CN108970642B - 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用 - Google Patents

一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用 Download PDF

Info

Publication number
CN108970642B
CN108970642B CN201811205993.0A CN201811205993A CN108970642B CN 108970642 B CN108970642 B CN 108970642B CN 201811205993 A CN201811205993 A CN 201811205993A CN 108970642 B CN108970642 B CN 108970642B
Authority
CN
China
Prior art keywords
mof
tyrosine
cuf
nanosheet array
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201811205993.0A
Other languages
English (en)
Other versions
CN108970642A (zh
Inventor
侯莹
匡轩
赵泳森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201811205993.0A priority Critical patent/CN108970642B/zh
Publication of CN108970642A publication Critical patent/CN108970642A/zh
Application granted granted Critical
Publication of CN108970642B publication Critical patent/CN108970642B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J31/30Halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/10Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using catalysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种碳点掺杂富氮MOF纳米片阵列的制备方法以及基于该催化剂用于检测酪氨酸对映体的应用,属于催化技术、纳米复合材料和手性传感检测技术领域。其主要步骤是将H6L溶于硝酸铜溶液后与碳点共混,制得电沉积前体混合液;在三电极体系中,采用恒电位电沉积工艺,将得到的材料活化后,制得CD@Cu‑MOF/CuF催化剂。采用该复合材料构建的CD@Cu‑MOF/CuF电化学传感器,用于对映体D‑酪氨酸和L‑酪氨酸含量的灵敏度检测。

Description

一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法及应用
技术领域
本发明涉及一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法及应用,属于催化技术、纳米复合材料和手性传感检测技术领域。
背景技术
金属有机框架物(MOFs)是指过渡金属离子与有机配体通过自组装方式形成的具有周期性的网络结构的晶体多孔材料,其三维孔结构包括两个重要的组分:结点(connectors)和联接桥(linkers),一般以金属离子为结点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一个多孔材料。传统的多孔材料有活性炭(AC)、硅胶、分子筛等有自身的局限性。与传统多孔材料相比,MOFs材料具有其得天独厚的优势:孔道的大小、比表面积、活性位点和刚柔性都是可以通过合理的选择金属离子和有机配体来进行分子调控。因为这些优点,MOFs材料有不可估量的应用前景。
电化学传感是分析化学的研究方向之一,并且可以使用相对便宜的设备提供高灵敏度和选择性。研究人员一直在寻找具有高比表面积和独特的电子和催化性质以获得更好的灵敏度和选择性的新类材料。MOF优异的电化学还原性能和大的比表面积、多孔多样的晶体结构,易功能化以及正性配位中心的存在,使其在电化学传感应用技术领域具有巨大的潜力。单一的MOF材料和其它纳米材料复合制得的复合材料可进一步提高其性能,目前MOFs已经与石墨烯、碳纳米管、碳块和碳纳米纤维等导电材料进行了杂化组装,制得的复合材料可显著改善MOF导电性差等缺陷。
碳点是一类以碳为主要元素、尺寸小于10 nm且结构含羧基等亲水官能团的纳米材料,它不仅继承了碳基材料的低毒性和生物相容性好等特性,还兼具优异的水溶性、抗光漂白能力强、合成工艺简单并表面易于功能化等诸多优势,在生物成像、药物运载光电器件以及分析检测等技术领域已经显示出广阔的发展前景。当前,科学家对其制备方法、性能分析、机理探讨和应用等拓展研究,均取得了突破性进展。碳点作为一种新型碳纳米材料,预计可以与金属离子配位并镶嵌在MOF结构的空隙中,MOF多孔结构以及碳点均暴露更多且不同的活性位点,发挥了二者的协同作用,将其应用于电化学技术领域,必定易于电子的传递和离子的扩散,从而使该材料的电化学传感性能大大提高。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供一种碳点掺杂富氮金属有机框架物纳米片阵列催化剂的制备方法,该方法所用原料成本低,制备工艺简单,反应能耗低,具有工业应用前景。
本发明的技术任务之二是提供一种碳点掺杂富氮金属有机框架物纳米片阵列催化剂的用途,即将该催化剂用于高效检测D-酪氨酸和L-酪氨酸对映体的含量,该检测仪器成本低、分析效率高、操作方便,操作技术要求低。
本发明的技术方案如下:
1. 一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法
(1)配制电沉积前体溶液
将0.160-0.170 g的Cu (NO3)2·3 H2O溶于由2-3 mL DMA、2-3 mL DMSO、80-120 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025-0.035 g H6L配体与硝酸铜溶液共混,加入0.8-1.0 mL HBF4,超声1-3min,得到澄清的富氮金属有机框架物前体溶液;
将D-山梨醇和磷酸二氢钠水溶液制得的碳点与富氮金属有机框架物前体溶液共混,超声2 min,得到电沉积前体溶液;
(2)制备碳点掺杂富氮MOF纳米片阵列催化剂
将1.0 cm × 1.0 cm的活化铜网CuF为工作电极、铂片为辅助电极、甘汞电极为参比电极,在电沉积前体溶液中,构成三电极体系,采用恒电位电沉积工艺,制得碳点掺杂富氮金属有机框架物纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料;将CD@Cu-MOF/CuF复合材料水洗后,置于微波炉中250 W活化3 min,制得活化CD@Cu-MOF/CuF复合材料,即碳点掺杂富氮MOF纳米片阵列催化剂。
2. 如上所述的一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤(1)中所述H6L配体,其构造式如下:
Figure 519242DEST_PATH_IMAGE001
H6L制备步骤如下:
将0.084 mol氨基间苯二甲酸、0.134 mol NaOH与0.104 mol NaHCO3加入到140ml蒸馏水中,混合后在0 ℃下搅拌30 min;同时逐滴滴加三聚氰氯的1,4-二氧六环溶液;该混合液在100 ℃下加热24 h, 用HCl调节混合物溶液的pH=2,过滤,用蒸馏水洗涤几次,室温下干燥后得到H6L配体,其产率为95%。
所述D-山梨醇和磷酸二氢钠水溶液制得的碳点,是将0.25-0.35 g的D-山梨醇和0.05-0.15 g 磷酸二氢钠溶于1.5-2.5 mL水中,在微波炉250 W加热1-3 min制得。
所述活化铜网CuF,是将1.0 cm × 1.0 cm的铜网CuF在质量分数为1.5%的稀盐酸中超声2-4 min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
所述恒电位电沉积,是在-0.8~-1.5V的电压下沉积10-15 min,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料。
所述Cu-MOF,其基本结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个配体L6-、3个主体水分子和10个客体水分子以及5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
3. 如上所述的制备方法制备的碳点掺杂的MOF纳米片阵列催化剂作为电化学传感检测对映体的应用,步骤如下:
(1)配制标准溶液
采用浓度为1.0 M的KOH水溶液,分别配制浓度为1.0×10-7~1.0 g/L 的系列D-酪氨酸和L-酪氨酸标准溶液;
(2)构建CD@Cu-MOF/CuF电化学传感器
将活化CD@Cu-MOF/CuF复合材料为工作电极、铂片为辅助电极、甘汞电极为参比电极,构建CD@Cu-MOF/CuF电化学传感器;
(3)检测D-酪氨酸和L-酪氨酸对映体
采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸和L-酪氨酸标准溶液的电流值,绘制基于CD@Cu-MOF/CuF电化学传感器的D-酪氨酸和L-酪氨酸对映体的工作曲线;
将待测样品的溶液代替D-酪氨酸和L-酪氨酸标准溶液,测得D-酪氨酸和L-酪氨酸对映体的含量。
该手性传感器对D-酪氨酸和L-酪氨酸对映体溶液的检测范围为1.0×10-6~1.0g/L 。
本发明有益的技术效果如下:
(1)本发明碳点掺杂的富氮MOF纳米片阵列催化剂的制备,采用恒电位电沉积工艺、一步法电沉积,制备出碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料,制备工艺简单,易操作,易工业化。
(2)本发明制得的复合材料,由于结构为碳点掺杂的金属有机框架物MOF阵列,比表面积大,且纳米片状MOF晶体阵列以及碳点均暴露了更多且不同的活性位点,发挥了MOF晶体和碳点的协同作用,易于电子的传递和离子的扩散,活性位点多。
(3)基于该复合材料制备的传感器,检测D-酪氨酸和L-酪氨酸对映体手性对映体的含量,具有快速响应、检测范围宽、灵敏度高、操作简单、省时等特点。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法
将0.160g的Cu (NO3)2·3 H2O溶于由2 mL DMA、2 mL DMSO、80 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025 g H6L配体与硝酸铜溶液共混,加入0.8 mL HBF4,超声1 min,得到澄清的富氮金属有机框架物前体溶液;
将D-山梨醇和磷酸二氢钠水溶液制得的碳点与富氮金属有机框架物前体溶液共混,超声2 min,得到电沉积混合液;
将1.0 cm × 1.0 cm的活化铜网CuF为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料;将CD@Cu-MOF/CuF复合材料水洗后,置于微波炉中250 W活化3 min,制得活化CD@Cu-MOF/CuF复合材料,即碳点掺杂富氮MOF纳米片阵列催化剂
所述D-山梨醇和磷酸二氢钠水溶液制得的碳点,是将0.25 g的D-山梨醇和0.05 g磷酸二氢钠溶于1.5 mL水中,在微波炉250 W加热1 min制得。
所述恒电位电沉积,是在-0.8V的电压下沉积10 min,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料。
实施例2一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法
将0.165g的Cu (NO3)2·3 H2O溶于由2.5 mL DMA、2.5 mL DMSO、100 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.030 g H6L配体与硝酸铜溶液共混,加入0.90 mL HBF4,超声2 min,得到澄清的富氮金属有机框架物前体溶液;
将D-山梨醇和磷酸二氢钠水溶液制得的碳点与富氮金属有机框架物前体溶液共混,超声2 min,得到电沉积混合液;
将1.0 cm × 1.0 cm的活化铜网CuF为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得碳点掺杂富氮金属有机框架物纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料;将CD@Cu-MOF/CuF复合材料水洗后,置于微波炉中250 W活化3 min,制得活化CD@Cu-MOF/CuF复合材料,即碳点掺杂富氮MOF纳米片阵列催化剂;
所述D-山梨醇和磷酸二氢钠水溶液制得的碳点,是将0.30 g的D-山梨醇和0.10 g磷酸二氢钠溶于2.0 mL水中,在微波炉250 W加热2 min制得。
所述恒电位电沉积,是在-1.2 V的电压下沉积10 min,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料。
实施例3一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法
将0.170g的Cu (NO3)2·3 H2O溶于由3.0 mL DMA、3.0 mL DMSO、120 μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.035 g H6L配体与硝酸铜溶液共混,加入1.0 mL HBF4,超声3 min,得到澄清的富氮金属有机框架物前体溶液;
将D-山梨醇和磷酸二氢钠水溶液制得的碳点与富氮金属有机框架物前体溶液共混,超声2 min,得到电沉积混合液;
将1.0 cm × 1.0 cm的活化铜网CuF为工作电极、铂片为辅助电极、甘汞电极为参比电极,在三电极体系中,采用恒电位电沉积工艺,制得碳点掺杂富氮金属有机框架物纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料;将CD@Cu-MOF/CuF复合材料水洗后,置于微波炉中250 W活化3 min,制得活化CD@Cu-MOF/CuF复合材料,即碳点掺杂富氮MOF纳米片阵列催化剂
所述D-山梨醇和磷酸二氢钠水溶液制得的碳点,是将0.35 g的D-山梨醇和0.15 g磷酸二氢钠溶于2.5 mL水中,在微波炉250 W加热3 min制得。
所述恒电位电沉积,是在-1.5 V的电压下沉积15 min,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料。
实施例4
实施例1-3所述的H6L配体,其构造式如下:
Figure 42627DEST_PATH_IMAGE002
H6L制备步骤如下:
将0.084 mol氨基间苯二甲酸、0.134 mol NaOH与0.104 mol NaHCO3加入到140ml蒸馏水中,混合后在0 ℃下搅拌30 min;同时逐滴滴加三聚氰氯的1,4-二氧六环溶液;该混合液在100 ℃下加热24 h, 用HCl调节混合物溶液的pH=2,过滤,用蒸馏水洗涤几次,室温下干燥后得到H6L配体,其产率为95%。
实施例5
实施例1-3所述活化铜网CuF,是将1.0 cm × 1.0 cm的铜网CuF在质量分数为1.5%的稀盐酸中超声2-4 min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
实施例6
实施例1-3所述Cu-MOF,其基本结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个配体L6-、3个主体水分子和10个客体水分子以及5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
实施例7
实施例1制备的碳点掺杂的富氮MOF纳米片阵列催化剂作为电化学传感检测对映体的应用,步骤如下:
(1)配制标准溶液
采用浓度为1.0 M的KOH水溶液,分别配制浓度为1.0×10-7~1.0 g/L 的系列D-酪氨酸和L-酪氨酸标准溶液;
(2)构建CD@Cu-MOF/CuF电化学传感器
将活化CD@Cu-MOF/CuF复合材料为工作电极、铂片为辅助电极、甘汞电极为参比电极,构建CD@Cu-MOF/CuF电化学传感器;
(3)检测D-酪氨酸和L-酪氨酸对映体
采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸和L-酪氨酸标准溶液的电流值,绘制基于CD@Cu-MOF/CuF电化学传感器的D-酪氨酸和L-酪氨酸对映体的工作曲线;
将待测样品的溶液代替D-酪氨酸和L-酪氨酸标准溶液,测得D-酪氨酸和L-酪氨酸对映体的含量。
实施例8
步骤同实施例7,仅将实施例2中的CD@Cu-MOF/CuF催化剂替换为实施例2中的CD@Cu-MOF/CuF催化剂。
实施例9
步骤同实施例7,仅将实施例3中的CD@Cu-MOF/CuF催化剂替换为实施例3中的CD@Cu-MOF/CuF催化剂。
实施例10
实施例7-9制得的手性传感器,对D-酪氨酸和L-酪氨酸对映体溶液的检测范围为1.0×10-6~1.0 g/L 。

Claims (7)

1.一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤如下:
(1)配制电沉积前体溶液
将0.160-0.170g的Cu(NO3)2·3H2O溶于由2-3mL DMA、2-3mL DMSO、80-120μL H2O组成的混合溶剂中,得到澄清的硝酸铜溶液;
将0.025-0.035g H6L配体与硝酸铜溶液共混,加入0.8-1.0mL HBF4,超声1-3min,得到澄清的富氮金属有机框架物前体溶液;
将D-山梨醇和磷酸二氢钠水溶液制得的碳点与富氮金属有机框架物前体溶液共混,超声2min,得到电沉积前体溶液;
(2)制备碳点掺杂富氮MOF纳米片阵列催化剂
将1.0cm×1.0cm的活化铜网CuF为工作电极、铂片为辅助电极、甘汞电极为参比电极,在电沉积前体溶液中,构成三电极体系,采用恒电位电沉积工艺,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料,即CD@Cu-MOF/CuF复合材料;将CD@Cu-MOF/CuF复合材料水洗后,置于微波炉中250W活化3min,制得活化CD@Cu-MOF/CuF复合材料,即碳点掺杂富氮MOF纳米片阵列催化剂;
步骤(1)中所述H6L配体,其构造式如下:
Figure FDA0002720115550000011
2.根据权利要求1所述的一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤(1)中所述D-山梨醇和磷酸二氢钠水溶液制得的碳点,是将0.25-0.35g的D-山梨醇和0.05-0.15g磷酸二氢钠溶于1.5-2.5mL水中,在微波炉250W加热1-3min制得。
3.根据权利要求1所述的一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述活化铜网CuF,是将1.0cm×1.0cm的铜网CuF在质量分数为1.5%的稀盐酸中超声2-4min去除表面杂物,然后分别用蒸馏水、乙醇清洗后制得。
4.根据权利要求1所述的一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述恒电位电沉积,是在-0.8~-1.5V的电压下沉积10-15min,制得碳点掺杂富氮MOF纳米片阵列负载在铜网上的复合材料。
5.根据权利要求1所述的一种碳点掺杂富氮MOF纳米片阵列催化剂的制备方法,其特征在于,步骤(2)中所述Cu-MOF,其基本结构单元为[Cu3L(H2O)3]·10H2O·5DMA,是由3个Cu2+、1个配体L6-、3个主体水分子和10个客体水分子以及5个客体DMA分子构成,DMA为N,N-二甲基乙酰胺。
6.根据权利要求1所述的制备方法制备的碳点掺杂富氮MOF纳米片阵列催化剂作为电化学传感检测对映体的应用。
7.根据权利要求6所述的电化学传感检测对映体的应用,其特征在于,步骤如下:
(1)配制标准溶液
采用浓度为1.0M的KOH水溶液,分别配制浓度为1.0×10-7~1.0g/L的系列D-酪氨酸和L-酪氨酸标准溶液;
(2)构建CD@Cu-MOF/CuF电化学传感器
将活化CD@Cu-MOF/CuF复合材料为工作电极、铂片为辅助电极、甘汞电极为参比电极,构建CD@Cu-MOF/CuF电化学传感器;
(3)检测D-酪氨酸和L-酪氨酸对映体
采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸和L-酪氨酸标准溶液的电流值,绘制基于CD@Cu-MOF/CuF电化学传感器的D-酪氨酸和L-酪氨酸对映体的工作曲线;
将待测样品的溶液代替D-酪氨酸和L-酪氨酸标准溶液,测得D-酪氨酸和L-酪氨酸对映体的含量。
CN201811205993.0A 2018-10-17 2018-10-17 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用 Expired - Fee Related CN108970642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811205993.0A CN108970642B (zh) 2018-10-17 2018-10-17 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811205993.0A CN108970642B (zh) 2018-10-17 2018-10-17 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用

Publications (2)

Publication Number Publication Date
CN108970642A CN108970642A (zh) 2018-12-11
CN108970642B true CN108970642B (zh) 2020-12-08

Family

ID=64544417

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811205993.0A Expired - Fee Related CN108970642B (zh) 2018-10-17 2018-10-17 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用

Country Status (1)

Country Link
CN (1) CN108970642B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622053B (zh) * 2019-02-12 2021-07-30 济南大学 一种CuO纳米粒子掺杂Cu-MOF/碳点复合催化剂的制备方法和应用
CN110433867B (zh) * 2019-08-30 2022-01-04 济南大学 一种手性Cu/Zn-MOF/NiF纳米复合催化剂的制备方法和应用
CN111398379A (zh) * 2020-03-12 2020-07-10 济南大学 一种电化学手性传感检测酪氨酸对映体的方法
CN111443117A (zh) * 2020-03-12 2020-07-24 济南大学 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用
CN111398381A (zh) * 2020-04-17 2020-07-10 济南大学 一种识别非电活性氨基酸对映体的电化学识别方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
KR20130028848A (ko) * 2011-09-12 2013-03-20 히타치 덴센 가부시키가이샤 리튬이온 이차전지용 음극집전동박, 리튬이온 이차전지용 음극, 리튬이온 이차전지 및 리튬이온 이차전지용 음극집전동박의 제조방법
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
CN108287187A (zh) * 2018-03-30 2018-07-17 北京大学 一种电化学发光传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012138750A2 (en) * 2011-04-04 2012-10-11 Massachusetts Institute Of Technology Methods for electrochemically induced cathodic deposition of crystalline metal-organic frameworks
KR20130028848A (ko) * 2011-09-12 2013-03-20 히타치 덴센 가부시키가이샤 리튬이온 이차전지용 음극집전동박, 리튬이온 이차전지용 음극, 리튬이온 이차전지 및 리튬이온 이차전지용 음극집전동박의 제조방법
CN105524007A (zh) * 2015-11-30 2016-04-27 山东师范大学 一种纳米Cu-有机配合物晶体的制备方法和应用
CN108130574A (zh) * 2018-01-03 2018-06-08 苏州大学 一种氧辅助阴极沉积金属有机骨架材料的方法
CN108287187A (zh) * 2018-03-30 2018-07-17 北京大学 一种电化学发光传感器

Also Published As

Publication number Publication date
CN108970642A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN108970642B (zh) 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用
CN109174192B (zh) 一种Cu-MOF/碳点纳米片阵列催化剂的制备方法和应用
JP6701328B2 (ja) レドックス活性を有するMOFsを合成すると同時にターゲット物質を封入する製造方法
Lu et al. MOF-derived Co3O4/FeCo2O4 incorporated porous biomass carbon: Simultaneous electrochemical determination of dopamine, acetaminophen and xanthine
CN105369306B (zh) 一种电催化水分解制氧电极的制备方法
Ensafi et al. An ionic liquid-type multiwall carbon nanotubes paste electrode for electrochemical investigation and determination of morphine
Afkhami et al. Electrochemical determination of levodopa in the presence of ascorbic acid by polyglycine/ZnO nanoparticles/multi-walled carbon nanotubes-modified carbon paste electrode
CN111443117A (zh) 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用
CN110483798B (zh) 一种氧化石墨烯@手性Ni-MOF杂化材料的制备方法和应用
CN109265698A (zh) 一种mof/碳点手性杂化材料及其制备方法和应用
CN103308579A (zh) 一种聚苯胺/贵金属纳米复合材料修饰电极的制备方法
Fan et al. Synthesis of hierarchical porous ZIF-8/3DCNTs composite sensor for ultrasensitive detection of DA and DFT studies
CN112034025B (zh) 用于氯霉素检测的复合修饰电极及其构建和检测方法
Hamidi et al. Fabrication of bulk-modified carbon paste electrode containing α-PW12O403− polyanion supported on modified silica gel: Preparation, electrochemistry and electrocatalysis
Zhang et al. A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine
Wei et al. A novel electrochemical sensor based on DUT-67/ZnCo2O4-MWCNTs modified glassy carbon electrode for the simultaneous sensitive detection of dopamine and uric acid
Wang et al. A Novel Electrochemical Sensor for Detection of Baicalein in Human Serum Based on DUT‐9/Mesoporous Carbon Composite
Wang et al. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application
CN113155933B (zh) 一种基于石墨烯-三氧化钼的全固态钾离子选择性电极及其制备方法和应用
CN113694901A (zh) 一种镉离子印迹吸附剂的制备方法及其在食品中的应用
CN104005046A (zh) 一种电泳—脉冲沉积制备碳纳米管修饰载钯电极的方法
Liu et al. A novel solid-state electrochemiluminescence detector for capillary electrophoresis based on tris (2, 2′-bipyridyl) ruthenium (II) immobilized in Nafion/PTC-NH2 composite film
CN103382567B (zh) 一种表面修饰叠氮基的碳纳米管及其制备方法
Arvand et al. Electrospun CeO 2–Au nanofibers/graphene oxide 3D nanonetwork structure for the electrocatalytic detection of amlodipine
Hou et al. Electrochemical chiral recognizing tryptophan enantiomers based on chiral metal-organic framework D-MOF

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201208

Termination date: 20211017