CN114059230A - 一类基于静电纺丝的超分子碳膜的制备方法及应用 - Google Patents

一类基于静电纺丝的超分子碳膜的制备方法及应用 Download PDF

Info

Publication number
CN114059230A
CN114059230A CN202111382136.XA CN202111382136A CN114059230A CN 114059230 A CN114059230 A CN 114059230A CN 202111382136 A CN202111382136 A CN 202111382136A CN 114059230 A CN114059230 A CN 114059230A
Authority
CN
China
Prior art keywords
mof
gamma
pan
carbon film
electrostatic spinning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111382136.XA
Other languages
English (en)
Inventor
刘育
许文师
陈湧
王丽华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN202111382136.XA priority Critical patent/CN114059230A/zh
Publication of CN114059230A publication Critical patent/CN114059230A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • D06C7/04Carbonising or oxidising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一类基于静电纺丝的超分子碳膜的制备方法及应用。利用静电纺丝技术将聚丙烯腈(PAN)与γ‑环糊精金属有机骨架(γ‑CD‑MOF)共纺,然后在900℃进行碳化,得到PAN/γ‑CD‑MOF超分子碳膜。本发明的优点是:PAN/γ‑CD‑MOF碳膜保留了γ‑CD、γ‑CD‑MOF的骨架和纺丝纤维交叉形成的孔隙,显示出高比表面积;分级多孔结构有利于快速的电荷转移和离子扩散,使PAN/γ‑CD‑MOF碳膜电极具有高比电容、高能量密度、高功率密度和优异的循环稳定性。所得超分子柔性多孔碳膜具有高比表面积,高孔隙率和优异的电化学性质,在吸附,过滤,电极和超级电容器等方面具有广阔的应用前景。

Description

一类基于静电纺丝的超分子碳膜的制备方法及应用
技术领域
本发明属于超分子材料领域,具体涉及一种以聚丙烯腈与γ-CD-MOF作为主要基体材料的超分子碳膜的制备方法和应用。在此技术中,由超分子组装策略所构造的柔性多孔碳膜在电极以及电容器应用中发挥着十分重要的作用。
背景技术
超级电容器(SCs)因其在智能纺织品、可穿戴电子、便携式设备、无线充电存储和可植入医疗电子设备等诸多领域的应用而成为研究热点。与电池相比,SCs具有充放电快、功率密度高、循环寿命长等特点。然而,提高SCs的能量密度仍然是一种挑战(对于最好的商用电容器,能量密度约为10Wh kg-1)。增大电极材料的电容和拓宽电极材料的电位窗口是提高能量密度的有效手段。而具有有序多孔骨架的材料有利于高电荷转移效率,对于构建具有更高电容的超级电容器具有重要意义。MOFs因其结构有序、比表面积大、具有多孔结构等优点,成为一种很有前途的SCs材料。然而,MOFs导电性有限、化学稳定性差和机械性能差等特点严重限制了其在实际电化学应用中的使用。为了提高其导电性和稳定性,MOFs被作为制造碳基纳米材料的前体,煅烧后得到的导电多孔碳具有化学、机械和热稳定性好、电导率高、电子和离子可快速储存及转移等优点。很多电极的活性物质是粉末,需将其通过粘合剂粘附在碳纸上作为电极使用,这无疑增加了制备成本以及界面电阻;而且,活性粉末在电化学反应过程中很容易团聚,导致其循环稳定性较差。因此,制备独立式柔性多孔碳膜作为电极尤为重要。静电纺丝技术在构建独立式柔性多孔碳膜方面具有很大优势,静电纺丝纤维因其柔韧性、重量轻、高孔隙率、有利于快速传质和降低阻力等优点而备受青睐。然而,由于离子在压缩纤维中的缓慢扩散和储存,实现高能量密度仍然是一个挑战。在这里,我们通过共纺PAN和γ-CD-MOF制备了纳米纤维膜,然后对膜进行碳化,制备了超分子碳膜。该体系的优点之一是我们通过一种廉价简单易行的方法制备了具有有序结构的层状自支撑柔性多孔碳膜。此外,本工作的另一个优点是γ-CD-MOF可将纤维隔开,使碳膜中的纤维不会堆积得太紧密,利于离子的储存和扩散,在电极、超级电容器等方面具有广阔的应用前景。
发明内容
本发明的目的是针对提高超级电容器能量密度的问题,利用静电纺丝技术与超分子策略的结合,提供了一种简单有效的柔性自支撑电极体系及其构筑方法,由该方法所构筑的电极由于其分级多孔结构有利于快速的电荷转移和离子扩散,因而具有高比电容和循环性能。由超分子碳膜构筑的对称超级电容器具有高能量密度、高功率密度以及优异的循环稳定性。
本发明的技术方案如下:
一类基于静电纺丝的超分子碳膜,利用静电纺丝技术将聚丙烯腈与γ-CD-MOF共纺,再将纺丝膜高温碳化,得到柔性多孔超分子碳膜。
本发明进一步公开了该超分子碳膜的制备方法,其特征包括以下方面:
(1)γ-CD-MOF的制备;
(2)静电纺丝超分子碳膜的制备。
其中(1)γ-CD-MOF的制备方法如下:
温度为70℃,在搅拌下γ-环糊精(γ-CD)和醋酸钾(KAc)在水中完全溶解,接着继续搅拌混合1-2h,然后通过0.45μm水相微孔滤膜进行过滤,过滤后的溶液在25℃放置6-10小时后析出大量无色晶体,过滤后所得无色晶体用乙醇洗涤三次,然后在45℃真空烘箱中干燥8-24小时,得到γ-CD-MOF。
(2)静电纺丝超分子碳膜的制备方法如下:
[1]PAN/γ-CD-MOF纳米纤维膜的制备方法
将含有0.2-0.275gγ-CD-MOF的8-11w/v%的PAN溶液转移到5mL注射器中,其中所使用针头为20-23G,推进器的推进速度为0.1-0.3mm/min;施加的高压为20-30kV、覆有铝箔纸的接收器与注射器尖端之间的距离为15-25cm、接收器的转速为40-200rpm;从覆盖有铝箔的接收器上直接收集得到的PAN/γ-CD-MOF纳米纤维膜,真空干燥后室温保存;
[2]PAN/γ-CD-MOF纳米纤维碳膜的制备方法
将得到的PAN/γ-CD-MOF纳米纤维膜在N2气氛中以2.5-5℃/min的升温速率升温到800-1000℃,然后继续煅烧2-5h,得到PAN/γ-CD-MOF碳膜,室温保存。
本发明更进一步公开了静电纺丝超分子碳膜的电化学性质。其特征包括以下方面:
PAN/γ-CD-MOF碳膜电极具有高比电容和优异的循环稳定性;PAN/γ-CD-MOF组装的对称超级电容器具有高能量密度,高功率密度和优异的循环稳定性。
本发明的有益技术效果是:
该体系的优点之一是我们通过一种廉价简单易行的方法制备了具有有序结构的层状自支撑柔性多孔碳膜。此外,本工作的另一个优点是γ-CD-MOF可将纤维隔开,使碳膜中的纤维不会堆积得太紧密,利于离子的储存和扩散,在电极、超级电容器等方面具有广阔的应用前景。
附图说明
图1为静电纺丝制备PAN/γ-CD-MOF碳膜的示意图。
图2为γ-CD-MOF的表征:(a)SEM图,(b)TEM图,(c)元素分析,(d)XRD谱,(e)氮气吸脱附曲线,和(f)孔径分布。
图3为(a)PAN和(b)PAN/γ-CD-MOF的SEM图;(c)PAN和(d)PAN/γ-CD-MOF的元素分析。
图4为PAN/γ-CD-MOF碳膜形貌表征:(a)碳膜的照片及其柔性展示,(b)SEM图,(c)元素映射分析和(d)TEM图。
图5为PAN/γ-CD-MOF碳膜比表面积、孔径及导电性表征:(a)氮气吸脱附曲线,(b)孔径分布,(c)拉曼光谱和(d)用PAN/γ-CD-MOF碳膜作为电线点亮灯泡的照片。
图6为PAN/γ-CD-MOF碳膜电极的电化学性能:(a)电极的阻抗谱,(b)电极在不同扫描速率下的循环伏安曲线,(c)电极在不同电流密度下的恒电流充放电曲线,(d)根据恒电流充放电曲线计算的电极比电容,(e)电极在第1、3000、6000次循环时的循环伏安曲线,(f)电极在200mV/s扫描速率下的循环性能。
图7为基于两个PAN/γ-CD-MOF碳膜电极的对称超级电容器的电化学性能:(a)对称超级电容器的阻抗谱,(b)对称超级电容器在不同扫描速率下的循环伏安曲线,(c)不同电流密度下对称超级电容器的恒电流充放电曲线,(d)根据恒电流充放电曲线计算的对称超级电容器的比电容,(e)第1、3000、6000次循环时对称超级电容器的循环伏安曲线和(f)对称超级电容器在200mV/s扫描速率下的循环性能。
具体实施方式
以下结合附图对本发明涉及的一类基于静电纺丝的超分子碳膜的制备方法及应用做详细阐述,但本发明不受限于下述实施例。为了使公众对本发明有充分的了解,在本发明优选实施例中详细说明了具体细节。本发明所用到的原料均可商业购得,特此说明。
γ-CD-MOF的制备方法,包括以下步骤:
70℃下,γ-环糊精(γ-CD)和醋酸钾(KAc)在水中完全溶解,接着连续搅拌混合1h,然后通过0.45μm水相微孔滤膜过滤,过滤后的溶液在25℃放置6小时后析出大量无色晶体,过滤后所得无色晶体用乙醇洗涤三次,然后在45℃真空烘箱中干燥12小时,得到γ-CD-MOF。
PAN/γ-CD-MOF纳米纤维膜的制备方法,包括以下步骤:
将含有0.25gγ-CD-MOF的10w/v%的PAN溶液转移到5mL注射器中,其中所使用针头为20G,推进器的推进速度为0.3mm/min;施加的高压为20-30kV、覆有铝箔纸的接收器与注射器尖端之间的距离为15-25cm、接收器的转速为40-200rpm;从覆盖有铝箔的接收器上直接收集得到的PAN/γ-CD-MOF纳米纤维膜,真空干燥后室温保存;
PAN/γ-CD-MOF纳米纤维碳膜的制备方法,包括以下步骤:
将得到的PAN/γ-CD-MOF纳米纤维膜在N2气氛中以2.5℃/min的升温速率升温到900℃,然后在900℃下煅烧3h,得到PAN/γ-CD-MOF碳膜,室温保存。
图1为静电纺丝制备PAN/γ-CD-MOF碳膜的示意图。
具体说明:利用静电纺丝技术将聚丙烯腈与γ-CD-MOF共纺,再将纺丝膜900℃碳化,得到柔PAN/γ-CD-MOF碳膜。
图2为γ-CD-MOF的表征:(a)SEM图,(b)TEM图,(c)元素分析,(d)XRD,(e)氮气吸脱附曲线,和(f)孔径分布。
具体说明:γ-CD-MOF的微观形貌如图2a、b所示。从SEM和TEM图像可以看出,γ-CD-MOF为方形结构,尺寸约为200nm,尺寸均一,形状规则。能量色散X射线光谱(EDS)元素分析(图2c)证明γ-CD-MOF含有碳、氧和钾元素。通过粉末X射线衍射(XRD)确认合成的γ-CD-MOF的晶体结构,显示出高结晶度,表明立方骨架的形成(图2d)。γ-CD-MOF的N2吸附/解吸等温线如图2e所示,等温线在低相对压力下急剧上升,显示出典型的I型物理吸附行为,这是微孔材料的特征。γ-CD-MOF的Brunauer-Emmett-Teller(BET)比表面积为842.2m2/g,微孔体积为0.32cm3/g。图1f的孔径分布表明γ-CD-MOF主要包含1.27nm的微孔。
图3为(a)PAN和(b)PAN/γ-CD-MOF的SEM图;(c)PAN和(d)PAN/γ-CD-MOF的元素分析。
具体说明:图3中的SEM图像显示PAN纳米纤维表面光滑,直径均一,而PAN/γ-CD-MOF纳米纤维中存在少量的块状结节,意味着γ-CD-MOF纳米粒子在PAN中分散良好,在50%(相对于聚合物的含量)高负载下几乎没有聚集。PAN和PAN/γ-CD-MOF膜中纳米纤维的平均直径分别约为260和390nm。元素分析(图3c,d)证明PAN含有C和N,而PAN/γ-CD-MOF含有C、N、O和K元素。
图4为PAN/γ-CD-MOF碳膜形貌表征:(a)碳膜的照片及其柔性展示,(b)SEM图,(c)元素映射分析和(d)TEM图。
具体说明:为了提高其导电性,将PAN/γ-CD-MOF电纺膜程序升温至900℃进行碳化。如图4a所示,碳化后得到柔性碳膜,即使折叠弯曲也不会破裂。图4b中的SEM显示PAN/γ-CD-MOF碳膜中纳米纤维的平均直径约为240nm。图4c中元素分析映射图像证明碳膜含有C、N、O和K元素,并且这些元素分布很均匀。图4d中的TEM进一步证实了PAN/γ-CD-MOF碳膜中纳米纤维的尺寸约为240nm。
图5为PAN/γ-CD-MOF碳膜比表面积、孔径及导电性表征:(a)氮气吸脱附曲线,(b)孔径分布,(c)拉曼光谱和(d)用PAN/γ-CD-MOF碳膜作为电线点亮灯泡的照片。
具体说明:N2吸附-脱附等温线在低相对压力下急剧增加表明材料中含有大量的微孔;高相对压力下急剧增加,表明材料中含有大量的大孔;而在中等相对压力下发生滞后,表明存在介孔。图5a中N2吸脱附等温线证实了PAN/γ-CD-MOF碳膜中存在大量的微孔、介孔和大孔,具有134.7m2g-1的高表面积。图5b的孔径分布证明碳膜中微孔的孔径分布在0.73和1.09nm处,介孔和大孔的孔径分布在23到186nm区域,这无疑促进了离子动力学,缩短了传质距离并促进了电荷存储。通过拉曼光谱测试PAN/γ-CD-MOF碳膜的石墨化程度,如图5c所示。位于1342cm-1和1581cm-1的两个峰属于D带和G带,分别代表无序碳和有序石墨晶体结构;出现在2500和3000cm-1之间的宽峰归属于2D带,表明层状碳结构;高度石墨化表明该材料具有良好的导电性。将PAN/γ-CD-MOF碳膜作为导线的一部分连接到电路上,灯泡就可以点亮,直观地表明其具有良好的导电性(图5d)。
图6为PAN/γ-CD-MOF碳膜电极的电化学性能:(a)电极的阻抗谱,(b)电极在不同扫描速率下的循环伏安曲线,(c)电极在不同电流密度下的恒电流充放电曲线,(d)根据恒电流充放电曲线计算的电极比电容,(e)电极在第1、3000、6000次循环时的循环伏安曲线,(f)电极在200mV/s扫描速率下的循环性能。
具体说明:与有机电解液相比,水系电解液具有安全性好、成本低、普通环境下可操作性强等优点。为了评估PAN/γ-CD-MOF碳膜电极的电化学性能,我们使用三电极体系在1M H2SO4中进行了电化学阻抗谱(EIS)、循环伏安法(CV)和恒电流充放电(GCD)测量。Ag/AgCl作为参比电极,Pt片作为对电极,PAN/γ-CD-MOF碳膜作为工作电极。EIS用于评估离子扩散和储存,高频曲线与横轴的交点代表电解液的电阻;高频半圆的直径代表电极内部的电荷转移电阻;低频直线的斜率揭示了离子扩散能力。图6a中的EIS数据显示电解质电阻和电荷转移电阻都很小,低频区域的直线表明离子可及性高。PAN/γ-CD-MOF碳膜电极的CV曲线是在5到500mV s-1的扫描速率范围内测定,在-0.2至1.0V(相对于Ag/AgCl)的电位范围内扫描,如图6b所示。恒电流充/放电(0.5-10Ag-1)表现出近似对称的三角形形状,具有轻微的非线性,证明其具有优异的可逆性(图6c)。根据GCD曲线计算可得,0.5A g-1的电流密度下,PAN/γ-CD-MOF碳膜电极的比电容最大达到283.3F g-1(图6d)。PAN/γ-CD-MOF碳膜具有较大的比表面积、多孔结构、优良的导电性,以及氮氧掺杂,使离子具有更快的扩散和更大的储存能力。200mV s-1扫描速率下的循环性能表明PAN/γ-CD-MOF碳膜电极在6000次循环后仍保持初始电容的99.6%,表现出优异的长循环稳定性(图6e,f)。
图7为基于两个PAN/γ-CD-MOF碳膜电极的对称超级电容器的电化学性能:(a)对称超级电容器的阻抗谱,(b)对称超级电容器在不同扫描速率下的循环伏安曲线,(c)不同电流密度下对称超级电容器的恒电流充放电曲线,(d)根据恒电流充放电曲线计算的对称超级电容器的比电容,(e)第1、3000、6000次循环时对称超级电容器的循环伏安曲线和(f)对称超级电容器在200mV/s扫描速率下的循环性能。
具体说明:在测试PAN/γ-CD-MOF碳膜作为电极材料的电化学性能后,我们使用两个PAN/γ-CD-MOF碳膜组装成一个无添加剂/无粘合剂的对称超级电容器。EIS结果如图7a所示,从奈奎斯特图高频区域的截距可得电解液电阻为0.4Ω。高频区半圆半径可得电荷电阻转移仅为14.8Ω,显示出惊人的电子和离子传输能力。上述结果与低频区域的直线一起,表明整个超级电容器的内阻较低。将扫描速率从5mV s-1增加到500mV s-1不会改变CV曲线的形状,表明具有高倍率能力(图7b)。在0.3到10Ag-1的电流密度下的GCD曲线如图7c所示。对称超级电容器在0.5Ag-1时具有86.4F g-1的高比电容(图7d)。值得注意的是,我们的对称超级电容器提供了17.5Wh kg-1的高能量密度和6kW kg-1的功率密度。此外,对称超级电容器在200mV s-1下进行6000次充电/放电循环后显示出出色的电容保持率为97.5%(图7e,f)。PAN/γ-CD-MOF碳膜超级电容器卓越的循环能力得益于其低等效串联电阻。

Claims (9)

1.一类基于静电纺丝的超分子碳膜的制备方法,其特征在于,包括:
(1)γ-CD-MOF的制备;
(2)静电纺丝超分子碳膜的制备;
利用静电纺丝技术将聚丙烯腈与γ-CD-MOF共纺,再将纺丝膜高温碳化,得到柔性多孔超分子碳膜。
2.根据权利要求1所述的基于静电纺丝的超分子碳膜的制备方法,其特征在于,γ-CD-MOF的制备方法是,将γ-环糊精(γ-CD)和醋酸钾(KAc)在水中完全溶解,过滤后放置后析出无色晶体,将所得无色晶体经洗涤、干燥得到γ-CD-MOF。
3.根据权利要求1所述的基于静电纺丝的超分子碳膜的制备方法,其特征在于,静电纺丝超分子碳膜的制备方法是,将含有γ-CD-MOF的PAN溶液施加到覆有铝箔纸的接收器,控制接收器的转速,从覆盖有铝箔的接收器上收集得到PAN/γ-CD-MOF纳米纤维膜;将得到的PAN/γ-CD-MOF纳米纤维膜经高温煅烧,得到PAN/γ-CD-MOF碳膜。
4.根据权利要求2所述的基于静电纺丝的超分子碳膜的制备方法,其特征在于,γ-CD-MOF的具体制备方法是:
70℃下,γ-环糊精(γ-CD)和醋酸钾(KAc)在水中完全溶解,接着连续搅拌混合1-2h,然后通过0.45μm水相微孔滤膜过滤,过滤后的溶液在4-25℃放置6-10小时后析出大量无色晶体,过滤后所得无色晶体用乙醇洗涤三次,然后在45℃真空烘箱中干燥8-24小时,得到γ-CD-MOF。
5.根据权利要求3所述的基于静电纺丝的超分子碳膜的制备方法,其特征在于,静电纺丝超分子碳膜的具体制备方法是:
1)PAN/γ-CD-MOF纳米纤维膜的制备方法
将含有0.2-0.275gγ-CD-MOF的8-11w/v%的PAN溶液转移到5mL注射器中,其中所使用针头为20-23G,推进器的推进速度为0.1-0.3mm/min;施加的高压为20-30kV、覆有铝箔纸的接收器与注射器尖端之间的距离为15-25cm、接收器的转速为40-200rpm;从覆盖有铝箔的接收器上直接收集得到的PAN/γ-CD-MOF纳米纤维膜,真空干燥后室温保存;
2)PAN/γ-CD-MOF纳米纤维碳膜的制备方法
将得到的PAN/γ-CD-MOF纳米纤维膜在N2气氛中以2.5-5℃/min的升温速率升温到800-1000℃,然后煅烧2-5h,得到PAN/γ-CD-MOF碳膜,室温保存。
6.一类基于静电纺丝的超分子碳膜,其特征在于:通过权利要求1-5任一项方法制备得到。
7.权利要求6所述的基于静电纺丝的超分子碳膜在电子器件方面的应用。
8.根据权利要求7所述的应用,其特征在于:用于制备PAN/γ-CD-MOF碳膜电极。
9.根据权利要求7所述的应用,其特征在于:用于制备PAN/γ-CD-MOF碳膜对称超级电容器。
CN202111382136.XA 2021-11-22 2021-11-22 一类基于静电纺丝的超分子碳膜的制备方法及应用 Pending CN114059230A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111382136.XA CN114059230A (zh) 2021-11-22 2021-11-22 一类基于静电纺丝的超分子碳膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111382136.XA CN114059230A (zh) 2021-11-22 2021-11-22 一类基于静电纺丝的超分子碳膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN114059230A true CN114059230A (zh) 2022-02-18

Family

ID=80278859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111382136.XA Pending CN114059230A (zh) 2021-11-22 2021-11-22 一类基于静电纺丝的超分子碳膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN114059230A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921907A (zh) * 2022-05-27 2022-08-19 上海交通大学 一种高效散热用金属有机框架复合材料的制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269511A1 (en) * 2008-04-25 2009-10-29 Aruna Zhamu Process for producing hybrid nano-filament electrodes for lithium batteries
US20120189877A1 (en) * 2011-01-24 2012-07-26 Solarno, Inc. Composite carbon fiber electrodes incorporating porous high surface area carbon
CN103663448A (zh) * 2012-09-19 2014-03-26 天津普兰纳米科技有限公司 碳材料的制备方法、所得碳材料及其应用
CN106835363A (zh) * 2017-01-18 2017-06-13 南京理工大学 一种用于超级电容器的中空碳纤维材料的制备方法
CN110137461A (zh) * 2019-05-10 2019-08-16 陕西科技大学 锂离子电池用mof衍生的钴氧化物碳纳米纤维柔性电极材料及其制备方法
CN110690467A (zh) * 2019-10-13 2020-01-14 浙江大学 单原子钯催化剂的制备及其在直接甲酸燃料电池中的应用
CN110707327A (zh) * 2019-10-13 2020-01-17 浙江大学 基于二茂钴的改性多孔碳材料制备及在锂硫电池中的应用
CN110854373A (zh) * 2019-11-26 2020-02-28 华南师范大学 复合负极材料及其制备方法
CN110952325A (zh) * 2019-12-10 2020-04-03 南开大学 一类基于β-环糊精和电纺聚丙烯腈的交联聚合物的制备方法及应用
CN111081995A (zh) * 2019-11-07 2020-04-28 东北大学 一种基于MOFs衍生金属氧化物碳纳米纤维电极材料的制备方法
CN111276662A (zh) * 2020-02-11 2020-06-12 福建师范大学 有机金属框架聚轮烷型隔膜及在电池中应用
CN111443117A (zh) * 2020-03-12 2020-07-24 济南大学 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090269511A1 (en) * 2008-04-25 2009-10-29 Aruna Zhamu Process for producing hybrid nano-filament electrodes for lithium batteries
US20120189877A1 (en) * 2011-01-24 2012-07-26 Solarno, Inc. Composite carbon fiber electrodes incorporating porous high surface area carbon
CN103663448A (zh) * 2012-09-19 2014-03-26 天津普兰纳米科技有限公司 碳材料的制备方法、所得碳材料及其应用
CN106835363A (zh) * 2017-01-18 2017-06-13 南京理工大学 一种用于超级电容器的中空碳纤维材料的制备方法
CN110137461A (zh) * 2019-05-10 2019-08-16 陕西科技大学 锂离子电池用mof衍生的钴氧化物碳纳米纤维柔性电极材料及其制备方法
CN110690467A (zh) * 2019-10-13 2020-01-14 浙江大学 单原子钯催化剂的制备及其在直接甲酸燃料电池中的应用
CN110707327A (zh) * 2019-10-13 2020-01-17 浙江大学 基于二茂钴的改性多孔碳材料制备及在锂硫电池中的应用
CN111081995A (zh) * 2019-11-07 2020-04-28 东北大学 一种基于MOFs衍生金属氧化物碳纳米纤维电极材料的制备方法
CN110854373A (zh) * 2019-11-26 2020-02-28 华南师范大学 复合负极材料及其制备方法
CN110952325A (zh) * 2019-12-10 2020-04-03 南开大学 一类基于β-环糊精和电纺聚丙烯腈的交联聚合物的制备方法及应用
CN111276662A (zh) * 2020-02-11 2020-06-12 福建师范大学 有机金属框架聚轮烷型隔膜及在电池中应用
CN111443117A (zh) * 2020-03-12 2020-07-24 济南大学 一种双手性β-CD@Cu-MOF纳米复合传感器的制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘慧君: "基于碱金属钾的β-环糊精金属有机骨架的合成研究", 《南华大学学报( 自然科学版)》 *
董琪: "主客体结构γ-CD-MOF衍生材料的制备及电化学性能", 《中国优秀硕士学位论文全文数据库(电子期刊)-工程科技Ⅰ辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114921907A (zh) * 2022-05-27 2022-08-19 上海交通大学 一种高效散热用金属有机框架复合材料的制备方法
CN114921907B (zh) * 2022-05-27 2023-08-08 上海交通大学 一种高效散热用金属有机框架复合材料的制备方法

Similar Documents

Publication Publication Date Title
Zhao et al. Hydrothermal electrodeposition incorporated with CVD-polymerisation to tune PPy@ MnO2 interlinked core-shell nanowires on carbon fabric for flexible solid-state asymmetric supercapacitors
Li et al. A N, S dual doping strategy via electrospinning to prepare hierarchically porous carbon polyhedra embedded carbon nanofibers for flexible supercapacitors
Youe et al. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors
Tebyetekerwa et al. Unveiling polyindole: freestanding As-electrospun polyindole nanofibers and polyindole/carbon nanotubes composites as enhanced electrodes for flexible all-solid-state supercapacitors
Ma et al. Nanoporous electrospun NiCo2S4 embedded in carbon fiber as an excellent electrode for high-rate supercapacitors
Kebabsa et al. Highly porous cobalt oxide-decorated carbon nanofibers fabricated from starch as free-standing electrodes for supercapacitors
Bhagwan et al. Porous, one dimensional and high aspect ratio Mn3O4 nanofibers: fabrication and optimization for enhanced supercapacitive properties
Jiang et al. Rice husk-derived Mn 3 O 4/manganese silicate/C nanostructured composites for high-performance hybrid supercapacitors
Zhang et al. A facile biotemplate-assisted synthesis of mesoporous V2O5 microtubules for high performance asymmetric supercapacitors
Zhou et al. Enhancement of charge transport in interconnected lignin-derived carbon fibrous network for flexible battery-supercapacitor hybrid device
Cai et al. Reduced graphene oxide-silver nanoparticles/nitrogen-doped carbon nanofiber composites with meso-microporous structure for high-performance symmetric supercapacitor application
Lin et al. N/O co-doped hierarchically porous carbon with three-dimensional conductive network for high-performance supercapacitors
KR101326448B1 (ko) 다공성 활성탄소섬유의 제조방법 및 그 다공성 활성탄소섬유를 포함하는 전기화학 캐패시터용 cnf 전극
Tan et al. Carbon nanofibers prepared by electrospinning accompanied with phase-separation method for supercapacitors: Effect of thermal treatment temperature
Feng et al. Capacitive behavior of glucose-derived porous activated carbon with different morphologies
Tong et al. A green approach to prepare hierarchical porous carbon nanofibers from coal for high-performance supercapacitors
Yan et al. Construction of hierarchical porous derived from the cellulose nanofiber/graphene/Zn/Co ZIF 3D conductive carbon aerogels for high-performance supercapacitors
Chen et al. Dexterous and friendly preparation of N/P co-doping hierarchical porous carbon nanofibers via electrospun chitosan for high performance supercapacitors
Su et al. Flexible two-ply yarn supercapacitors based on carbon nanotube/stainless steel core spun yarns decorated with Co3O4 nanoparticles and MnOx composites
Erusappan et al. Hierarchical nickel–cobalt oxide and glucose-based carbon electrodes for asymmetric supercapacitor with high energy density
Anand et al. MnMoS4 anchored at carbon nanofiber as a flexible electrode for solid-state asymmetric supercapacitor device
Jia et al. Synthesis and characterization of graphene/carbonized paper/tannic acid for flexible composite electrodes
Zhang et al. Osiers-sprout-like heteroatom-doped carbon nanofibers as ultrastable anodes for lithium/sodium ion storage
Wan et al. Enhancing the energy density of supercapacitors by introducing nitrogen species into hierarchical porous carbon derived from camellia pollen
Liu et al. Lignin-derived nitrogen-doped polyacrylonitrile/polyaniline carbon nanofibers by electrospun method for energy storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20220218

RJ01 Rejection of invention patent application after publication