CN108987712B - 一种钠离子电池负极材料的制备方法 - Google Patents

一种钠离子电池负极材料的制备方法 Download PDF

Info

Publication number
CN108987712B
CN108987712B CN201810800117.6A CN201810800117A CN108987712B CN 108987712 B CN108987712 B CN 108987712B CN 201810800117 A CN201810800117 A CN 201810800117A CN 108987712 B CN108987712 B CN 108987712B
Authority
CN
China
Prior art keywords
coated
carbon
preparation
nanoparticles
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201810800117.6A
Other languages
English (en)
Other versions
CN108987712A (zh
Inventor
洪振生
黄万露
周凯强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201810800117.6A priority Critical patent/CN108987712B/zh
Publication of CN108987712A publication Critical patent/CN108987712A/zh
Application granted granted Critical
Publication of CN108987712B publication Critical patent/CN108987712B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种钠离子电池负极材料的制备方法,所述电池负极材料为碳包覆Ti0.5Sn0.5O2纳米材料,其制备方法为:先利用溶剂热法制备Ti0.5Sn0.5O2纳米粒子,将制得的Ti0.5Sn0.5O2纳米粒子分散到三(羟甲基)氨基甲烷溶液中,超声后加入盐酸多巴胺,搅拌、清洗、烘干后;将得到的粉末放入管式炉中Ar氛围下煅烧,制得所述碳包覆Ti0.5Sn0.5O2纳米材料。本发明提供了一种钠离子电池负极材料——碳包覆Ti0.5Sn0.5O2(Ti0.5Sn0.5O2@C)纳米粒子,其表现出相对较高的比容量;二期成本低、纯度高、性能优异,可以大量合成,具有很好的应用前景。

Description

一种钠离子电池负极材料的制备方法
技术领域
本发明属于电级材料制备技术领域,具体涉及一种钠离子电池负极材料的制备方法。
背景技术
钠是地球上储量较丰富的元素之一,与锂的化学性能类似,因此钠离子电池与锂离子电池也表现出诸多相似之处。钠离子电池相比锂离子电池有诸多优点,如成本低,安全性好,随着研究的深入,钠离子电池越来越具有成本效益,并有望在未来取代锂离子电池而被广泛应用。当前,钠离子电池因缺乏匹配合适的负极材料而制约其实际应用,开发性能优异的钠离子电池负极材料是当前该领域的研究热点和重点。
发明内容
本发明的目的在于针对现有技术不足,提供了一种钠离子电池负极材料——碳包覆Ti0.5Sn0.5O2(Ti0.5Sn0.5O2 @C)纳米粒子,这种材料具有较高的储钠容量,具有良好的应用价值。
为实现上述目的,本发明采用如下技术方案:
一种碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,具体包括以下步骤:
(1)Ti0.5Sn0.5O2纳米粒子的制备:将0.5-1.5mmol钛酸丁酯、0.22-0.66g五水四氯化锡溶解在12-36ml乙二醇中,磁力搅拌0.5-1.5h;随后进行溶剂热反应,反应温度为150-200℃,反应时间为16-20h;反应结束后将得到的胶态悬浊液分别用N,N-二甲基甲酰胺和乙醇洗涤3~5次并于60℃下干燥12h;收集粉末放入马弗炉中400-600℃煅烧3-5h后得到Ti0.5Sn0.5O2纳米粒子;
(2)碳包覆Ti0.5Sn0.5O2纳米材料的制备:将步骤(1)获得的Ti0.5Sn0.5O2纳米粒子球磨12-24h,然后分散到50-100 ml的5-15 mM的三(羟甲基)氨基甲烷溶液中,超声1-5 h,然后加入盐酸多巴胺,大力搅拌5-20 h,经去离子水和乙醇超声清洗3~5次,然后在60℃烘干;将得到的粉末放入管式炉中Ar氛围下400-700℃保温2-5 h,制得所述碳包覆Ti0.5Sn0.5O2纳米材料,记为Ti0.5Sn0.5O2 @C。
所制得的碳包覆Ti0.5Sn0.5O2纳米材料用于钠离子电池负极材料,按照碳包覆Ti0.5Sn0.5O2纳米粒子:阿拉伯树胶(GA):乙炔黑=75-80:10-20:10-15的质量比,将碳包覆Ti0.5Sn0.5O2纳米粒子、阿拉伯树胶(GA)和乙炔黑混合研磨后均匀地涂在1.2 cm2的铜片上作为工作电极,金属钠作为对电极,电解质是0.5-1 M NaPF6的三乙二醇二甲醚溶液,进行钠离子电池组装,电池组装在氩气保护下手套箱里进行(氧气和水分含量均低于1ppm)。
本发明的有益效果在于:本发明提供了钠离子电池负极材料——碳包覆Ti0.5Sn0.5O2(Ti0.5Sn0.5O2 @C)纳米粒子,并表现出相对较高的比容量;其成本低、纯度高、性能优异,可以大量合成,具有很好的应用前景。
附图说明
图1为碳包覆Ti0.5Sn0.5O2纳米材料的XRD图;
图2为碳包覆Ti0.5Sn0.5O2纳米材料的SEM图;
图3是碳包覆Ti0.5Sn0.5O2纳米材料组装而成的钠离子电池在50mAg-1的充放电曲线。
具体实施方式
以下结合具体实施例对本发明做进一步说明,但本发明不仅仅限于这些实施例。
实施例1
一种碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,具体包括以下步骤:
(1)Ti0.5Sn0.5O2纳米粒子的制备:将0.5mmol钛酸丁酯、0.22g五水四氯化锡溶解在12ml乙二醇中,磁力搅拌0.5h,将装有该溶液的聚四氟乙烯做内衬的不锈钢高压釜放入恒温干燥箱中,进行溶剂热反应,反应温度为150℃,反应时间为20h;反应结束后将得到的胶态悬浊液分别用N,N-二甲基甲酰胺和乙醇洗涤5次并于60℃下干燥12h;收集粉末放入马弗炉中400℃煅烧5h后得到Ti0.5Sn0.5O2纳米粒子;
(2)碳包覆Ti0.5Sn0.5O2纳米材料的制备:将步骤(1)获得的Ti0.5Sn0.5O2纳米粒子球磨12h,然后分散到50 ml的15 mM的三(羟甲基)氨基甲烷溶液中,超声1 h,然后加入盐酸多巴胺,大力搅拌5 h,经去离子水和乙醇超声清洗3次,然后在60℃烘干;将得到的粉末放入管式炉中Ar氛围下400℃保温5 h,制得所述碳包覆Ti0.5Sn0.5O2纳米材料,记为Ti0.5Sn0.5O2 @C。
实施例2
一种碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,具体包括以下步骤:
(1)Ti0.5Sn0.5O2纳米粒子的制备:将1.5mmol钛酸丁酯、0.66g五水四氯化锡溶解在36ml乙二醇中,磁力搅拌1.5h,将装有该溶液的聚四氟乙烯做内衬的不锈钢高压釜放入恒温干燥箱中,进行溶剂热反应,反应温度为200℃,反应时间为16h;反应结束后将得到的胶态悬浊液分别用N,N-二甲基甲酰胺和乙醇洗涤4次并于60℃下干燥12h;收集粉末放入马弗炉中600℃煅烧3h后得到Ti0.5Sn0.5O2纳米粒子;
(2)碳包覆Ti0.5Sn0.5O2纳米材料的制备:将步骤(1)获得的Ti0.5Sn0.5O2纳米粒子球磨24h,然后分散到100 ml的5 mM的三(羟甲基)氨基甲烷溶液中,超声5 h,然后加入盐酸多巴胺,大力搅拌20 h,经去离子水和乙醇超声清洗3次,然后在60℃烘干;将得到的粉末放入管式炉中Ar氛围下700℃保温2 h,制得所述碳包覆Ti0.5Sn0.5O2纳米材料,记为Ti0.5Sn0.5O2 @C。
实施例3
一种碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,具体包括以下步骤:
(1)Ti0.5Sn0.5O2纳米粒子的制备:将1.0mmol钛酸丁酯、0.44g五水四氯化锡溶解在24ml乙二醇中,磁力搅拌1.0h,将装有该溶液的聚四氟乙烯做内衬的不锈钢高压釜放入恒温干燥箱中,进行溶剂热反应,反应温度为175℃,反应时间为18h;反应结束后将得到的胶态悬浊液分别用N,N-二甲基甲酰胺和乙醇洗涤4次并于60℃下干燥12h;收集粉末放入马弗炉中500℃煅烧4h后得到Ti0.5Sn0.5O2纳米粒子;
(2)碳包覆Ti0.5Sn0.5O2纳米材料的制备:将步骤(1)获得的Ti0.5Sn0.5O2纳米粒子球磨18h,然后分散到75 ml的10 mM的三(羟甲基)氨基甲烷溶液中,超声3 h,然后加入盐酸多巴胺,大力搅拌12 h,经去离子水和乙醇超声清洗4次,然后在60℃烘干;将得到的粉末放入管式炉中Ar氛围下550℃保温3.5 h,制得所述碳包覆Ti0.5Sn0.5O2纳米材料,记为Ti0.5Sn0.5O2@C。
图1为Ti0.5Sn0.5O2 @C的XRD图,所有衍射峰都与Ti0.5Sn0.5O2 固溶体的XRD标准卡片(JCPSDS card 070-4407)一致,说明该材料为纯相的Ti0.5Sn0.5O2。图2为Ti0.5Sn0.5O2 @C的SEM图。从图2可以看出该材料是均匀的纳米粒子,粒径大约为6-12 nm,并且可以清晰地看到细小的纳米粒子上包覆了一层碳,这说明碳均匀地包覆在Ti0.5Sn0.5O2纳米晶上。图3是该材料组装而成的钠离子电池在50mAg-1的充放电曲线,其首次放电容量达 631.6mAhg-1,首次充电容量达304.1 mAhg-1;第2次充放电容量仍然保持较高的291.1 mAhg-1和350.9 mAhg-1。由此可看出通过此方法合成出来的碳包覆Ti0.5Sn0.5O2纳米晶体,作为钠离子电池负极材料,结果表明具有相对较高的比容量和良好的可逆性,比普通的TiO2纳米粒子(通常容量约为160 mAhg-1)明显具有更高的可逆容量。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,其特征在于:具体包括以下步骤:
(1)Ti0.5Sn0.5O2纳米粒子的制备:将0.5-1.5mmol钛酸丁酯、0.22-0.66g五水四氯化锡溶解在12-36ml乙二醇中,磁力搅拌之后,进行溶剂热反应;反应结束后将得到的胶态悬浊液分别用N,N-二甲基甲酰胺和乙醇洗涤3~5次并于60℃下干燥12h;收集粉末放入马弗炉中煅烧后得到Ti0.5Sn0.5O2纳米粒子;
(2)碳包覆Ti0.5Sn0.5O2纳米材料的制备:将步骤(1)获得的Ti0.5Sn0.5O2纳米粒子球磨12-24h,然后分散到50-100 ml的三(羟甲基)氨基甲烷溶液中,超声1-5 h,然后加入盐酸多巴胺,大力搅拌5-20 h,经去离子水和乙醇超声清洗3~5次,然后在60℃烘干;将得到的粉末放入管式炉中Ar氛围下400-700℃保温2-5 h,制得所述碳包覆Ti0.5Sn0.5O2纳米材料,记为Ti0.5Sn0.5O2 @C;
步骤(1)中所述的溶剂热反应的工艺参数为:反应温度为150-200℃,反应时间为16-20h;步骤(1)中所述煅烧的工艺参数为:煅烧温度为400-600℃,煅烧时间为3-5h。
2.根据权利要求1所述的碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,其特征在于:步骤(1)中所述磁力搅拌的时间为0.5-1.5h。
3.根据权利要求1所述的碳包覆Ti0.5Sn0.5O2纳米材料的制备方法,其特征在于:步骤(2)中所述的三(羟甲基)氨基甲烷溶液的浓度为5-15 mM。
4.一种如权利要求1所述的制备方法制得的碳包覆Ti0.5Sn0.5O2纳米材料的应用,其特征在于:所述碳包覆Ti0.5Sn0.5O2纳米材料用于钠离子电池负极材料;按照碳包覆Ti0.5Sn0.5O2纳米粒子:阿拉伯树胶:乙炔黑=75-80:10-20:10-15的质量比,将碳包覆Ti0.5Sn0.5O2纳米粒子、阿拉伯树胶和乙炔黑混合研磨后均匀地涂在1.2 cm2的铜片上作为工作电极,金属钠作为对电极,电解质是0.5-1 M NaPF6的三乙二醇二甲醚溶液,进行钠离子电池组装。
5.根据权利要求4所述的应用,其特征在于:电池组装在氩气保护下手套箱里进行,氧气和水分含量均低于1ppm。
CN201810800117.6A 2018-07-20 2018-07-20 一种钠离子电池负极材料的制备方法 Expired - Fee Related CN108987712B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810800117.6A CN108987712B (zh) 2018-07-20 2018-07-20 一种钠离子电池负极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810800117.6A CN108987712B (zh) 2018-07-20 2018-07-20 一种钠离子电池负极材料的制备方法

Publications (2)

Publication Number Publication Date
CN108987712A CN108987712A (zh) 2018-12-11
CN108987712B true CN108987712B (zh) 2021-10-01

Family

ID=64550483

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810800117.6A Expired - Fee Related CN108987712B (zh) 2018-07-20 2018-07-20 一种钠离子电池负极材料的制备方法

Country Status (1)

Country Link
CN (1) CN108987712B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115036445A (zh) * 2022-05-07 2022-09-09 常州大学 一种多孔TiO2基纳米材料的制备方法及多孔TiO2基纳米材料、钠离子电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285867A (zh) * 2013-06-26 2013-09-11 广西大学 一种以TixSn1-xO2复合氧化物为载体的CuO纳米催化剂的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005308B (zh) * 2010-11-13 2012-05-30 福州大学 Ti(l-x)SnxO2太阳能电池及其制备方法
CN102500355A (zh) * 2011-11-07 2012-06-20 南京大学 TixSn1-xO2固溶体为载体的负载型金属氧化物纳米催化剂的制备方法
CN103342382B (zh) * 2013-06-27 2015-11-18 宁德新能源科技有限公司 锂离子电池及其负极极片以及其负极活性材料的制备方法
CN105561969B (zh) * 2016-03-02 2018-06-29 福建农林大学 一种多孔TixSn1-xO2固溶体微球的制备和应用
CN107170982B (zh) * 2017-04-14 2020-07-03 西北工业大学 锂离子电池用碳包覆四氧化三锰多面体负极材料的制备方法
CN107681141B (zh) * 2017-09-26 2020-11-27 福建师范大学 一种碳包覆硼酸镍纳米棒的钠离子电池负极材料
CN107681148B (zh) * 2017-09-26 2020-10-23 福建师范大学 一种多孔无定形二氧化钛基钠离子电池及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103285867A (zh) * 2013-06-26 2013-09-11 广西大学 一种以TixSn1-xO2复合氧化物为载体的CuO纳米催化剂的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Sn-doped TiO2 nanotubes as superior anode materials for sodium ion batteries*;Dong Yan等;《Chem. Commun.》;20150408(第51期);第8261-8264页 *
金红石TiO2介晶:一种高性能钠离子电池负极材料;周凯强 等;《第18届全国固态离子学学术会议暨国际电化学储能技术论坛》;20161103;第101页 *

Also Published As

Publication number Publication date
CN108987712A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
CN104868102B (zh) 一种钠离子电池硫化锌基负极材料及其制备方法
CN109244427B (zh) 碳包覆硫化锌负载石墨烯作为钾离子电池负极的制备方法
CN105552331B (zh) 铁钴氧化物/石墨烯复合材料及其制备方法和应用
CN105591088A (zh) 一种锂离子电池负极材料及其制备方法
CN105449177B (zh) 一种用于钠离子电池的多孔立方ZnSnO3@石墨烯负极材料及其制备方法
CN102386385A (zh) Li4Ti5O12-TiO2复合电极材料的制备方法
CN101847717A (zh) 一种锂离子电池用钛酸锂复合负极材料的制备方法
CN104393272A (zh) 一种钛酸锂类负极复合材料及制备方法
CN102702518A (zh) 一种二氧化锡/聚苯胺复合材料的制备方法
CN115133117A (zh) 一种纳米尺寸硫化物固体电解质材料及其制备方法
CN105161678B (zh) 一种用于锂电池电极的多层复合二氧化钛纳米管材料
CN111484073B (zh) 一种离子液体辅助制备空心纳米棒二氧化钛负极材料的方法
CN103972488A (zh) 一种提高锂离子电池用氧化锌负极材料导电性的方法
CN107681141A (zh) 一种碳包覆硼酸镍纳米棒的钠离子电池负极材料
CN114560450B (zh) 一种稀土硒化物纳米材料的制备方法及应用
CN108987712B (zh) 一种钠离子电池负极材料的制备方法
CN110510676A (zh) 一种LiFeO2纳米颗粒及其制备方法
CN110048099A (zh) 钠离子电池的电极材料及其制备方法和应用
CN105514391B (zh) 一种硅酸锂改性钛酸锂负极材料及制备方法、应用
CN113517427A (zh) 一种碳包覆锑/三硫化二锑复合材料的制备方法及应用
CN116002660B (zh) 一种碳硅复合材料的制备方法、碳硅复合材料及锂电池
CN111564613A (zh) 一种锡钴@碳@四氧化三锰蛋黄-壳结构的锂离子电池负极复合材料及其制备方法
CN105977483A (zh) 一种用于电极的碳基纳米复合材料
CN113224291B (zh) 一种氮硫掺杂碳负载Fe7S8电池负极材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211001