CN109119462B - 一种碳化硅沟槽mos器件 - Google Patents

一种碳化硅沟槽mos器件 Download PDF

Info

Publication number
CN109119462B
CN109119462B CN201810992057.2A CN201810992057A CN109119462B CN 109119462 B CN109119462 B CN 109119462B CN 201810992057 A CN201810992057 A CN 201810992057A CN 109119462 B CN109119462 B CN 109119462B
Authority
CN
China
Prior art keywords
dielectric
groove
region
type
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810992057.2A
Other languages
English (en)
Other versions
CN109119462A (zh
Inventor
罗小蓉
何清源
廖天
张科
方健
杨霏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201810992057.2A priority Critical patent/CN109119462B/zh
Publication of CN109119462A publication Critical patent/CN109119462A/zh
Application granted granted Critical
Publication of CN109119462B publication Critical patent/CN109119462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明属于功率半导体技术领域,具体涉及一种碳化硅沟槽MOS器件。本发明主要特征在于:采用T字形槽栅结构,辅助耗尽漂移区,提高漂移区浓度,减小导通电阻,同时提高击穿电压;采用P型埋层作为缓冲层,降低饱和电流,提高抗短路能力。相比于传统的碳化硅沟槽MOS器件,本发明不仅具有更低的导通电阻、更高的击穿电压,而且具有更好的抗短路能力。

Description

一种碳化硅沟槽MOS器件
技术领域
本发明属于功率半导体技术领域,具体涉及一种碳化硅沟槽MOS器件。
背景技术
碳化硅作为第三代半导体材料,具有宽禁带、高饱和漂移速度以及高热导率的特性,适合制造高压大功率半导体器件。碳化硅沟槽MOS器件相比于传统平面型MOS器件,具有更大的沟道密度从而具有更低的导通电阻。然而,碳化硅沟槽MOS器件存在栅氧化层电场过高以及饱和电流过大的问题。有研究者分别针对这两个问题进行研究:通过P埋层来屏蔽栅氧化层降低其电场,这样做会引入JFET区电阻;通过进一步增大该JFET区电阻,来加速JFET区的夹断,实现饱和电流的降低。
发明内容
本发明的目的,就是针对上述问题,提出一种兼具高击穿电压、低导通电阻和低饱和电流的碳化硅沟槽MOS器件。
本发明技术方案如下:
一种碳化硅沟槽MOS器件,包括N+衬底层1以及位于N+衬底层1上表面的N型外延层2;所述N+衬底层1的底部引出漏极电极;在N型外延层2上层嵌入设置有槽栅结构;
在N型外延层2上层与槽栅结构并列的区域,沿器件垂直方向自下而上依次具有P型埋层3、JFET区4、P型阱区5以及N+源区6;
将器件横向剖面图定义为直角坐标平面,即器件横向方向为x轴,器件垂直方向为y轴,定义器件纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向,即z轴,x轴、y轴和z轴构成三维坐标系;
沿z轴方向的中部,具有P+体接触区7,且P+体接触区7沿y轴方向依次贯穿N+源区6、P型阱区5和JFET区4,P+体接触区7的底部与P型埋层3相接;所述N+源区6和P+体接触区7的上表面引出源极电极;
沿z轴方向,所述P型埋层3具有凸起结构,即沿z轴方向,P型埋层3的中部区域沿x轴方向延伸,且该凸起结构与P+体接触区7接触;
所述槽栅结构呈“T”字形,即由栅极导电材料8和栅介质层9组成浅且宽的导电槽、位于导电槽下方深且窄的介质槽10;所述导电槽的底部与P型埋层3的顶部相接触;所述介质槽10垂直贯穿P型埋层3且延伸入N型外延层2;所述栅极导电材料8引出栅极电极。
进一步的,所述介质槽10中填充的介质为低K介质,所述低K介质是指K值小于等于二氧化硅K值的介质。
进一步的,所述介质槽10中填充的介质为高K介质,所述高K介质是指K值大于二氧化硅K值的介质。
进一步的,所述介质槽10的侧面和底面具有P型条11,所述N型漂移区2与所述P型条11形成超结。
本发明的有益效果为,相对于传统碳化硅沟槽MOS器件,本发明不仅具有更高的击穿电压、更低的导通电阻,而且具有更好的短路能力。
附图说明
图1为主结构示意图;
图2位实施例1的结构示意图;
图3位实施例2的结构示意图;
图4位实施例3、4的结构示意图;
上述附图中依次给出的是主视图、沿主视图中AA’线的截面图和沿BB’线的截面图。
具体实施方式
下面结合附图和实施例进一步对本发明进行描述。
实施例1
如图2所示,本实例为具有低K介质槽的碳化硅沟槽MOS器件,包括N+衬底层1以及N型外延层2;槽栅结构嵌于N型外延层2中;所述N+衬底层1的底部引出漏极电极;
所述器件横向方向与器件垂直方向相互垂直,纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向;
所述N型外延层2的上部沿器件垂直方向自下而上依次形成P型埋层3、JFET区4、P型阱区5、以及N+源区6;纵向方向上的P+体接触区7垂直贯穿N+源区6、P型阱区5和JFET区4,其底部与P型埋层3相接;所述P型埋层3在器件横向方向以及纵向方向均留有空隙;所述N+源区6和P+体接触区7的上表面引出源极电极;
所述槽栅结构呈现T字形,包括由栅极导电材料8和栅介质层9组成的浅且宽的槽和其下方深且窄的介质槽10;所述浅槽垂直贯穿N+源区6、P型阱区5和JFET区4,且其底部与P型埋层3的顶部相接触;所述介质槽10垂直贯穿P型埋层3且深入N型外延层2;所述栅极导电材料8引出栅极电极;所述介质槽10中填入低K介质,包括二氧化硅以及K值比二氧化硅低的介质。
本例的工作原理是:
介质槽辅助耗尽N型漂移区,提高了N型漂移区的优化掺杂浓度,降低了比导通电阻。同时,介质槽可以有效降低栅漏电容,改善了开关特性。
实施例2
如图3所示,本实例为具有高K介质槽的碳化硅沟槽MOS器件,包括N+衬底层1以及N型外延层2;槽栅结构嵌于N型外延层2中;所述N+衬底层1的底部引出漏极电极;
所述器件横向方向与器件垂直方向相互垂直,纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向;
所述N型外延层2的上部沿器件垂直方向自下而上依次形成P型埋层3、JFET区4、P型阱区5、以及N+源区6;纵向方向上的P+体接触区7垂直贯穿N+源区6、P型阱区5和JFET区4,其底部与P型埋层3相接;所述P型埋层3在器件横向方向以及纵向方向均留有空隙;所述N+源区6和P+体接触区7的上表面引出源极电极;
所述槽栅结构呈现T字形,包括由栅极导电材料8和栅介质层9组成的浅且宽的槽和其下方深且窄的介质槽10;所述浅槽垂直贯穿N+源区6、P型阱区5和JFET区4,且其底部与P型埋层3的顶部相接触;所述介质槽10垂直贯穿P型埋层3且深入N型外延层2;所述栅极导电材料8引出栅极电极;所述介质槽10中填入高K介质,具体指代K值比二氧化硅高的介质。
与实施例1相比,高K介质能增强辅助耗尽N型漂移区,使得N型漂移区优化掺杂浓度进一步提高,比导通电阻进一步降低。
实施例3
如图4所示,本实例为具有低K介质槽的碳化硅超结沟槽MOS器件,包括N+衬底层1以及N型外延层2;槽栅结构嵌于N型外延层2中;所述N+衬底层1的底部引出漏极电极;
所述器件横向方向与器件垂直方向相互垂直,纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向;
所述N型外延层2的上部沿器件垂直方向自下而上依次形成P型埋层3、JFET区4、P型阱区5、以及N+源区6;纵向方向上的P+体接触区7垂直贯穿N+源区6、P型阱区5和JFET区4,其底部与P型埋层3相接;所述P型埋层3在器件横向方向以及纵向方向均留有空隙;所述N+源区6和P+体接触区7的上表面引出源极电极;
所述槽栅结构呈现T字形,包括由栅极导电材料8和栅介质层9组成的浅且宽的槽和其下方深且窄的介质槽10;所述浅槽垂直贯穿N+源区6、P型阱区5和JFET区4,且其底部与P型埋层3的顶部相接触;所述介质槽10垂直贯穿P型埋层3且深入N型外延层2;所述栅极导电材料8引出栅极电极;所述介质槽10中填入低K介质,包括二氧化硅以及K值比二氧化硅低的介质;所述介质槽10的侧面和底面存在P型条11,所述N型漂移区2与所述P型条11形成超结;
与实施例1相比,由于P型条11对N型漂移区的辅助耗尽作用,N型漂移区优化掺杂浓度进一步提高,比导通电阻进一步降低;与实施例2相比,由于器件的栅漏电容降低,降低了器件开关损耗。
实施例4
如图4所示,本实例为具有高K介质槽的碳化硅超结沟槽MOS器件,包括N+衬底层1以及N型外延层2;槽栅结构嵌于N型外延层2中;所述N+衬底层1的底部引出漏极电极;
所述器件横向方向与器件垂直方向相互垂直,纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向;
所述N型外延层2的上部沿器件垂直方向自下而上依次形成P型埋层3、JFET区4、P型阱区5、以及N+源区6;纵向方向上的P+体接触区7垂直贯穿N+源区6、P型阱区5和JFET区4,其底部与P型埋层3相接;所述P型埋层3在器件横向方向以及纵向方向均留有空隙;所述N+源区6和P+体接触区7的上表面引出源极电极;
所述槽栅结构呈现T字形,包括由栅极导电材料8和栅介质层9组成的浅且宽的槽和其下方深且窄的介质槽10;所述浅槽垂直贯穿N+源区6、P型阱区5和JFET区4,且其底部与P型埋层3的顶部相接触;所述介质槽10垂直贯穿P型埋层3且深入N型外延层2;所述栅极导电材料8引出栅极电极;所述介质槽10中填入高K介质,具体指代K值比二氧化硅高的介质;所述介质槽10的侧面和底面存在P型条11,所述N型漂移区2与所述P型条11形成超结;
与实施例3相比,由于高K介质槽与超结共同对N型漂移区辅助耗尽作用,N型漂移区优化掺杂浓度进一步提高,进一步降低比导通电阻。

Claims (4)

1.一种碳化硅沟槽MOS器件,包括N+衬底层(1)以及位于N+衬底层(1)上表面的N型外延层(2);所述N+衬底层(1)的底部引出漏极电极;在N型外延层(2)上层嵌入设置有槽栅结构;
在N型外延层(2)上层与槽栅结构并列的区域,沿器件垂直方向自下而上依次具有P型埋层(3)、JFET区(4)、P型阱区(5)以及N+源区(6);
将器件横向剖面图定义为直角坐标平面,即器件横向方向为x轴,器件垂直方向为y轴,定义器件纵向方向为同时与器件横向方向和器件垂直方向均垂直的第三维度方向,即z轴,x轴、y轴和z轴构成三维坐标系;
沿z轴方向的中部,具有P+体接触区(7),且P+体接触区(7)沿y轴方向依次贯穿N+源区(6)、P型阱区(5)和JFET区(4),P+体接触区(7)的底部与P型埋层(3)相接;所述N+源区(6)和P+体接触区(7)的上表面引出源极电极;
沿z轴方向,所述P型埋层(3)具有凸起结构,P型埋层(3)的中部区域沿x轴方向延伸,且该凸起结构部位位于P+体接触区(7)正下方;
所述槽栅结构呈“T”字形,即由栅极导电材料(8)和栅介质层(9)组成浅且宽的导电槽、位于导电槽下方深且窄的介质槽(10);所述导电槽的底部与P型埋层(3)的顶部相接触;所述介质槽(10)垂直贯穿P型埋层(3)且延伸入N型外延层(2);所述栅极导电材料(8)引出栅极电极。
2.根据权利要求1所述的一种碳化硅沟槽MOS器件,其特征在于,所述介质槽(10)中填充的介质为低K介质,所述低K介质是指K值小于等于二氧化硅K值的介质。
3.根据权利要求1所述的一种碳化硅沟槽MOS器件,其特征在于,所述介质槽(10)中填充的介质为高K介质,所述高K介质是指K值大于二氧化硅K值的介质。
4.根据权利要求2或3所述的一种碳化硅沟槽MOS器件,其特征在于,所述介质槽(10)的侧面和底面具有P型条(11),所述N型外延层(2)与所述P型条(11)形成超结。
CN201810992057.2A 2018-08-29 2018-08-29 一种碳化硅沟槽mos器件 Active CN109119462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810992057.2A CN109119462B (zh) 2018-08-29 2018-08-29 一种碳化硅沟槽mos器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810992057.2A CN109119462B (zh) 2018-08-29 2018-08-29 一种碳化硅沟槽mos器件

Publications (2)

Publication Number Publication Date
CN109119462A CN109119462A (zh) 2019-01-01
CN109119462B true CN109119462B (zh) 2021-10-08

Family

ID=64861396

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810992057.2A Active CN109119462B (zh) 2018-08-29 2018-08-29 一种碳化硅沟槽mos器件

Country Status (1)

Country Link
CN (1) CN109119462B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449757A (zh) * 2016-09-28 2017-02-22 中国科学院半导体研究所 一种SiC基沟槽型场效应晶体管及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10622446B2 (en) * 2016-08-05 2020-04-14 Fuji Electric Co., Ltd. Silicon carbide based power semiconductor device with low on voltage and high speed characteristics

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106449757A (zh) * 2016-09-28 2017-02-22 中国科学院半导体研究所 一种SiC基沟槽型场效应晶体管及其制备方法

Also Published As

Publication number Publication date
CN109119462A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
CN113130627B (zh) 一种集成沟道二极管的碳化硅鳍状栅mosfet
CN104538446B (zh) 一种双向mos型器件及其制造方法
CN110518065B (zh) 低功耗高可靠性的沟槽型碳化硅mosfet器件
CN107808899B (zh) 具有混合导电模式的横向功率器件及其制备方法
CN105633137B (zh) 一种槽栅功率mosfet器件
CN109244136B (zh) 槽底肖特基接触SiC MOSFET器件
CN104201206A (zh) 一种横向soi功率ldmos器件
CN108183130A (zh) 带有p型埋层的双栅载流子储存性igbt器件
CN102969355B (zh) 一种soi基pmosfet功率器件
CN108682688B (zh) 一种具有三维沟道的复合栅igbt芯片
CN105789314A (zh) 一种横向soi功率ldmos
CN108198857A (zh) 一种集成凸块状肖特基二极管的碳化硅mosfet器件元胞结构
CN108461537A (zh) 一种沟槽栅电荷存储型igbt及其制作方法
CN109103257A (zh) 高可靠性深沟槽功率mos器件
CN106024905A (zh) 一种低导通电阻横向双扩散金属氧化物半导体器件
CN109920839A (zh) P+屏蔽层电位可调碳化硅mosfet器件及制备方法
CN107564965B (zh) 一种横向双扩散mos器件
CN105993076A (zh) 一种双向mos型器件及其制造方法
CN103474463A (zh) 通过厚底部绝缘物中的感应净电荷区的性能优良的mosfet
CN111933711B (zh) 一种集成sbd的超结mosfet
CN107546274B (zh) 一种具有阶梯型沟槽的ldmos器件
CN208835068U (zh) 高可靠性深沟槽功率mos器件
CN107359195B (zh) 一种高耐压横向超结器件
CN107359194B (zh) 一种消除高电场的器件
CN109119462B (zh) 一种碳化硅沟槽mos器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant