CN109021565B - 一种原位水解法制备耐原子氧聚酰亚胺材料的方法 - Google Patents

一种原位水解法制备耐原子氧聚酰亚胺材料的方法 Download PDF

Info

Publication number
CN109021565B
CN109021565B CN201810656120.5A CN201810656120A CN109021565B CN 109021565 B CN109021565 B CN 109021565B CN 201810656120 A CN201810656120 A CN 201810656120A CN 109021565 B CN109021565 B CN 109021565B
Authority
CN
China
Prior art keywords
atomic oxygen
sio
film
polyamic acid
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810656120.5A
Other languages
English (en)
Other versions
CN109021565A (zh
Inventor
齐胜利
董国庆
王芮晗
田国峰
武德珍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201810656120.5A priority Critical patent/CN109021565B/zh
Publication of CN109021565A publication Critical patent/CN109021565A/zh
Application granted granted Critical
Publication of CN109021565B publication Critical patent/CN109021565B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

一种原位水解法制备耐原子氧聚酰亚胺材料的方法,制得的聚酰亚胺材料由SiO2和聚酰亚胺组成,整体为致密SiO2层@(SiO2/PI互穿网络层)@(SiO2颗粒/PI杂化层)的结构特征,具有三级抗原子氧功能,抗原子氧性能优异。该材料的制备方法包括首先将硅化合物加入到聚酰胺酸溶液中,搅拌形成均一混合溶液,然后经过流延成膜、预环化和热诱导迁移聚集、原位水解和高温热处理,最终制得耐原子氧聚酰亚胺膜层材料。本发明的方法实施过程简单,条件易满足,适用于所有体系的聚酰亚胺,并且所制得的耐原子氧聚酰亚胺膜层材料具有结构致密、无开裂和界面粘结性能优异的优点。

Description

一种原位水解法制备耐原子氧聚酰亚胺材料的方法
技术领域
本发明属于聚酰亚胺薄膜技术领域,尤其是涉及一种原位水解法制备耐原子氧聚酰亚胺材料的方法。
背景技术
聚酰亚胺(PI)薄膜作为一类综合性能十分优异的芳杂环聚合物材料,以其优异的耐高低温性能、力学性能、绝缘性能、耐空间辐照性能和阻燃自熄的特性,成为航空航天领域不可或缺的高性能材料之一,被大量应用于空间飞行器的热控材料、轻质太阳能电池阵列的柔性基板以及电路系统的绝缘保护层等。
然而,空间站、太空飞船、航天飞机以及大多数卫星等空间飞行器主要运行于低地球轨道(Low Earth Orbit,LEO),而该环境中的主要成分之一就是具有强氧化能力的原子氧(atomic oxygen)。航天器是长时间高速度运行在LEO中,所以加强了原子氧侵蚀撞击航天器表面的能力,导致PI薄膜化学键的断裂和表面元素的变化,进一步造成PI薄膜的厚度和质量的逐渐减小,致使热学、光学和力学性能退化和逐步失效。由于原子氧是一种极强氧化剂,可与材料发生多种相互作用,原子氧与紫外的协合作用能够显著加快材料的损伤过程,并诱发各种表面化学或物理损伤。如果将PI薄膜直接暴露于富含原子氧的环境中,长时间服役最终将会导致其完全氧化分解成为碳氧和碳氮等气体挥发物,这些逸出物还有可能对航天器造成后果更为严重的二次污染,从而严重影响航天器的设计状态和使用寿命。
因此,原子氧成为PI薄膜在LEO中工作影响最为严重的空间环境因素之一。提高PI薄膜的抗原子氧能力,开发出具有优异耐原子氧性能的PI膜层材料,对于保障我国LEO轨道空间飞行器的在轨使用寿命及可靠性具有直接而重要的意义,也是当前我国航空航天发展的迫切需求。目前改性PI薄膜材料的方法主要有两种:一是通过在PI分子结构中引入某些特定的基团或原子(如磷、硅),利用它们可与原子氧作用生成钝化层的特性,赋予PI抗原子氧性能,如专利CN101402796A曾采用此方法制备出抗原子氧剥蚀的聚酰亚胺材料。该方法虽然可改善PI的抗原子氧特性,但是实际效果并不尽理想。二是在聚酰亚胺薄膜的表面直接涂覆具有抗原子氧特性的涂层,如SiO2、Al2O3等。在新的可替代的耐原子材料研制出来以前,在聚酰亚胺表面涂覆抗原子氧涂层被认为是当前最为便捷有效的途径,如专利CN1629225A曾公开了一种在聚酰亚胺薄膜表面涂覆抗原子氧涂层的方法。但是因异质界面的存在,当前采用直接外部涂覆法所制得的材料,涂层与PI基体之间往往呈完全分离的状态,没有很强的相互作用,极易发生涂层断裂、分层、脱落的现象,尤其是在剧烈的冷热循环情况下。
发明内容
本发明的目的在于解决现有材料和技术的不足,提供一种原位水解法制备耐原子氧聚酰亚胺材料的方法。本发明的方法实施过程简单,条件易满足,适用于所有体系的聚酰亚胺,并且所制得的耐原子氧聚酰亚胺膜层材料具有结构致密、无开裂和界面粘结性能优异的特点。
原位水解法制备的耐原子氧聚酰亚胺材料,由SiO2和聚酰亚胺组成,该膜层材料在厚度方向上自上而下由三层组成,SiO2浓度呈梯度递减分布;最上层为致密SiO2层,中间过渡层是由SiO2层与聚酰亚胺基体之间形成的互穿网络互锁结构层,下层是由SiO2颗粒与聚酰亚胺形成的掺杂结构。
其中致密SiO2层的厚度为10nm~2μm,优选100nm~1μm是材料的主要抗原子氧层;中间过渡层的厚度为100nm~5μm,优选1μm~5μm,赋予SiO2层和聚酰亚胺基体之间优异的界面粘结性能,为第二抗原子氧层;下层为体相层,厚度5μm~150μm,优选10μm~150μm,为第三抗原子氧层;材料整体呈现为致密SiO2层@(SiO2/PI互穿网络层)@(SiO2颗粒/PI杂化层)的结构特征,具有三级抗原子氧功能,抗原子氧性能优异。
一种原位水解法制备耐原子氧聚酰亚胺材料的方法,其特征在于包括以下步骤:
A:采用二元胺和二元酸酐单体在溶剂中合成聚酰胺酸溶液,向其中加入基于聚酰胺酸重量的10~100wt%的硅化合物,并搅拌形成均一的聚酰胺酸/硅化合物混合溶液;
B:采用流延成膜法将步骤A制得的聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置8~24h,得到聚酰胺酸/硅化合物复合薄膜;
C:将步骤B制得的薄膜置于热炉中,逐步升温至100~300℃,并保持0.5~2h,使硅化合物发生迁移,在整个薄膜厚度方向形成浓度梯度分布,并在薄膜浅表面富集成层,同时使聚酰胺酸发生热环化或部分热环化形成聚酰亚胺或半环化的聚酰亚胺,制得硅化合物浓度在厚度上呈梯度分布的聚酰亚胺/硅化合物复合薄膜;
D:将步骤C制得的薄膜置于含有酸解液的密闭腔室中水解6~24h,使浅表层富集的硅化合物发生向表面的进一步迁移和水解,同时使整个薄膜中的硅化合物发生水解,形成溶胶状二氧化硅前驱体;
E:将步骤D制得的薄膜置于热炉中,升温至300~350℃,并保持1~3h,即得到聚酰亚胺/SiO2复合的耐原子氧聚酰亚胺膜层材料。
其中,步骤A中所采用的硅化合物为正硅酸四甲酯、正硅酸四乙酯、正硅酸四丙酯、正硅酸四丁酯和四氯化硅中的一种或多种。
优选地,步骤C中逐步升温至300℃,以3-5℃/min的升温速度逐步升温
步骤D中的酸解液是由浓盐酸/乙醇/去离子水所配成的混合酸性溶液,体积比为0.042~0.2:1~4:1,优选地,以3-5℃/min的升温速度逐步升温。
与现有技术相比,本方法具有以下优良效果:
1.实施工艺过程简单,条件易满足,步骤简便易重复,适用范围广,可用于所有体系的聚酰亚胺薄膜。
2.采用此方法制备的耐原子氧聚酰亚胺膜层材料,表面的SiO2层是由内向外从PI基体浅表层中原位生长而成的,故膜层致密,同时SiO2层和PI基体之间会形成类似互穿网络的界面结构,加上SiO2层和PI之间的物理机械互锁作用,从而又使其具有优异的界面粘结性能。
3.所制备的耐原子氧聚酰亚胺薄膜中,由外至内划分为3个区域,表层区域为连续SiO2防护结构、过渡区为SiO2与聚酰亚胺互穿网络结构、体相区为SiO2掺杂结构。整个防护结构通过机械互锁作用,根植于聚酰亚胺内部,与聚酰亚胺薄膜形成一体化设计和制备,耐原子氧聚酰亚胺膜具有结构致密、无开裂等优点,从原子氧侵蚀机制上实现了对其“淘蚀”损伤的抑制,达到良好的原子氧防护效果。
附图说明
图1是实施例1中所制备的均苯四酸二酐/4,4’-二氨基二苯醚(PMDA/ODA)体系的耐原子氧聚酰亚胺薄膜材料的断面图,图中放大倍数为1000倍;
图2是实施例2中所制备的均苯四酸二酐/4,4’-二氨基二苯醚(PMDA/ODA)体系的耐原子氧聚酰亚胺薄膜材料的断面图,图中放大倍数为20000倍;
图3是实施例3中所制备的3,3'4,4'-联苯四甲酸二酐/对苯二胺(BPDA/PDA)体系的耐原子氧聚酰亚胺薄膜材料的断面图,图中放大倍数为5000倍;
图4是实施例4中所制备的3,3'4,4'-联苯四甲酸二酐/对苯二胺(BPDA/PDA)体系的耐原子氧聚酰亚胺薄膜材料的断面图,图中放大倍数为10000倍;
图5是实施例2中所制备的均苯四酸二酐/4,4’-二氨基二苯醚(PMDA/ODA)体系的耐原子氧聚酰亚胺薄膜材料的断面处的元素分布图;
具体实施方式
下面结合实施例,进一步阐述发明。应该说明的是:以下实施例仅用以说明本发明而并非限制本发明所描述的技术方案。因此,尽管本说明书参照下述的实施例对本发明已进行了详细的说明,但是,本领域的技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。
实施例1
制备PMDA/ODA体系的耐原子氧聚酰亚胺薄膜材料。(1)称取摩尔比为1:1的均苯四甲酸二酐(PMDA)2.0g、4,4’-二氨基二苯醚(ODA)1.8g,将ODA全部溶于30ml的N,N-二甲基甲酰胺(DMF)溶剂中,机械搅拌,待ODA全部溶解于DMF后,冰水浴的条件下,分步加入PMDA,得到粘度适中的聚酰胺酸(PAA)溶液后,机械搅拌2h后,再通过滴加的方式加入基于聚酰胺酸重量的40wt%的正硅酸乙酯(TEOS),搅拌得到均一的混合溶液;(2)采用流延成膜法将上述聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置24h;(3)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持0.5h;(4)将聚酰胺酸薄膜置于含有酸解液的密闭容器中水解24h,酸解液是由体积比为0.042:2:1的浓盐酸/乙醇/去离子水所配成的混合酸性溶液;(5)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持2h,即得到耐原子氧聚酰亚胺膜层材料,其断面图如图1所示。
实施例2
制备PMDA/ODA体系的耐原子氧聚酰亚胺薄膜材料。(1)称取摩尔比为1:1的均苯四甲酸二酐(PMDA)2.0g、4,4’-二氨基二苯醚(ODA)1.8g,将ODA全部溶于30ml的N,N-二甲基甲酰胺(DMF)溶剂中,机械搅拌,待ODA全部溶解于DMF后,冰水浴的条件下,分步加入PMDA,得到粘度适中的聚酰胺酸(PAA)溶液后,机械搅拌2h后,再通过滴加的方式加入基于聚酰胺酸重量的60wt%的正硅酸乙酯(TEOS),搅拌得到均一的混合溶液;(2)采用流延成膜法将上述聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置12h;(3)将聚酰胺酸薄膜置于热炉中,以3℃/min的升温速度逐步升温至300℃,并保持1h;(4)将聚酰胺酸薄膜置于含有酸解液的密闭容器中水解12h,酸解液是由体积比为0.1:2:1的浓盐酸/乙醇/去离子水所配成的混合酸性溶液;(5)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持2h,即得到耐原子氧聚酰亚胺膜层材料,其断面图如图2所示,元素分布图如图5所示。
实施例3
制备BPDA/PDA体系的耐原子氧聚酰亚胺薄膜材料。(1)称取摩尔比为1:1的3,3'4,4'-联苯四甲酸二酐(BPDA)2.82g、对苯二胺(PDA)1.02g,将PDA全部溶于30ml的N,N-二甲基乙酰胺(DMAc)溶剂中,机械搅拌,待PDA全部溶解于DMAc后,冰水浴的条件下,分步加入BPDA,得到粘度适中的聚酰胺酸(PAA)溶液后,机械搅拌2h后,再通过滴加的方式加入基于聚酰胺酸重量的40wt%的正硅酸乙酯(TEOS),搅拌得到均一的混合溶液;(2)采用流延成膜法将上述聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置12h;(3)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持0.5h;(4)将聚酰胺酸薄膜置于含有酸解液的密闭容器中水解12h,酸解液是由体积比为0.042:2:1的浓盐酸/乙醇/去离子水所配成的混合酸性溶液;(5)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持2h,即得到耐原子氧聚酰亚胺膜层材料,其断面图如图3所示。
实施例4
制备BPDA/PDA体系的耐原子氧聚酰亚胺薄膜材料。(1)称取摩尔比为1:1的3,3'4,4'-联苯四甲酸二酐(BPDA)2.82g、对苯二胺(PDA)1.02g,将PDA全部溶于30ml的N,N-二甲基乙酰胺(DMAc)溶剂中,机械搅拌,待PDA全部溶解于DMAc后,冰水浴的条件下,分步加入BPDA,得到粘度适中的聚酰胺酸(PAA)溶液后,机械搅拌2h后,再通过滴加的方式加入基于聚酰胺酸重量的60wt%的正硅酸乙酯(TEOS),搅拌得到均一的混合溶液;(2)采用流延成膜法将上述聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置24h;(3)将聚酰胺酸薄膜置于热炉中,以3℃/min的升温速度逐步升温至300℃,并保持1h;(4)将聚酰胺酸薄膜置于含有酸解液的密闭容器中水解24h,酸解液是由体积比为0.042:2:1的浓盐酸/乙醇/去离子水所配成的混合酸性溶液;(5)将聚酰胺酸薄膜置于热炉中,以5℃/min的升温速度逐步升温至300℃,并保持2h,即得到耐原子氧聚酰亚胺膜层材料,其断面图如图4所示。

Claims (6)

1.一种原位水解法制备耐原子氧聚酰亚胺膜层材料的方法,其特征在于,包括以下步骤:
A:采用二元胺和二元酸酐单体在溶剂中合成聚酰胺酸溶液,向其中加入基于聚酰胺酸重量的10~100wt%的硅化合物,并搅拌形成均一的聚酰胺酸/硅化合物混合溶液;
B:采用流延成膜法将步骤A制得的聚酰胺酸/硅化合物溶液制成薄膜,并在室温条件下放置8~24h,得到聚酰胺酸/硅化合物复合薄膜;
C:将步骤B制得的薄膜置于热炉中,逐步升温至100~300℃,并保持0.5~2h;
D:将步骤C制得的薄膜置于含有酸解液的密闭腔室中水解6~24h;
E:将步骤D制得的薄膜置于热炉中,升温至300~350℃,并保持1~3h,即得到聚酰亚胺/SiO2复合的耐原子氧聚酰亚胺膜层材料;该材料由SiO2和聚酰亚胺组成,其特征在于,该膜层材料在厚度方向上自上而下由三层组成,SiO2浓度呈梯度递减分布;最上层为致密SiO2层,中间过渡层是由SiO2层与聚酰亚胺基体之间形成的互穿网络互锁结构层,下层是由SiO2颗粒与聚酰亚胺形成的掺杂结构。
2.按照权利要求1所述的方法,其特征在于,步骤A中所采用的硅化合物为正硅酸四甲酯、正硅酸四乙酯、正硅酸四丙酯、正硅酸四丁酯和四氯化硅中的一种或多种。
3.按照权利要求1所述的方法,其特征在于,步骤C中逐步升温至300℃。
4.按照权利要求1所述的方法,其特征在于,步骤C中以3-5℃/min的升温速度逐步升温。
5.按照权利要求1所述的方法,其特征在于,步骤D中的酸解液是由浓盐酸/乙醇/去离子水所配成的混合酸性溶液,体积比为0.042~0.2:1~4:1。
6.按照权利要求1所述的方法,其特征在于,步骤E中以3-5℃/min的升温速度逐步升温。
CN201810656120.5A 2018-06-24 2018-06-24 一种原位水解法制备耐原子氧聚酰亚胺材料的方法 Active CN109021565B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810656120.5A CN109021565B (zh) 2018-06-24 2018-06-24 一种原位水解法制备耐原子氧聚酰亚胺材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810656120.5A CN109021565B (zh) 2018-06-24 2018-06-24 一种原位水解法制备耐原子氧聚酰亚胺材料的方法

Publications (2)

Publication Number Publication Date
CN109021565A CN109021565A (zh) 2018-12-18
CN109021565B true CN109021565B (zh) 2020-06-19

Family

ID=64610874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810656120.5A Active CN109021565B (zh) 2018-06-24 2018-06-24 一种原位水解法制备耐原子氧聚酰亚胺材料的方法

Country Status (1)

Country Link
CN (1) CN109021565B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108774333B (zh) * 2018-06-25 2020-07-21 北京化工大学 一种耐原子氧聚酰亚胺膜层材料及其制备方法
CN109651812B (zh) * 2018-12-14 2021-06-22 上海卫星装备研究所 含硅的耐原子氧聚酰亚胺薄膜组合物及其制备方法
CN109651813B (zh) * 2018-12-20 2020-12-04 武汉华星光电半导体显示技术有限公司 复合薄膜及其制备方法
CN110922623B (zh) * 2019-12-19 2021-06-15 浙江道明光电科技有限公司 一种无色透明聚酰亚胺复合膜及其制备方法
CN113354859B (zh) * 2020-03-04 2022-05-17 北京化工大学 一种表面覆载高粘结性致密二氧化硅层的聚酰亚胺薄膜及其制备方法
CN113493959B (zh) * 2020-04-05 2023-02-28 北京化工大学 一种表面包覆二氧化硅的聚酰亚胺纳米纤维膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831034A (zh) * 2005-03-08 2006-09-13 中国科学院理化技术研究所 一种聚酰亚胺/二氧化硅纳米杂化薄膜的制备方法
KR20130031051A (ko) * 2011-09-20 2013-03-28 에스케이씨코오롱피아이 주식회사 폴리아믹산-실리카 하이브리드 조성물, 폴리이미드-실리카 하이브리드 필름 및 이들의 제조방법
CN103214846A (zh) * 2013-03-21 2013-07-24 北京航空航天大学 一种耐空间环境原子氧剥蚀的杂化材料及制备方法
CN105835498A (zh) * 2016-03-23 2016-08-10 中国空间技术研究院 一种单面抗原子氧的聚酰亚胺复合薄膜及其制备方法
CN106084271A (zh) * 2016-07-13 2016-11-09 哈尔滨理工大学 纳米粒子/聚酰亚胺三层复合薄膜制备的新方法
CN107757015A (zh) * 2017-10-16 2018-03-06 吉林大学 一种表面硅氧化聚酰亚胺‑co‑硅氧烷薄膜及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI349013B (en) * 2007-10-03 2011-09-21 Univ Nat Taiwan Polyimide-titania hybrid materials and method of preparing thin films

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1831034A (zh) * 2005-03-08 2006-09-13 中国科学院理化技术研究所 一种聚酰亚胺/二氧化硅纳米杂化薄膜的制备方法
KR20130031051A (ko) * 2011-09-20 2013-03-28 에스케이씨코오롱피아이 주식회사 폴리아믹산-실리카 하이브리드 조성물, 폴리이미드-실리카 하이브리드 필름 및 이들의 제조방법
CN103214846A (zh) * 2013-03-21 2013-07-24 北京航空航天大学 一种耐空间环境原子氧剥蚀的杂化材料及制备方法
CN105835498A (zh) * 2016-03-23 2016-08-10 中国空间技术研究院 一种单面抗原子氧的聚酰亚胺复合薄膜及其制备方法
CN106084271A (zh) * 2016-07-13 2016-11-09 哈尔滨理工大学 纳米粒子/聚酰亚胺三层复合薄膜制备的新方法
CN107757015A (zh) * 2017-10-16 2018-03-06 吉林大学 一种表面硅氧化聚酰亚胺‑co‑硅氧烷薄膜及其制备方法

Also Published As

Publication number Publication date
CN109021565A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
CN109021565B (zh) 一种原位水解法制备耐原子氧聚酰亚胺材料的方法
CN108774333B (zh) 一种耐原子氧聚酰亚胺膜层材料及其制备方法
CN108909118B (zh) 一种单面耐原子氧聚酰亚胺复合薄膜材料及其制备方法
EP2195398B1 (en) Method of forming a ceramic silicon oxide type coating, method of producing an inorganic base material, agent for forming a ceramic silicon oxide type coating, and semiconductor device
CN110698670B (zh) 一种碳硼烷改性聚酰亚胺薄膜及其制备方法
JP6992820B2 (ja) フレキシブルデバイス基板形成用ポリイミド前駆体樹脂組成物
JP5375732B2 (ja) バリヤ膜を形成する方法およびバリヤ膜を形成するために用いるcvd装置
CN102001201B (zh) 层压膜和复合膜
JP2011077522A (ja) 熱および寸法安定性ポリイミドフィルム、電極および光吸収層を備えるアセンブリ、ならびに、これに関する方法
KR20140039034A (ko) 불연 필름, 불연 필름용 분산액, 불연 필름의 제조 방법, 태양 전지 백 시트, 플렉시블 기판, 및 태양 전지
CN114015233B (zh) 一种聚酰亚胺材料及其制备方法和应用
JP2011062977A (ja) ガスバリア性積層フィルム
US5854380A (en) Polyimide precursor solution process for the production thereof coating or film obtained therefrom and process for producing the film
JP2018103392A (ja) 透明ポリイミドフィルム積層体
CN109651813B (zh) 复合薄膜及其制备方法
CN103122214A (zh) 一种耐高温、耐腐蚀含氟有机硅/SiO2纳米杂化涂层的制备方法
JP2021175790A (ja) ポリイミド前駆体及びそれを含む樹脂組成物、ポリイミド樹脂膜、樹脂フィルム及びその製造方法
JP2011051277A (ja) ガスバリア性積層フィルム
KR101985315B1 (ko) 염해 내성이 강한 태양광 분전반 및 그 제조방법
JP2017073348A (ja) 有機el素子用金属積層基板及びその製造方法
KR101202545B1 (ko) 플라스틱 기판 및 이의 제조방법
JPH07173434A (ja) 酸化物被膜形成用塗布液および酸化物被膜の製造法
JP4324786B2 (ja) 積層体およびその製造方法ならびに絶縁膜および半導体装置
Park et al. Effect of surface‐modified nano‐aluminum trihydroxide on electrical properties of silicone/nano‐silica nanocomposite
Game et al. Direct Integration of Perovskite Solar Cells with Carbon Fiber Substrates

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant