CN111443117A - 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用 - Google Patents

一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用 Download PDF

Info

Publication number
CN111443117A
CN111443117A CN202010171484.1A CN202010171484A CN111443117A CN 111443117 A CN111443117 A CN 111443117A CN 202010171484 A CN202010171484 A CN 202010171484A CN 111443117 A CN111443117 A CN 111443117A
Authority
CN
China
Prior art keywords
mof
bimanual
sensor
gce
penicillamine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010171484.1A
Other languages
English (en)
Inventor
侯莹
匡轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN202010171484.1A priority Critical patent/CN111443117A/zh
Publication of CN111443117A publication Critical patent/CN111443117A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/96Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from other synthetic polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)

Abstract

本发明公开了一种双手性β‑CD@Cu‑MOF纳米复合传感器的制备方法及基于该传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,属于纳米复合材料技术、电催化技术和异构体识别技术领域。其主要步骤是将硝酸铜溶液和配体溶液混合,室温静置制备Cu‑MOF纳米纤维;Cu‑MOF纳米纤维和β‑环糊精β‑CD共混,滴涂在玻碳电极GCE上,制得双手性β‑CD@Cu‑MOF/GCE纳米复合传感器。该传感器制备所用原料成本低,反应能耗低,制备方法简单高效。将该传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,具有灵敏度高、设备简单和电化学稳定性高等优势,具有良好的工业前景。

Description

一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用
技术领域
本发明公开了一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法及基于该传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,属于纳米复合材料技术、电催化技术和异构体识别技术领域。
背景技术
环糊精(CDs)是一类环状寡糖,由6、7或8个葡萄糖单元(分别命名为α-,β-或-CD)组成,呈环状,具有疏水性内腔和亲水性外部结构。CD的成本较低,并且具有出色的将各种化合物有效地、选择性地容纳在它们的疏水性空腔中,形成宿主-客体包涵体。这些特性使它们具有重要的意义。实际上,目前CD已广泛应用于电分析化学领域,在构造手性传感器的应用中,也已开发出几种基于CDs的电化学方法来识别电活性手性分子[Upadhyay, S. S.;Kalambate, P. K.; Srivastava, A. K. Electrochim. Acta 2017, 248, 258−269.]。然而,几乎所有已开发的技术方案,包括基于CDs的传感器手性识别,不能直接实现选择性和定量确定,且通常仅涉及一种信号传导机制。最近的研究报道,有一些异构体分子与CD的结合能力存在差异,这启发了我们用CD制造多个信号传感器,以实现手性对映体的定量测定。
但仅使用纯CD直接构造电化学传感器不理想。有效的电化学手性传感器的要求不仅是区分每种对映体,而且是区分和改善响应信号。
金属有机框架物(MOFs)是指过渡金属离子与有机配体通过自组装方式形成的具有周期性的网络结构的晶体多孔材料,其三维孔结构包括两个重要的组分:结点(connectors)和联接桥(linkers),一般以金属离子为结点,有机配位体支撑构成空间3D延伸,是沸石和碳纳米管之外的又一个多孔材料。MOFs材料具有其得天独厚的优势:孔道的大小、比表面积、活性位点和刚柔性都是可以通过合理的选择金属离子和有机配体来进行分子调控。因此,CD与MOF构成的复合材料具有应用价值。
电化学手性识别由于其具有的许多优点,如低成本、快速响应、廉价的仪器和小型化而受到了广泛的关注。但当前大多数电化学传感器通常仅涉及一种信号机制,灵敏度低、传感器利用率低。因此,构建同时检测两种氨基酸异构体的高灵敏传感器具有重要的意义。
发明内容
本发明的技术任务之一是为了弥补现有技术的不足,提供了一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法,该传感器制备所用原料成本低,反应能耗低,制备方法简单高效。
本发明的技术任务之二是提供所述传感器的用途,即将β-CD@Cu-MOF纳米复合传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,具有灵敏度高、设备简单和电化学稳定性高等优势,具有良好的工业前景。
为实现上述目的,本发明采用的技术方案如下:
1. 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法
将0.58-0.62 g的Cu (NO3)2·3H2O与3-7 mL水共混,得到硝酸铜溶液;
将0.05-0.06 g的配体L-天冬氨酸L-Asp和0.03-0.04 g的NaOH加入到3-7 mL水中,180W超声2-4 min,得到澄清的配体溶液;
将硝酸铜溶液和配体溶液混合均匀,室温下静置4-6 h,离心分离,将得到的固体分别用水和乙醇洗涤三次后,85 ℃干燥至恒重,得到Cu-MOF纳米纤维;
将6 mg Cu-MOF纳米纤维和6 mgβ-环糊精β-CD与720 μL水、250 μL乙醇和30 μL的Nafion共混,180 W超声30 min,制得β-CD@Cu-MOF纳米纤维悬浊液,取10 μL溶液滴涂在玻碳电极GCE上,室温过夜干燥,得到β-CD@Cu-MOF/GCE电极,即双手性β-CD@Cu-MOF/GCE纳米复合传感器。
所述Cu-MOF纳米纤维,纤维纵向最长可达1mm,直径宽为40-100nm; Cu-MOF纳米纤维的基本单元结构CuL(H2O),由一个CuII正离子、一个LII负离子和一个H2O分子构成;所述LII离子为天冬氨酸H2L的LII负离子。
所述双手性β-CD@Cu-MOF/GCE纳米复合传感器,双手性位点为β-CD和LII负离子,β-CD被负载在Cu-MOF的空隙和表面。
2.如上所述的制备方法制备的双手性β-CD@Cu-MOF纳米复合传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,步骤如下:
(1)配制标准溶液
采用浓度为0.1 M的KOH水溶液,分别配制系列浓度的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺标准溶液;
(2)检测D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体
采用上述制备的双手性β-CD@Cu-MOF纳米复合传感器为工作电极、铂片为辅助电极、甘汞电极为参比电极,采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺标准溶液的电流值,绘制基于β-CD@Cu-MOF纳米复合传感器的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体的工作曲线;
将含有D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺混合物的待测样品溶液代替标准溶液,测得D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体的识别效果和含量。
该传感器的电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺的氧化峰,实现了同时对酪氨酸和青霉胺异构体的电化学手性识别,对D-酪氨酸和L-酪氨酸异构体溶液的检测范围为0.1~1.0×10-8g/L;对D-青霉胺和L-青霉胺异构体溶液的检测范围为0.1~3.2×10-10 g/L。
本发明有益的技术效果如下:
(1)本发明β-CD@Cu-MOF纳米复合传感器的制备,是硝酸铜溶液和配体溶液混合,室温静置制备了Cu-MOF纳米纤维;Cu-MOF纳米纤维和β-环糊精β-CD共混,滴涂在玻碳电极GCE上,制得了双手性β-CD@Cu-MOF/GCE纳米复合传感器。该传感器制备所用原料成本低,反应能耗低,制备方法简单高效。
(2)本发明基于该双手性β-CD@Cu-MOF/GCE纳米复合传感器,含β-CD的疏水性内腔和亲水性外部结构,还含有Cu-MOF纳米晶的手性位点。作为同时电化学传感酪氨酸和青霉胺异构体的应用,电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺的氧化峰,实现了同时对酪氨酸和青霉胺异构体的电化学手性识别,具有灵敏度高、设备简单和电化学稳定性高等优势,具有良好的工业前景。
具体实施方式
下面结合实施例对本发明作进一步描述,但本发明的保护范围不仅局限于实施例,该领域专业人员对本发明技术方案所作的改变,均应属于本发明的保护范围内。
实施例1 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法
将0.58 g的Cu (NO3)2·3H2O与3 mL水共混,得到硝酸铜溶液;
将0.05 g的配体L-天冬氨酸L-Asp和0.03 g的NaOH加入到3 mL水中,180 W超声2 min,得到澄清的配体溶液;
将硝酸铜溶液和配体溶液混合均匀,室温下静置4 h,离心分离,将得到的固体分别用水和乙醇洗涤三次后,85 ℃干燥至恒重,得到Cu-MOF纳米纤维;
将6 mg Cu-MOF纳米纤维和6 mgβ-环糊精β-CD与720 μL水、250 μL乙醇和30 μL的Nafion共混,180 W超声30 min,制得β-CD@Cu-MOF纳米纤维悬浊液,取10 μL溶液滴涂在玻碳电极GCE上,室温过夜干燥,得到β-CD@Cu-MOF/GCE电极,即双手性β-CD@Cu-MOF/GCE纳米复合传感器。
实施例2 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法
将0.60 g的Cu (NO3)2·3H2O与5 mL水共混,得到硝酸铜溶液;
将0.055 g的配体L-天冬氨酸L-Asp和0.035 g的NaOH加入到5 mL水中,180 W超声3min,得到澄清的配体溶液;
将硝酸铜溶液和配体溶液混合均匀,室温下静置5 h,离心分离,将得到的固体分别用水和乙醇洗涤三次后,85 ℃干燥至恒重,得到Cu-MOF纳米纤维;
将6 mg Cu-MOF纳米纤维和6 mgβ-环糊精β-CD与720 μL水、250 μL乙醇和30 μL的Nafion共混,180 W超声30 min,制得β-CD@Cu-MOF纳米纤维悬浊液,取10 μL溶液滴涂在玻碳电极GCE上,室温过夜干燥,得到β-CD@Cu-MOF/GCE电极,即双手性β-CD@Cu-MOF/GCE纳米复合传感器。
实施例3 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法
将0.62 g的Cu (NO3)2·3H2O与7 mL水共混,得到硝酸铜溶液;
将0.06 g的配体L-天冬氨酸L-Asp和0.04 g的NaOH加入到7 mL水中,180 W超声4 min,得到澄清的配体溶液;
将硝酸铜溶液和配体溶液混合均匀,室温下静置6 h,离心分离,将得到的固体分别用水和乙醇洗涤三次后,85 ℃干燥至恒重,得到Cu-MOF纳米纤维;
将6 mg Cu-MOF纳米纤维和6 mgβ-环糊精β-CD与720 μL水、250 μL乙醇和30 μL的Nafion共混,180 W超声30 min,制得β-CD@Cu-MOF纳米纤维悬浊液,取10 μL溶液滴涂在玻碳电极GCE上,室温过夜干燥,得到β-CD@Cu-MOF/GCE电极,即双手性β-CD@Cu-MOF/GCE纳米复合传感器。
实施例4 Cu-MOF结构
实施例1-3所述Cu-MOF纳米纤维,纤维纵向最长可达1mm,直径宽为40-100nm; Cu-MOF纳米纤维的基本单元结构CuL(H2O),由一个CuII正离子、一个LII负离子和一个H2O分子构成;所述LII 离子为天冬氨酸H2L的LII负离子。
实施例5 双手性β-CD@Cu-MOF/GCE纳米复合传感器的手性位点
实施例1-3所述双手性β-CD@Cu-MOF/GCE纳米复合传感器,含β-CD的疏水性内腔和亲水性外部结构,还含有Cu-MOF纳米晶的手性位点。
实施例6
实施例1制备的双手性β-CD@Cu-MOF纳米复合传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用,步骤如下:
(1)配制标准溶液
采用浓度为0.1 M的KOH水溶液,分别配制系列浓度的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺标准溶液;
(2)检测D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体
采用上述制备的双手性β-CD@Cu-MOF纳米复合传感器为工作电极、铂片为辅助电极、甘汞电极为参比电极,采用线性扫描循环伏安法,分别测定步骤(1)中各浓度的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺标准溶液的电流值,绘制基于β-CD@Cu-MOF纳米复合传感器的D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体的工作曲线;
将含有D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺混合物的待测样品溶液代替标准溶液,测得D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺异构体的识别效果和含量。
实施例7
步骤同实施例6,仅将实施例1中的β-CD@Cu-MOF纳米复合传感器替换为实施例2中的β-CD@Cu-MOF纳米复合传感器。
实施例8
步骤同实施例6,仅将实施例1中的β-CD@Cu-MOF纳米复合传感器替换为实施例3中的β-CD@Cu-MOF纳米复合传感器。
实施例9
实施例6-8制得的传感器,电化学数据同时出现了D-酪氨酸、L-酪氨酸、D-青霉胺和L-青霉胺的氧化峰,实现了同时对酪氨酸和青霉胺异构体的电化学手性识别,对D-酪氨酸和L-酪氨酸异构体溶液的检测范围为0.1~1.0×10-8g/L;对D-青霉胺和L-青霉胺异构体溶液的检测范围为0.1~3.2×10-10 g/L。

Claims (4)

1.一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法,其特征在于,步骤如下:
将0.58-0.62 g的Cu (NO3)2·3H2O与3-7 mL水共混,得到硝酸铜溶液;
将0.05-0.06 g的配体L-天冬氨酸L-Asp和0.03-0.04 g的NaOH加入到3-7 mL水中,180W超声2-4 min,得到澄清的配体溶液;
将硝酸铜溶液和配体溶液混合均匀,室温下静置4-6 h,离心分离,将得到的固体分别用水和乙醇洗涤三次后,85 ℃干燥至恒重,得到Cu-MOF纳米纤维;
将6 mg Cu-MOF纳米纤维和6 mgβ-环糊精β-CD与720 μL水、250 μL乙醇和30 μL的Nafion共混,180 W超声30 min,制得β-CD@Cu-MOF纳米纤维悬浊液,取10 μL溶液滴涂在玻碳电极GCE上,室温过夜干燥,得到β-CD@Cu-MOF/GCE电极,即双手性β-CD@Cu-MOF/GCE纳米复合传感器。
2.根据权利要求1 所述的一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法,其特征在于,所述Cu-MOF纳米纤维,纤维纵向最长可达1mm,直径宽为40-100nm; Cu-MOF纳米纤维的基本单元结构CuL(H2O),由一个CuII正离子、一个LII负离子和一个H2O分子构成;所述LII离子为天冬氨酸H2L的LII负离子。
3.根据权利要求1所述的一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法,其特征在于,所述双手性β-CD@Cu-MOF/GCE纳米复合传感器,双手性位点为β-CD和LII负离子,β-CD被负载在Cu-MOF的空隙和表面。
4.根据权利要求1所述的制备方法制备的双手性β-CD@Cu-MOF纳米复合传感器作为同时电化学传感酪氨酸和青霉胺异构体的应用。
CN202010171484.1A 2020-03-12 2020-03-12 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用 Pending CN111443117A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010171484.1A CN111443117A (zh) 2020-03-12 2020-03-12 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010171484.1A CN111443117A (zh) 2020-03-12 2020-03-12 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用

Publications (1)

Publication Number Publication Date
CN111443117A true CN111443117A (zh) 2020-07-24

Family

ID=71655779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010171484.1A Pending CN111443117A (zh) 2020-03-12 2020-03-12 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用

Country Status (1)

Country Link
CN (1) CN111443117A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390963A (zh) * 2020-11-26 2021-02-23 北京大学 一种发光金属有机框架材料的制备方法及其应用
CN112924520A (zh) * 2021-01-25 2021-06-08 三只松鼠股份有限公司 一种用于检测辣椒素的电化学传感器及辣椒素含量的检测方法
CN113686838A (zh) * 2021-08-19 2021-11-23 中国热带农业科学院分析测试中心 超细混合价Ce-MOF纳米线的制备及在电化学发光传感中的应用
CN114059230A (zh) * 2021-11-22 2022-02-18 南开大学 一类基于静电纺丝的超分子碳膜的制备方法及应用
CN114618444A (zh) * 2021-12-16 2022-06-14 南京工业大学 一种改性金属有机多面体材料、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432748A (zh) * 2016-09-12 2017-02-22 济南大学 一种微管MOF@Ag纳米材料及其制备方法和应用
CN107589159A (zh) * 2017-09-05 2018-01-16 济南大学 一种手性mof纳米纤维‑石墨烯杂化材料的制备方法和应用
CN108970642A (zh) * 2018-10-17 2018-12-11 济南大学 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用
CN110057893A (zh) * 2019-05-05 2019-07-26 济南大学 一种mof/高分子核壳纳米纤维复合材料的制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106432748A (zh) * 2016-09-12 2017-02-22 济南大学 一种微管MOF@Ag纳米材料及其制备方法和应用
CN107589159A (zh) * 2017-09-05 2018-01-16 济南大学 一种手性mof纳米纤维‑石墨烯杂化材料的制备方法和应用
CN108970642A (zh) * 2018-10-17 2018-12-11 济南大学 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用
CN110057893A (zh) * 2019-05-05 2019-07-26 济南大学 一种mof/高分子核壳纳米纤维复合材料的制备方法和应用

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HAIYAN LI 等: "Composite CD-MOF nanocrystals-containing microspheres for sustained drug delivery", 《NANOSCALE》 *
JUN LI 等: "A Novel Electrochemical Sensor Based on Copper-based Metal-Organic Framework for the Determination of Dopamine", 《J. CHIN. CHEM. SOC.》 *
T. RAJKUMAR 等: "Cyclodextrin-metal–organic framework (CD-MOF): From synthesis to applications", 《JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY》 *
YANG WANG 等: "Metal–organic frameworks and b-cyclodextrinbased composite electrode for simultaneous quantification of guanine and adenine in a lab-on-valve manifold", 《ANALYST》 *
郭冬梅 等: "基于巯基-β-环糊精手性识别多巴对映体研究", 《化学传感器》 *
马骄 等: "β-环糊精与双金属石墨烯复合材料对酪氨酸对映体的电化学选择性作用", 《化学传感器》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112390963A (zh) * 2020-11-26 2021-02-23 北京大学 一种发光金属有机框架材料的制备方法及其应用
CN112924520A (zh) * 2021-01-25 2021-06-08 三只松鼠股份有限公司 一种用于检测辣椒素的电化学传感器及辣椒素含量的检测方法
CN113686838A (zh) * 2021-08-19 2021-11-23 中国热带农业科学院分析测试中心 超细混合价Ce-MOF纳米线的制备及在电化学发光传感中的应用
CN114059230A (zh) * 2021-11-22 2022-02-18 南开大学 一类基于静电纺丝的超分子碳膜的制备方法及应用
CN114618444A (zh) * 2021-12-16 2022-06-14 南京工业大学 一种改性金属有机多面体材料、制备方法及其应用
CN114618444B (zh) * 2021-12-16 2023-09-01 南京工业大学 一种改性金属有机多面体材料、制备方法及其应用

Similar Documents

Publication Publication Date Title
CN111443117A (zh) 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用
CN110412096B (zh) 还原氧化石墨烯@zif-8复合膜修饰电极的制备方法和检测应用
He et al. Non-enzymatic hydrogen peroxide electrochemical sensor based on a three-dimensional MnO 2 nanosheets/carbon foam composite
CN106770552B (zh) 一种基于双金属纳米粒子掺杂的含钒杂多酸/碳纳米管的多巴胺电化学传感电极
Ma et al. Non-enzymatic electrochemical hydrogen peroxide sensing using a nanocomposite prepared from silver nanoparticles and copper (II)-porphyrin derived metal-organic framework nanosheets
Song et al. A sensitive and selective electrochemical nitrite sensor based on a glassy carbon electrode modified with cobalt phthalocyanine-supported Pd nanoparticles
JP2018535200A (ja) レドックス活性を有するMOFsを合成すると同時にターゲット物質を封入する製造方法
Ahmad et al. Sea-urchin-like cobalt-MOF on electrospun carbon nanofiber mat as a self-supporting electrode for sensing of xanthine and uric acid
Salimi et al. Cobalt oxide nanostructure-modified glassy carbon electrode as a highly sensitive flow injection amperometric sensor for the picomolar detection of insulin
Liu et al. Glycosyl/MOF-5-based carbon nanofibers for highly sensitive detection of anti-bacterial drug quercetin
CN107238651B (zh) 一种检测多巴胺的电化学传感器的制备方法
Xiao et al. Electrospun carbon nanofibers with manganese dioxide nanoparticles for nonenzymatic hydrogen peroxide sensing
CN109001276B (zh) 基于COFs材料的电化学传感器的构建和应用
Han et al. Nanoporous carbon derived from dandelion pappus as an enhanced electrode material with low cost for amperometric detection of tryptophan
Wang et al. A new amperometric hydrazine sensor based on Prussian blue/single‐walled carbon nanotube nanocomposites
CN109265698A (zh) 一种mof/碳点手性杂化材料及其制备方法和应用
Sun et al. Silica‐Templated Metal Organic Framework‐Derived Hierarchically Porous Cobalt Oxide in Nitrogen‐Doped Carbon Nanomaterials for Electrochemical Glucose Sensing
CN108970642A (zh) 一种碳点掺杂富氮mof纳米片阵列催化剂的制备方法及应用
Guo et al. A ascorbic acid-imprinted poly (o-phenylenediamine)/zeolite imidazole frameworks-67/carbon cloth for electrochemical sensing ascorbic acid
Zhang et al. A sensing platform based on Cu-MOF encapsulated Dawson-type polyoxometalate crystal material for electrochemical detection of xanthine
Ma et al. Voltammetric determination of hydrogen peroxide using AuCu nanoparticles attached on polypyrrole-modified 2D metal-organic framework nanosheets
Zou et al. Construction of a highly sensitive signal electrochemical sensor based on self-assembled cobalt oxide-hydroxylated single-walled carbon nanotubes composite for detection of dopamine in bovine serum samples
Han et al. Electrochemical recognition for carboxylic acids based on multilayer architectures of β-cyclodextrin and methylene blue/reduce-graphene interface on glassy carbon electrodes
Shie et al. Haemoglobin immobilized on nafion modified multi-walled carbon nanotubes for O2, H2O2 and CCl3COOH sensors
Wang et al. High-performance non-enzymatic catalysts based on 3D hierarchical hollow porous Co 3 O 4 nanododecahedras in situ decorated on carbon nanotubes for glucose detection and biofuel cell application

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200724