;
使用1.0 cm × 1.0 cm的活化铜网CuF作为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得Cu-MOF/山梨醇纳米片阵列负载在铜网上的复合材料;将其水洗后,采用250 W微波炉活化3 min,制得活化Cu-MOF/碳点/CuF纳米片阵列复合材料,即Cu-MOF/碳点纳米片阵列催化剂。
所述的Cu-MOF/碳点纳米片阵列催化剂的制备方法,其特征在于,所述H6L配体,其构造式如下:
Figure 566828DEST_PATH_IMAGE001
H6L制备步骤如下:
将0.084 mol氨基间苯二甲酸、0.134 mol NaOH与0.104 mol NaHCO3加入到140ml蒸馏水中,混合后在0 ℃下搅拌30 min;同时逐滴滴加三聚氰氯的1,4-二氧六环溶液;该混合液在100 ℃下加热24 h, 用HCl调节混合物溶液的pH=2,过滤,用蒸馏水洗涤几次,室温下干燥后得到H6L配体,其产率为95%。
活化铜网CuF,是将1.0 cm × 1.0 cm的铜网CuF,于质量分数为1.5%的稀盐酸中超声2-4 min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
所述恒电位电沉积,是在-0.8~-1.5V的电压下沉积10-15 min,制得Cu-MOF/碳点/CuF纳米片阵列复合材料。
所述Cu-MOF,其结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个L6-、3个主体水分子、10个客体水分子和5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
2. 如上所述的Cu-MOF/碳点纳米片阵列催化剂用于电解水析氧催化的应用。
将面积为1.0 cm×1cm的Cu-MOF/碳点纳米片阵列催化剂作为工作电极;使用三电极电化学工作站, Pt 片 (5 mm×5 mm×0.1 mm)为对电极,饱和甘汞电极电极为参比电极,在电解液为 1.0 M KOH水溶液中测试电催化分解水析氧性能。
上述Cu-MOF/碳点纳米片阵列催化剂电解水催化析氧,当电流密度J=10 mA/cm2时,过电位小于0.23 Vvs Hg/HgO;说明该材料高效的析氧催化活性;循环 1000 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。
本发明的有益的技术效果:
(1)本发明Cu-MOF/碳点纳米片阵列催化剂的制备方法,采用恒电位电沉积工艺、一步法电沉积,制备出山梨醇掺杂Cu-MOF纳米片阵列负载在铜网上的复合材料,即Cu-MOF/山梨醇/CuF复合材料,再通过方便的微波热解山梨醇成为碳点并且活化Cu-MOF,快速制得Cu-MOF/碳点纳米片阵列催化剂,制备工艺简单,易操作,易工业化。
(2)本发明制得的催化剂,其结构为碳点掺杂的金属有机框架物MOF阵列,比表面积大,且纳米片状MOF阵列以及碳点均暴露了更多且不同的活性位点,发挥了MOF晶体和碳点的协同作用,易于电子的传递和离子的扩散,活性位点多。
(3)催化析氧效率高且稳定性好
本发明提供了一种Cu-MOF/碳点纳米片阵列催化剂,直接作为工作电极催化水分解析氧,免除了传统工作电极采用全氟化树脂或其它胶黏剂黏结催化剂粉末,使得该复合材料的催化析氧,催化效率高且稳定性好。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法
将0.160 g的Cu (NO3)2·3 H2O溶于由2 mL DMA、2 mL DMSO、80 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025 g H6L配体、0.26g山梨醇与硝酸铜溶液共混,加入0.8 mL HBF4,超声1min,得到澄清的电沉积溶液;
使用1.0 cm × 1.0 cm的活化铜网CuF作为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得Cu-MOF/山梨醇纳米片阵列负载在铜网上的复合材料;将其水洗后,采用250 W微波炉活化3 min,制得活化Cu-MOF/碳点/CuF纳米片阵列复合材料,即Cu-MOF/碳点纳米片阵列催化剂。
实施例2 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法
将0.165 g的Cu (NO3)2·3 H2O溶于由2.5 mL DMA、2.5 mL DMSO、100 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.030 g H6L配体、0.35 g山梨醇与硝酸铜溶液共混,加入0.9 mL HBF4,超声2min,得到澄清的电沉积溶液;
使用1.0 cm × 1.0 cm的活化铜网CuF作为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得Cu-MOF/山梨醇纳米片阵列负载在铜网上的复合材料;将其水洗后,采用250 W微波炉活化3 min,制得活化Cu-MOF/碳点/CuF纳米片阵列复合材料,即Cu-MOF/碳点纳米片阵列催化剂。
实施例3 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法
将0.170 g的Cu (NO3)2·3 H2O溶于由3 mL DMA、3 mL DMSO、120 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.035 g H6L配体、0.30g山梨醇与硝酸铜溶液共混,加入1.0 mL HBF4,超声3min,得到澄清的电沉积溶液;
使用1.0 cm × 1.0 cm的活化铜网CuF作为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得Cu-MOF/山梨醇纳米片阵列负载在铜网上的复合材料;将其水洗后,采用250 W微波炉活化3 min,制得活化Cu-MOF/碳点/CuF纳米片阵列复合材料,即Cu-MOF/碳点纳米片阵列催化剂。
实施例4
实施例1-3所述的H6L配体,其构造式如下:
Figure 703412DEST_PATH_IMAGE002
H6L制备步骤如下:
将0.084 mol氨基间苯二甲酸、0.134 mol NaOH与0.104 mol NaHCO3加入到140ml蒸馏水中,混合后在0 ℃下搅拌30 min;同时逐滴滴加三聚氰氯的1,4-二氧六环溶液;该混合液在100 ℃下加热24 h, 用HCl调节混合物溶液的pH=2,过滤,用蒸馏水洗涤几次,室温下干燥后得到H6L配体,其产率为95%。
实施例5
实施例1-3所述活化铜网CuF,是将1.0 cm × 1.0 cm的铜网CuF在质量分数为1.5%的稀盐酸中超声2-4 min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
实施例6
实施例1-3所述Cu-MOF,其基本结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个配体L6-、3个主体水分子和10个客体水分子以及5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
实施例7
将实施例1、实施例2、实施例3的面积为1.0 cm×1cm的Cu-MOF/碳点纳米片阵列催化剂作为工作电极;使用三电极电化学工作站, Pt 片 (5 mm×5 mm×0.1 mm)为对电极,饱和甘汞电极电极为参比电极,在电解液为 1.0 M KOH水溶液中测试电催化分解水析氧性能。当电流密度J=10 mA/cm2时,过电位为0.23、0.21、0.20 Vvs Hg/HgO;说明该材料高效的析氧催化活性;循环 1000 次前后,该类材料极化曲线没有发现明显的变化,表明催化剂具有良好的稳定性。

Claims (5)

1.一种Cu-MOF/碳点纳米片阵列催化剂的制备方法,其特征在于,步骤如下:
(1)配制电沉积溶液
将0.160-0.170 g的Cu (NO3)2·3 H2O溶于由2-3 mL DMA、2-3 mL DMSO、80-120 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025-0.035 g H6L配体、0.25-0.35 g的山梨醇与硝酸铜溶液共混,加入0.8-1.0 mLHBF4,超声1-3min,得到澄清的电沉积溶液;
(2)制备Cu-MOF/碳点纳米片阵列催化剂
使用1.0 cm × 1.0 cm的活化铜网CuF作为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得Cu-MOF/山梨醇纳米片阵列负载在铜网上的复合材料;将其水洗后,采用250 W微波炉活化3 min,制得活化Cu-MOF/碳点/CuF纳米片阵列复合材料,即Cu-MOF/碳点纳米片阵列催化剂;
步骤(1)中所述H6L配体,其构造式如下:
Figure 839749DEST_PATH_IMAGE001
2.根据权利要求1所述的Cu-MOF/碳点纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述的活化铜网CuF,是将1.0 cm × 1.0 cm的铜网CuF,于质量分数为1.5%的稀盐酸中超声2-4 min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
3.根据权利要求1所述的Cu-MOF/碳点纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述恒电位电沉积,是在-0.8~-1.5V的电压下沉积10-15 min,制得Cu-MOF/碳点/CuF纳米片阵列复合材料。
4.根据权利要求1所述的Cu-MOF/碳点纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述Cu-MOF,其结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个L6-、3个主体水分子、10个客体水分子和5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
5.根据权利要求1所述的制备方法制备的一种Cu-MOF/碳点纳米片阵列催化剂用于电解水析氧催化的应用。
CN201811205989.4A 2018-10-17 2018-10-17 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用 Expired - Fee Related CN109174192B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811205989.4A CN109174192B (zh) 2018-10-17 2018-10-17 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811205989.4A CN109174192B (zh) 2018-10-17 2018-10-17 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用

Publications (2)

Publication Number Publication Date
CN109174192A CN109174192A (zh) 2019-01-11
CN109174192B true CN109174192B (zh) 2020-11-20

Family

ID=64945431

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811205989.4A Expired - Fee Related CN109174192B (zh) 2018-10-17 2018-10-17 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用

Country Status (1)

Country Link
CN (1) CN109174192B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622053B (zh) * 2019-02-12 2021-07-30 济南大学 一种CuO纳米粒子掺杂Cu-MOF/碳点复合催化剂的制备方法和应用
CN110408951B (zh) * 2019-07-15 2021-05-25 江苏大学 一种Cu-MOF/BiVO4复合光电极的制备方法和应用
CN111270254B (zh) * 2020-03-12 2022-03-11 济南大学 一种Cu/Ca-MOF纳米复合催化剂促进室温氮气还原的方法
CN111524719A (zh) * 2020-04-16 2020-08-11 华东师范大学 一种ED-Mn@ZIF-67复合材料及制备方法和其应用
CN112458518B (zh) * 2020-11-20 2023-07-28 昆明理工大学 一种高电导率铜基复合材料的制备方法
CN113019327B (zh) * 2021-03-03 2022-06-03 太原理工大学 一种低浓度单环芳烃强捕获碳-hkust-1复合材料、其制备方法及应用
CN114196987A (zh) * 2021-11-18 2022-03-18 上海大学 一种二维NiFe-MOF纳米片的碳量子点复合材料的制备方法
CN116535657B (zh) * 2023-04-06 2024-04-23 中南大学 一种原位改性的mof材料及其制备和作为光催化剂的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
KR20130028848A (ko) * 2011-09-12 2013-03-20 히타치 덴센 가부시키가이샤 리튬이온 이차전지용 음극집전동박, 리튬이온 이차전지용 음극, 리튬이온 이차전지 및 리튬이온 이차전지용 음극집전동박의 제조방법
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN105731609A (zh) * 2014-12-10 2016-07-06 吉林师范大学 一种基于金属有机骨架材料的多孔碳电极及其制备方法
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
CN108287187A (zh) * 2018-03-30 2018-07-17 北京大学 一种电化学发光传感器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
KR20130028848A (ko) * 2011-09-12 2013-03-20 히타치 덴센 가부시키가이샤 리튬이온 이차전지용 음극집전동박, 리튬이온 이차전지용 음극, 리튬이온 이차전지 및 리튬이온 이차전지용 음극집전동박의 제조방법
CN105731609A (zh) * 2014-12-10 2016-07-06 吉林师范大学 一种基于金属有机骨架材料的多孔碳电极及其制备方法
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
CN108287187A (zh) * 2018-03-30 2018-07-17 北京大学 一种电化学发光传感器

Also Published As

Publication number Publication date
CN109174192A (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN109174192B (zh) 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用
CN108970640B (zh) 一种具备酸性全解水功能的金属有机框架物催化剂制备方法和应用
CN103668311B (zh) 用于电催化还原co2至甲酸的催化电极、应用及电催化还原二氧化碳至甲酸的方法
CN102477564B (zh) 一种制备spe水电解阳极析氧催化剂的方法
CN111545250B (zh) 一种具有高效电催化全解水性能的钌催化剂及其应用
CN107299362B (zh) 一种活性炭负载钴镍合金材料的制备方法及其电化学应用
CN110639593B (zh) 一种硼、氮掺杂碳多孔纳米管包覆铂合金纳米颗粒材料催化剂及其制备方法和应用
CN108714429B (zh) 一种棒状CoP/CoP2纳米复合物电催化剂的制备方法
CN109718822B (zh) 一种制备金属-碳复合催化材料的方法及其应用
US9879354B2 (en) Electrochemical process for water splitting using porous Co3O4 nanorods
CN108654658A (zh) 一种高效水分解双功能电催化剂NiCoP及其制备方法
CN108970642B (zh) 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用
Liu et al. Synergistic coupling of nickel boride with Ru cluster as a highly active multifunctional electrocatalyst for overall water splitting and glucose electrolysis
JP6932751B2 (ja) 水分解酸素発生用の四酸化三コバルトアレイ/チタンメッシュ電極及びその製造方法
CN110773233A (zh) 一种电催化全解水纳米片阵列材料的制备方法
CN108191009A (zh) 聚吡咯修饰的Ag-Pd双金属复合电催化阴极及制备方法和应用
CN107570211B (zh) 一种均三嗪基金属有机框架物/Ni复合材料的制备方法和应用
CN111097402A (zh) 一种纳米β-二氧化铅催化剂及其制备方法和应用
Ruan et al. Innovative electrolytic cell of sulfur-doped MnO2 nanorods: Synergistic hydrogen production and formaldehyde degradation at an ultra-low electric energy consumption
CN109400656B (zh) 一种钴配合物催化剂及碳纳米管/钴配合物复合催化剂和应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法
CN104005046A (zh) 一种电泳—脉冲沉积制备碳纳米管修饰载钯电极的方法
CN106910898B (zh) 催化H2O2电氧化的碳修饰泡沫碳负载Ni催化剂的制备方法
CN109107609B (zh) 一种葡萄糖酸增强催化活性的mof催化剂的制备方法和应用
CN113694928B (zh) 一种金属催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201120

Termination date: 20211017