CN108920798A - 粘结退化影响下pc构件抗弯承载力计算方法 - Google Patents

粘结退化影响下pc构件抗弯承载力计算方法 Download PDF

Info

Publication number
CN108920798A
CN108920798A CN201810651958.5A CN201810651958A CN108920798A CN 108920798 A CN108920798 A CN 108920798A CN 201810651958 A CN201810651958 A CN 201810651958A CN 108920798 A CN108920798 A CN 108920798A
Authority
CN
China
Prior art keywords
steel strand
strand wires
formula
concrete
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810651958.5A
Other languages
English (en)
Other versions
CN108920798B (zh
Inventor
王磊
戴理朝
张旭辉
张健仁
马亚飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201810651958.5A priority Critical patent/CN108920798B/zh
Publication of CN108920798A publication Critical patent/CN108920798A/zh
Priority to PCT/CN2019/079890 priority patent/WO2019242366A1/zh
Priority to KR1020197031496A priority patent/KR102291531B1/ko
Application granted granted Critical
Publication of CN108920798B publication Critical patent/CN108920798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/383Concrete or cement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • Immunology (AREA)
  • Algebra (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Software Systems (AREA)
  • Pathology (AREA)
  • Ceramic Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Rod-Shaped Construction Members (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

本发明公开的粘结退化影响下PC构件抗弯承载力计算方法,通过评估锈蚀影响下混凝土锈胀开裂和钢绞线的粘结强度,引入等效粘结强度概念考虑荷载裂缝对粘结强度分布的影响,建立荷载作用下锈蚀钢绞线的受力表达式;引入变形协调系数量化锈蚀钢绞线与混凝土间的变形不协调,明确构件横断面内的应力、应变分布规律;建立锈蚀PC梁截面内的受力和弯矩平衡方程,得到锈蚀PC梁抗弯承载力计算方法;本发明提出的粘结退化影响下PC构件抗弯承载力计算方法可综合考虑锈蚀引起的钢绞线截面积减小、材料劣化、混凝土开裂、粘结退化及荷载裂缝等因素的影响,对既有PC梁桥剩余承载力的评估具有重要地指导意义。

Description

粘结退化影响下PC构件抗弯承载力计算方法
技术领域
本发明涉及承载力计算方法技术领域,具体是一种粘结退化影响下PC构件抗弯承载力计算方法。
背景技术
预应力混凝土(PC)由于具有跨越能力大、耐久性好等特点,目前已广泛应用于桥梁工程。然而,近年来PC桥梁的失效事故时有发生,既有桥梁的安全性已引起了广泛关注。钢绞线锈蚀是造成既有PC梁承载力退化的主要因素之一。首先,锈蚀会引起钢绞线截面积减小,材料劣化,混凝土开裂及粘结强度退化。此外,荷载裂缝的出现也会影响抗弯承载力的大小。这些因素均会造成既有PC梁抗弯承载力的下降。如何评估锈蚀PC梁的剩余抗弯承载力是确保其正常使用和安全性的前提。
目前针对锈蚀普通钢筋混凝土梁的剩余抗弯承载力已开展了大量的理论研究。然由于钢绞线具有高应力状态及捻制截面形状等特点,使得其锈蚀对PC梁抗弯承载力的影响更为复杂。文献调研表明,针对锈蚀PC梁剩余抗弯承载力的计算方法十分匮乏。部分学者忽略粘结退化的影响,基于应变协调原理对钢束断裂影响下PC梁的剩余承载力进行了预测。也有部分学者引入应变不协调理论对锈蚀PC梁的抗弯承载力进行评估,但该方法无法考虑锈胀开裂及荷载裂缝等因素的影响。现有的PC梁抗弯承载力计算方法无法综合考虑锈蚀引起的钢绞线截面积减小、材料劣化、混凝土开裂、粘结退化及荷载裂缝等因素的影响。
为此,本发明提出了一种粘结退化影响下PC构件抗弯承载力计算方法,该方法的优势在于可综合考虑锈蚀引起的钢绞线截面积减小、材料劣化、混凝土开裂、粘结退化及荷载裂缝等因素的影响。
发明内容
本发明的目的在于提供一种粘结退化影响下PC构件抗弯承载力计算方法,以有效解决上述技术问题。
为有效解决上述技术问题,本发明采取的技术方案如下:
粘结退化影响下PC构件抗弯承载力计算方法,该方法包括以下步骤:
(1)锈裂影响下钢绞线粘结强度预测:
根据构件基本尺寸,确定几何参数取值,采用厚壁薄筒理论对混凝土的锈胀开裂进行模拟,建立锈蚀钢绞线与混凝土界面间胶着力、约束力和锈胀力的表达式,进而预测锈蚀钢绞线的粘结强度;
(2)荷载裂缝影响下粘结强度评估:
引入一个等效粘结强度概念来考虑粘结强度沿梁长方向的分布,提出等效粘结强度计算方法;
(3)建立荷载作用下钢绞线的受力表达式:
构建锈蚀影响下有效粘结力、残余粘结力和有效预加力的计算方法,建立荷载作用下锈蚀钢绞线张拉力的表达式;
(4)提出锈蚀PC梁抗弯承载力计算方法:
引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,明确构件横断面内的应力、应变分布规律,建立锈蚀PC梁的受力和弯矩平衡方程,提出其抗弯承载力计算方法。
特别的,所述步骤(1)还包括以下步骤:
混凝土锈胀开裂过程中,粘结强度的计算如下:
锈蚀钢绞线的粘结强度主要由钢绞线与混凝土交界面间的胶着力、约束力和锈胀力来提供,其表达式为公式(1):
τη=τabc
式中,τη为锈蚀钢绞线的粘结应力,τa为锈胀力引起的粘结应力,τb为交界面间的胶着力,τc为交界面间的约束力;
锈蚀钢绞线与混凝土交界面锈胀力引起的粘结应力可表示为公式(2):
τa=kcpc
式中,kc为锈蚀钢绞线与混凝土界面间的摩擦系数,Pc为钢绞线-混凝土界面间的锈胀力;
保护层开裂前,锈胀力主要由开裂混凝土的剩余拉应力和未开裂混凝土的约束力共同抵抗,钢绞线-混凝土界面间的锈胀力可表示为公式(3):
式中,R0为锈蚀前钢丝的半径,Pu为开裂和未开裂混凝土交界面位置的锈胀力,Ru为开裂混凝土的半径,r为开裂混凝土区域的位置,σθ(r)为开裂混凝土的环向应力;
保护层开裂后,锈胀力主要由开裂混凝土的剩余拉应力来抵抗,钢绞线-混凝土界面间的锈胀力可表示为公式(4):
锈蚀钢绞线与混凝土交界面间的胶着力可表达为公式(5):
式中,k为同一截面上钢绞线的横肋数目,Ar为横肋面积,D为锈蚀钢绞线直径,δ为横肋与钢绞线轴线间的夹角,θ为钢绞线与混凝土间的摩擦角,sr为横肋间距,fcoh为界面间胶着力系数;
锈蚀钢绞线与混凝土交界面间周围混凝土的约束力可表达为公式(6):
式中,Cr为横肋的形状系数,px为失效时钢绞线所受的最大压力。
特别的,所述步骤(2)还包括以下步骤:
等效粘结强度概念的引入方法如下:
当无荷载裂缝存在时,锈蚀构件沿梁长方向各位置处的锈胀力大小一致呈均匀分布。然荷载裂缝的出现会减低混凝土的约束作用,裂缝位置处的锈胀力几乎全部退化,而相邻裂缝中间位置处的锈胀力则基本保持不变。将裂缝位置处的锈胀力定义为0,而相邻裂缝中间位置处的锈胀力定义为Pc,锈胀力沿梁长方向假定呈直线变化,则锈胀力在任意位置处Pc(z)可表示为公式(7):
式中,z为沿梁长方向的任意位置,lm为平均弯曲裂缝间距;
引入一个等效概念来考虑锈胀力沿梁长方向的分布,则平均锈胀力Pav可表示为公式(8):
考虑荷载裂缝的影响,极限状态下锈蚀钢绞线的等效粘结强度τ可表示为公式(9):
τ=kcPavbc
特别的,所述步骤(3)还包括以下步骤:
有效粘结力、残余粘结力和有效预加力的计算如下:
荷载作用下钢绞线所受的张拉力可通过有效粘结力、残余粘结力和有效预加力进行计算,可表达为公式(10):
Fp=Feb+Fer+F
式中,Fp为钢绞线的拉力,Feb为有效粘结力,Fer为残余粘结力,F为有效预加力;
锈蚀钢绞线的有效粘结力主要取决于交界面的粘结应力及接触面积,可表达为公式(11):
Feb=τSLeb
式中,S为锈蚀钢绞线的周长,Leb为有效粘结长度;
残余粘结应力可以通过有效粘结应力进行评估,其值等于40%的有效粘结应力。锈蚀钢绞线的残余粘结力可表达为公式(12):
Fer=0.4τSLer
式中,Ler为滑移区长度;
锈蚀钢绞线的有效预加力与锈蚀率之间存在线性关系,可表达为公式(13):
F=(1-ρ)Fpe
式中,Fpe为未锈蚀钢绞线的初始预加力,ρ为钢绞线的锈蚀率。
特别的,所述步骤(4)还包括以下步骤:
受力和弯矩平衡方程的构建如下:
粘结强度的退化会导致钢绞线与周边混凝土的应变不协调,引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,钢绞线位置处混凝土的应变εcp可表达为公式(14):
εcp=εp
式中,δ为变形协调系数,εp为极限状态下钢绞线的应变;
通过引入的变形协调系数可以明确锈蚀PC梁横断面内的应力、应变分布规律,进而建立锈蚀PC梁的受力和弯矩平衡方程,可分别表示为公式(15)及(16):
Fc+F′s-Fp-Fs=0
M=Fc(hp-yc)+Fs(h0-hp)+F′s(hp-a′s)
式中,Fc为混凝土合力,Fs和F′s分别为受拉区和受压区普通钢筋的合力,M为外部荷载引起的弯矩,hph0和a′s分别为钢绞线,受拉钢筋和受压钢筋重心至梁顶的距离,yc为混凝土等效应力矩形中心至梁顶的距离。
本发明的有益效果为:本发明提供的粘结退化影响下PC构件抗弯承载力计算方法,通过评估锈蚀影响下混凝土锈胀开裂和钢绞线的粘结强度,引入等效粘结强度概念考虑荷载裂缝对粘结强度分布的影响,建立荷载作用下锈蚀钢绞线的受力表达式;引入变形协调系数来量化锈蚀钢绞线与混凝土间的变形不协调,明确构件横断面内的应力、应变分布规律;建立锈蚀PC梁截面内的受力和弯矩平衡方程,得到锈蚀PC梁抗弯承载力计算方法;该计算方法可综合考虑锈蚀引起的钢绞线截面积减小、材料劣化、混凝土开裂、粘结退化及荷载裂缝等因素的影响,能够准确地预测锈蚀PC梁的抗弯承载力,可广泛应用于实际工程。
下面结合附图对本发明做出详细说明。
附图说明
图1混凝土内部裂缝扩展及应力分布示意图。
图2荷载裂缝影响下锈胀力沿梁长方向的分布。
图3外部荷载作用下钢绞线受力示意图。
图4构件横断面内的受力与应变分布。
图5锈蚀PC抗弯承载力计算流程图。
具体实施方式
实施例1:
本实施例公开了一种粘结退化影响下PC构件抗弯承载力计算方法,该计算方法的详细步骤如下:
(1)评估锈裂影响下钢绞线粘结强度:根据构件基本尺寸,确定几何参数取值,采用厚壁薄筒理论对混凝土的锈胀开裂进行模拟,建立锈蚀钢绞线与混凝土界面间胶着力、约束力和锈胀力的表达式,进而预测锈蚀钢绞线的粘结强度;
(2)考虑荷载裂缝影响的等效粘结强度:引入一个等效粘结强度概念来考虑粘结强度沿梁长方向的分布,提出等效粘结强度计算方法;
(3)建立荷载作用下钢绞线的受力表达式:构建锈蚀影响下有效粘结力、残余粘结力和有效预加力的计算方法,建立钢绞线张拉力的表达式;
(4)提出锈蚀PC梁的抗弯承载力计算方法:引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,建立锈蚀PC梁的受力和弯矩平衡方程,提出其抗弯承载力计算方法。
所述步骤(1)中混凝土锈胀开裂过程中,粘结强度的计算如下:
以7丝钢绞线为研究对象,当钢绞线遭受外界物质侵蚀时,外围钢丝首先发生锈蚀,假定单根外围钢丝的锈蚀部位为周长的2/3,如图1所示,则钢绞线的锈蚀率ρ可表示为公式(1):
式中,R0和Rρ分别为锈蚀前后钢丝的半径,Ap为未锈蚀钢绞线的截面面积。
钢绞线锈蚀产物的体积比相应消耗的铁的体积要大,这会导致锈蚀产物的向外膨胀。锈蚀产物一部分会填充混凝土内部的孔隙和裂缝,另外部分则会产生锈胀力。根据体积相等原则,单位长度上钢绞线锈蚀产物的总体积可表达为公式(2):
ΔVt=ΔVw+ΔVe+ΔVc
式中,ΔVt为锈蚀产物的总体积,ΔVt=nΔVw,n为铁锈膨胀率,ΔVw为单位长度上钢绞线外围钢丝的体积变化,ΔVe为混凝土的体积变化,Rt为包含锈蚀产物影响的钢丝半径,ΔVc为单位长度上填充裂缝和孔隙的锈蚀产物体积。
单位长度上,用于填充裂缝和孔隙的锈蚀产物体积可表达为公式(3):
式中,Ru为开裂混凝土的半径。
联立式(1-3),锈胀力引起的混凝土位移uc可表示为公式(4):
保护层开裂前,混凝土保护层由开裂内环和未开裂外环组成,如图1所示。对于未开裂混凝土外环,可采用弹性理论对混凝土的内部应力进行模拟,未开裂混凝土的环向应力σθ(t)和径向位移u(t)可分别表示为公式(5)及(6):
式中,t为未开裂混凝土区域,Ru≤t≤Rc,Rc=Ro+C,C为混凝土保护层厚度,Pu为开裂和未开裂混凝土交界面位置的锈胀力,Ec和vc分别为混凝土弹性模量和泊松比。
根据应力分布协调原则,开裂与未开裂混凝土交界面位置处的应力需等于混凝土抗拉强度,即σθ(Ru)=ft。由此可知,开裂与未开裂混凝土交界面的锈胀力Pu可表示为公式(7):
联立式(6-7),可得到未开裂混凝土的径向位移u(t)。假定开裂混凝土区域的径向位移满足线性分布原则,则开裂区混凝土的径向位移u(r)可表示为公式(8):
式中,r为开裂区混凝土的位置,R0≤r≤Ru
考虑开裂混凝土抗拉强度的软化行为,其环向应力可表示为公式(9):
式中,σθ(r)和εθ(r)分别为混凝土环向应力和应变,εct为混凝土达到抗拉强度时所对应的应变,ε1为混凝土应力为15%抗拉强度时所对应的应变,εu为混凝土极限应变。
保护层开裂前,钢绞线-混凝土界面间的锈胀力Pc主要由开裂混凝土的剩余拉应力和未开裂混凝土的约束力进行抵抗,可表示为公式(10):
式中,R0为锈蚀前钢丝的半径,Ru为开裂混凝土的半径,r为开裂区域混凝土的位置。
保护层开裂后,锈胀力主要由开裂混凝土的剩余拉应力来抵抗,钢绞线-混凝土界面的锈胀力Pc可表示为公式(11):
锈蚀钢绞线与混凝土交界面锈胀力引起的粘结应力τa可表示为公式(12):
τa=kcpc
式中,kc为锈蚀钢绞线与混凝土界面间的摩擦系数。
锈蚀钢绞线与混凝土交界面的胶着力τb可表达为公式(13):
式中,k为同一截面上钢绞线的横肋数目,Ar为横肋面积,D为锈蚀钢绞线直径,δ为横肋与钢绞线轴线间的夹角,θ为钢绞线与混凝土间的摩擦角,sr为横肋间距,fcoh为界面间胶着力系数。
锈蚀钢绞线与混凝土交界面周围混凝土的约束力τc可表达为公式(14):
式中,Cr为横肋的形状系数,px为失效时钢绞线所受的最大压力。
锈蚀钢绞线的粘结强度τη可由钢绞线与混凝土交界面的胶着力、约束力和锈胀力进行计算,其表达式如公式(15):
τη=τabc
所述步骤(2)中等效粘结强度的计算方法为:
荷载裂缝的出现会减低混凝土的约束作用,裂缝位置处的锈胀力几乎全部退化,而相邻裂缝中间位置处的锈胀力基本保持不变,如图2所示。将裂缝位置处的锈胀力定义为0,而相邻裂缝中间位置处的锈胀力定义为Pc,锈胀力沿梁长方向假定呈直线变化,则锈胀力在任意位置处Pc(z)可表示为公式(16):
式中,z为沿梁长方向的任意位置,lm为平均荷载裂缝间距。
引入一个等效概念来考虑锈胀力沿梁长方向的分布,则平均锈胀力Pav可表示为公式(17):
考虑荷载裂缝的影响,极限状态下锈蚀钢绞线的等效粘结强度τ可表示为公式(18):
τ=kcPavbc
所述步骤(3)中有效粘结力、残余粘结力和有效预加力的计算方法为:
图3给出了荷载作用下钢绞线的受力示意图。荷载作用下钢绞线所受的张拉力Fp可通过有效粘结力Feb、残余粘结力Fer和有效预加力F进行计算,其表达式如公式(19):
Fp=F+Feb+Fer
锈蚀钢绞线的有效粘结力主要取决于交界面的粘结应力及接触面积,其表达式如公式(20):
Feb=τSLeb
式中,S为锈蚀钢绞线的周长,Leb为有效粘结长度。
残余粘结应力可以通过有效粘结应力进行评估,其值约等于40%的有效粘结应力。锈蚀钢绞线的残余粘结力可表达为公式(21):
Fer=0.4τSLer
式中,Ler为滑移区长度。
锈蚀钢绞线的有效预加力与锈蚀率之间存在线性关系,可表达为公式(22):
F=(1-ρ)Fpe
式中,Fpe为未锈蚀钢绞线的初始预加力。
所述步骤(4)中锈蚀PC梁受力和弯矩平衡方程的表达式为:
锈蚀钢绞线的本构关系可表示为公式(23):
式中,fp和ε分别为锈蚀钢绞线的应力和应变,ρc为临界锈蚀率,其值为11%,Ep和Epp分别为未锈蚀钢绞线的弹性模量和强化模量,fy为未锈蚀钢绞线屈服强度,εy和εpu分别为未锈蚀钢绞线屈服应变和极限应变。
联立式(19)和(23),极限状态下钢绞线的应变εp可表示为公式(24):
粘结强度的退化会导致钢绞线与周边混凝土的应变不协调,引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,钢绞线位置处混凝土的应变εcp可表达为公式(25):
εcp=εp
式中,δ为变形协调系数。
为单独研究钢绞线锈蚀对抗弯承载力的影响,假定构件内的普通钢筋未发生锈蚀,故普通钢筋与周围混凝土的应变变化相一致,如图4所示,受拉区与受压区钢筋的应变εs和ε′s分别为公式(26)及(27):
式中,εct为顶部混凝土的应变,hp,h0和a′s分别为钢绞线,受拉钢筋和受压钢筋重心至梁顶的距离。
普通钢筋的应力-应变曲线采用线弹-塑性模型进行描述,可表达为公式(28):
式中,fs为普通钢筋的应力,Es和Esp分别为普通钢筋的弹性模量和强化模量,fsy和εsy分别为普通钢筋的屈服强度和屈服应变。
受拉区和受压区普通钢筋的合力Fs和F′s分别为公式(29)及(30):
Fs=Asfss)
F′s=A′sfs(ε′s)
式中,As和A′s分别为受拉区和受压区普通钢筋的截面面积,fss)和fs(ε′s)分别为受拉区和受压区普通钢筋的应力。
混凝土的本构关系采用抛物线曲线进行模拟,其应力-应变关系如公式(31):
式中,fc和εc分别为混凝土的应力和应变,f′c为混凝土抗压强度,ε0为混凝土达到抗压强度时所对应的应变。
混凝土合力Fc及混凝土等效应力矩形中心至梁顶的距离yc分别为公式(32)及(33):
式中,fcc)为混凝土应力,b为梁宽,h为梁高,y为混凝土任意位置至梁顶的距离。
对于锈蚀PC梁,钢绞线、普通钢筋和混凝土的合力需满足受力和弯矩平衡方程,其表达式分别为公式(34)及(35):
Fc+F′s-Fp-Fs=0
M=Fc(hp-yc)+Fs(h0-hp)+F′s(hp-a′s)
式中,M为外部荷载引起的弯矩。
综上所述,本发明提出了一种粘结退化影响下PC构件抗弯承载力计算方法,该方法可综合考虑锈蚀引起的钢绞线截面积减小、材料劣化、混凝土开裂、粘结退化及荷载裂缝等因素的影响。图5给出了锈蚀PC抗弯承载力的计算流程图,具体介绍如下:
(1)基于式(1-18),评估钢绞线锈蚀引起的混凝土开裂及粘结退化;
(2)假定锈蚀PC梁失效模式为顶部混凝土压碎破坏,极限状态下梁顶的混凝土应变先达到极限应变,εct=0.0035;
(3)假定钢绞线滑移区长度(Ler);
(4)基于式(19-33),计算钢绞线、钢筋和混凝土的应力和应变;
(5)校核锈蚀PC梁的受力平衡方程,如果步骤(4)计算得到的钢绞线、钢筋和混凝土的合力不满足式(34),则改变钢绞线滑移区长度(Ler)重复上述步骤,直至式(34)满足;
(6)如果计算得到的钢绞线应变小于极限应变,则锈蚀PC梁的失效模式为混凝土压碎破坏;如果计算得到的钢绞线应变大于极限应变,则锈蚀PC梁的失效模式为钢绞线断裂;
(7)当失效模式为钢绞线断裂时,极限状态下钢绞线的应变先达到极限应变,基于式(19-33)重新计算钢绞线、钢筋和混凝土的应力和应变;
(8)锈蚀PC梁的抗弯承载力由弯曲平衡方程式(35)计算得到。
申请人声明,所属技术领域的技术人员在上述实施例的基础上,将上述实施例某步骤,与发明内容部分的技术方案相组合,从而产生的新的方法,也是本发明的记载范围之一,本申请为使说明书简明,不再罗列这些步骤的其它实施方式。
实施例2:
采用本发明所述方法对文献“Flexural behavior of bonded post-tensionedconcrete beams under strand corrosion,X.Zhang,L.Wang,J.Zhang,Y.Ma,and Y.Liu,Nuclear Engineering and Design,2017,313:414-424”中锈蚀PC梁的抗弯承载力进行计算。本实例的计算方法,包括以下步骤:
步骤一:确定构件的几何参数。
粘结后张PC梁的尺寸为150mm×220mm×2000mm,梁底配有1根直径为15.2mm的7丝钢绞线,其重心至梁底距离为60mm。钢绞线的屈服强度和极限强度分别为1830MPa和1910MPa。钢绞线的初始张拉应力为1395MPa。试验梁底部配有2根直径为8mm的光圆钢筋,顶部配有2根直径为12mm的变形钢筋。光圆钢筋和变形钢筋的屈服强度分别为235MPa和335MPa。采用直径为8mm的光圆钢筋作为箍筋,其间距为90mm。混凝土的抗压强度为31.8MPa。采用电化学方法对构件内的钢绞线进行加速锈蚀。加速锈蚀后,采用四点弯曲加载试验评估了锈蚀PC梁的抗弯承载力,相关试验数据见表1。
步骤二:根据钢绞线锈蚀率评估混凝土开裂过程中的锈胀力。
已有研究表明,铁锈膨胀率介于2-4,本文选为平均值3。基于试验测量得到的锈蚀率,判断保护层是否开裂。如果保护层未开裂,则钢绞线-混凝土界面间的锈胀力Pc可由公式(1)计算得到:
式中,R0为锈蚀前钢丝的半径,Pu为开裂和未开裂混凝土交界面位置的锈胀力,Ru为开裂混凝土的半径,r为开裂混凝土区域,σθ(r)为开裂混凝土的环向应力。
如果保护层已开裂,则钢绞线-混凝土界面的锈胀力Pc可由公式(2)计算得到:
步骤三:考虑荷载裂缝影响的等效粘结强度。
根据步骤二中得到的锈胀力Pc,引入一个等效概念来考虑锈胀力沿梁长方向的分布,可得到平均锈胀力Pav。锈蚀钢绞线与混凝土交界面平均锈胀力引起的粘结应力τav可由公式(3)进行计算:
τav=kcpav
式中,kc为锈蚀钢绞线与混凝土界面间的摩擦系数,kc=0.37-0.26(x-xcr),x为钢绞线的锈蚀深度,xcr为保护层开裂时钢绞线的临界锈蚀深度。
锈蚀钢绞线与混凝土交界面间的胶着力τb可由公式(4)进行计算:
式中,k为同一截面上钢绞线的横肋数目,k=2,Ar为横肋面积,Ar=0.07πD2,D为锈蚀钢绞线剩余直径,δ为横肋与钢绞线轴线间的夹角,δ=45°,θ为钢绞线与混凝土间的摩擦角tan(δ+θ)=1.57-0.785x,sr为横肋间距,sr=0.6D,fcoh为界面间胶着力系数,fcoh=2-10(x-xcr)。
锈蚀钢绞线与混凝土交界面间周围混凝土的约束力τc可由公式(5)进行计算:
式中,Cr为横肋的形状系数,Cr=0.8,px为失效时钢绞线所受的最大压力。
考虑荷载裂缝的影响,极限状态下锈蚀钢绞线的等效粘结强度τ可由钢绞线与混凝土交界面间的胶着力、约束力和锈胀力等因素进行预测,其值可由公式(6)进行计算:
τ=kcpavbc
步骤四:建立荷载作用下钢绞线的受力表达式。
荷载作用下钢绞线所受的张拉力Fp可通过有效粘结力Feb、残余粘结力Fer和有效预加力F进行计算,其值可由公式(7)进行计算:
Fp=Feb+Fer+F
锈蚀钢绞线的有效粘结力主要取决于交界面的粘结应力及接触面积,其值可由公式(8)进行计算:
Feb=τSLeb
式中,S为锈蚀钢绞线的周长,S=8πRρ,Rρ为钢丝锈蚀后的半径,Leb为有效粘结长度,fy为未锈蚀钢绞线屈服强度,fpe为钢绞线有效预应力。
残余粘结应力可以通过有效粘结应力进行评估,其值等于40%的有效粘结应力。锈蚀钢绞线的残余粘结力可由公式(9)进行计算:
Fer=0.4τSLer
式中,Ler为滑移区长度。
锈蚀钢绞线的有效预加力与锈蚀率之间存在线性关系,其值可由公式(10)进行计算:
F=(1-ρ)Fpe
式中,Fpe为未锈蚀钢绞线的初始预加力,ρ为钢绞线的锈蚀率。
步骤五:锈蚀PC梁受力和弯矩平衡方程的构建。
引入一个变形不协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,钢绞线位置处混凝土的应变εcp可表达为公式(11):
εcp=εp
式中,δ为变形协调系数,δ=0.8099ρ2-1.2771ρ+1,εp为极限状态下钢绞线的应变。
构件内受拉区与受压区普通钢筋的应变εs和ε′s可分别由公式(12)及(13)进行计算:
式中,εct为顶部混凝土的应变,hp,h0和a′s分别为钢绞线,受拉钢筋和受压钢筋重心至梁体顶部的距离。
受拉区和受压区普通钢筋的合力Fs和F′s分别可由公式(14)及(15)进行计算:
Fs=Asfss)
F′s=A′sfs(ε′s)
式中,As和A′s分别为受拉区和受压区普通钢筋的截面面积,fss)和fs(ε′s)分别为受拉区和受压区普通钢筋的应力。
混凝土合力Fc及混凝土等效应力矩形中心至梁顶的距离yc可分别由公式(16)及(17)进行计算:
式中,fcc)为混凝土应力,b为梁宽,h为梁高,y为混凝土任意位置至梁顶的距离。
对于锈蚀PC梁,钢绞线、普通钢筋和混凝土的合力仍然满足受力和弯矩平衡方程。锈蚀PC梁的受力和弯矩平衡方程可分别由公式(18)及(19)进行计算:
Fc+F′s-Fp-Fs=0
M=Fc(hp-yc)+Fs(h0-hp)+F′s(hp-a′s)
式中,M为外部荷载引起的弯矩。
步骤六:验证该计算方法的合理性。
为验证锈蚀PC梁抗弯承载力预测模型的合理性,本文对文献“Flexural behaviorof bonded post-tensioned concrete beams under strand corrosion,X.Zhang,L.Wang,J.Zhang,Y.Ma,and Y.Liu,Nuclear Engineering and Design,2017,313:414-424”设计制作的8根试验梁的抗弯承载力进行了预测,理论计算值与试验值见表1。由表1可知,理论计算值与试验值吻合较好,本发明提出的计算方法可以合理地预测锈蚀PC梁的抗弯承载力。
表1抗弯承载力理论计算值与试验值之间的比较
注:ρ为锈蚀率;f′c为混凝土抗压强度;D0为钢绞线直径;Mt为试验弯矩值;Mp为理论弯矩值。
申请人又一声明,本发明通过上述实施例来说明本发明的实现方法,但本发明并不局限于上述实施方式,即不意味着本发明必须依赖上述方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明所选用实现方法等效替换及步骤的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
本发明并不限于上述实施方式,凡采用与本发明相似方法来实现本发明目的的所有实施方式均在本发明保护范围之内。

Claims (5)

1.粘结退化影响下PC构件抗弯承载力计算方法,其特征在于,该方法包括以下步骤:
(1)锈裂影响下钢绞线粘结强度预测:
根据构件基本尺寸,确定几何参数取值,采用厚壁薄筒理论对混凝土的锈胀开裂进行模拟,建立锈蚀钢绞线与混凝土界面间胶着力、约束力和锈胀力的表达式,进而预测锈蚀钢绞线的粘结强度;
(2)荷载裂缝影响下粘结强度评估:
引入一个等效粘结强度概念来考虑粘结强度沿梁长方向的分布,提出等效粘结强度计算方法;
(3)建立荷载作用下钢绞线的受力表达式:
构建锈蚀影响下有效粘结力、残余粘结力和有效预加力的计算方法,建立荷载作用下锈蚀钢绞线张拉力的表达式;
(4)提出锈蚀PC梁抗弯承载力计算方法:
引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,明确构件横断面内的应力、应变分布规律,建立锈蚀PC梁截面内的受力和弯矩平衡方程,提出其抗弯承载力计算方法。
2.根据权利要求1所述粘结退化影响下PC构件抗弯承载力计算方法,其特征在于,所述步骤(1)还包括以下步骤:
混凝土锈胀开裂过程中,粘结强度的计算如下:
锈蚀钢绞线的粘结强度主要由钢绞线与混凝土交界面间的胶着力、约束力和锈胀力来提供,其表达式为公式(1):
τη=τabc
式中,τη为锈蚀钢绞线的粘结应力,τa为锈胀力引起的粘结应力,τb为交界面间的胶着力,τc为交界面间的约束力;
锈蚀钢绞线与混凝土交界面锈胀力引起的粘结应力可表示为公式(2):
τa=kcpc
式中,kc为锈蚀钢绞线与混凝土界面间的摩擦系数,Pc为钢绞线-混凝土界面间的锈胀力;
保护层开裂前,锈胀力主要由开裂混凝土的剩余拉应力和未开裂混凝土的约束力共同抵抗,钢绞线-混凝土界面间的锈胀力可表示为公式(3):
式中,R0为锈蚀前钢丝的半径,Pu为开裂和未开裂混凝土交界面位置的锈胀力,Ru为开裂混凝土的半径,r为开裂混凝土区域的位置,σθ(r)为开裂混凝土的环向应力;
保护层开裂后,锈胀力主要由开裂混凝土的剩余拉应力来抵抗,钢绞线-混凝土界面间的锈胀力可表示为公式(4):
锈蚀钢绞线与混凝土交界面间的胶着力可表达为公式(5):
式中,k为同一截面上钢绞线的横肋数目,Ar为横肋面积,D为锈蚀钢绞线直径,δ为横肋与钢绞线轴线间的夹角,θ为钢绞线与混凝土间的摩擦角,sr为横肋间距,fcoh为界面间胶着力系数;
锈蚀钢绞线与混凝土交界面间周围混凝土的约束力可表达为公式(6):
式中,Cr为横肋的形状系数,px为失效时钢绞线所受的最大压力。
3.根据权利要求1所述粘结退化影响下PC构件抗弯承载力计算方法,其特征在于,所述步骤(2)还包括以下步骤:
等效粘结强度概念的引入方法如下:
当无荷载裂缝存在时,锈蚀构件沿梁长方向各位置处的锈胀力大小一致呈均匀分布。然荷载裂缝的出现会降低混凝土的约束作用,裂缝位置处的锈胀力几乎全部退化,而相邻裂缝中间位置处的锈胀力则基本保持不变。将裂缝位置处的锈胀力定义为0,而相邻裂缝中间位置处的锈胀力定义为Pc,锈胀力沿梁长方向假定呈直线变化,则锈胀力在任意位置处Pc(z)可表示为公式(7):
式中,z为沿梁长方向的任意位置,lm为平均荷载裂缝间距;
引入一个等效概念来考虑锈胀力沿梁长方向的分布,则平均锈胀力Pav可表示为公式(8):
考虑荷载裂缝的影响,极限状态下锈蚀钢绞线的等效粘结强度τ可表示为公式(9):
τ=kcPavbc
4.根据权利要求1所述粘结退化影响下PC构件抗弯承载力计算方法,其特征在于,所述步骤(3)还包括以下步骤:
有效粘结力、残余粘结力和有效预加力的计算如下:
荷载作用下,钢绞线所受的张拉力可通过有效粘结力、残余粘结力和有效预加力进行计算,可表达为公式(10):
Fp=Feb+Fer+F
式中,Fp为钢绞线的拉力,Feb为有效粘结力,Fer为残余粘结力,F为有效预加力;
锈蚀钢绞线的有效粘结力主要取决于交界面的粘结应力及接触面积,可表达为公式(11):
Feb=τSLeb
式中,S为锈蚀钢绞线的周长,Leb为有效粘结长度;
剩余粘结应力可通过有效粘结应力进行评估,其值等于40%的有效粘结应力。锈蚀钢绞线的残余粘结力可表达为公式(12):
Fer=0.4τSLer
式中,Ler为滑移区长度;
锈蚀钢绞线的有效预加力与锈蚀率之间存在线性关系,可表达为公式(13):
F=(1-ρ)Fpe
式中,Fpe为未锈蚀钢绞线的初始预加力,ρ为钢绞线的锈蚀率。
5.根据权利要求1所述粘结退化影响下PC构件抗弯承载力计算方法,其特征在于,所述步骤(4)还包括以下步骤:
受力和弯矩平衡方程的构建如下:
粘结强度的退化会导致钢绞线与周边混凝土的应变不协调,引入一个变形协调系数来考虑极限状态下钢绞线与混凝土间的应变不协调,钢绞线位置处混凝土的应变εcp可表达为公式(14):
εcp=εp
式中,δ为变形协调系数,εp为极限状态下钢绞线的应变;
通过引入的变形协调系数可以明确锈蚀PC梁横断面内的应力、应变分布规律,进而建立锈蚀PC梁的受力和弯矩平衡方程,可分别表示为公式(15)及(16):
Fc+F′s-Fp-Fs=0
M=Fc(hp-yc)+Fs(h0-hp)+F′s(hp-a′s)
式中,Fc为混凝土合力,Fs和F′s分别为受拉区和受压区普通钢筋的合力,M为外部荷载引起的弯矩,hp、h0和a′s分别为钢绞线,受拉钢筋和受压钢筋重心至梁顶部的距离,yc为混凝土等效应力矩形中心至梁顶的距离。
CN201810651958.5A 2018-06-22 2018-06-22 粘结退化影响下pc构件抗弯承载力计算方法 Active CN108920798B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810651958.5A CN108920798B (zh) 2018-06-22 2018-06-22 粘结退化影响下pc构件抗弯承载力计算方法
PCT/CN2019/079890 WO2019242366A1 (zh) 2018-06-22 2019-03-27 粘结退化影响下pc构件抗弯承载力计算方法
KR1020197031496A KR102291531B1 (ko) 2018-06-22 2019-03-27 본딩 열화 영향 하의 pc 부재 굽힘 수용력 계산 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810651958.5A CN108920798B (zh) 2018-06-22 2018-06-22 粘结退化影响下pc构件抗弯承载力计算方法

Publications (2)

Publication Number Publication Date
CN108920798A true CN108920798A (zh) 2018-11-30
CN108920798B CN108920798B (zh) 2020-06-16

Family

ID=64421246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810651958.5A Active CN108920798B (zh) 2018-06-22 2018-06-22 粘结退化影响下pc构件抗弯承载力计算方法

Country Status (3)

Country Link
KR (1) KR102291531B1 (zh)
CN (1) CN108920798B (zh)
WO (1) WO2019242366A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109933838A (zh) * 2019-01-11 2019-06-25 重庆交通大学 一种装配式剪力连接件全过程滑移计算方法
CN110206226A (zh) * 2019-05-31 2019-09-06 河海大学 一种型钢-钢纤维混凝土极限黏结强度计算方法
WO2019242366A1 (zh) * 2018-06-22 2019-12-26 长沙理工大学 粘结退化影响下pc构件抗弯承载力计算方法
CN110717211A (zh) * 2019-09-20 2020-01-21 河海大学 地下连续墙钢筋搭接接头处抗弯能力计算方法
CN110929321A (zh) * 2019-11-18 2020-03-27 同济大学建筑设计研究院(集团)有限公司 粘钢加固预应力混凝土梁相对界限受压区高度计算方法
CN111241617A (zh) * 2020-01-08 2020-06-05 中国矿业大学 一种板的承载力计算方法
CN111985027A (zh) * 2020-08-13 2020-11-24 宁波大学 组合梁抗弯承载力的计算方法
CN112613103A (zh) * 2020-12-22 2021-04-06 长沙理工大学 一种混凝土胀裂影响下先张法构件传递长度计算方法
CN112948909A (zh) * 2019-12-11 2021-06-11 武汉大学 各向同性双管混凝土柱承载力计算方法及系统

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095166A1 (ja) * 2019-11-13 2021-05-20 日本電信電話株式会社 推定方法、推定装置、および、プログラム
CN111291487B (zh) * 2020-02-13 2022-06-14 中铁二院工程集团有限责任公司 一种提高既有衡重式挡土墙抗剪承载力的方法
CN111261234B (zh) * 2020-03-24 2023-04-07 西安理工大学 一种考虑损伤影响的混凝土徐变预测方法
CN111507040B (zh) * 2020-04-27 2024-03-01 江南大学 波纹侧板-方钢管混凝土柱偏心受压承载力的计算方法
CN111539124B (zh) * 2020-05-11 2023-09-05 郑州大学 一种不锈钢筋混凝土受弯构件正截面承载力量化处理方法
CN111914358B (zh) * 2020-07-08 2022-07-19 中国第一汽车股份有限公司 发动机冲击作用下的变速器壳体极限承载能力预报方法
CN111797458A (zh) * 2020-07-17 2020-10-20 浙江瓯越交建科技股份有限公司 早龄期预制混凝土结构零反拱的预应力分批张拉控制方法
CN112052612B (zh) * 2020-08-25 2022-06-07 中国石油大学(华东) 大型承压设备筋板加固刚柔协同局部热处理方法
CN112084659B (zh) * 2020-09-09 2022-09-09 北京理工大学 考虑侵蚀效应的弹体高速冲击混凝土侵彻性能的预测方法
CN112464337B (zh) * 2020-11-20 2023-11-10 西安近代化学研究所 一种近场爆炸下简支钢筋混凝土梁弯曲动抗力计算方法
CN112733219B (zh) * 2020-12-16 2022-11-22 湖北神州建材有限责任公司 一种配筋式蒸压加气混凝土板抗弯承载力校核方法
CN112733257B (zh) * 2020-12-29 2022-11-01 中国航空工业集团公司西安飞机设计研究所 承受对称集中载荷的圆拱形加强框结构参数确定方法
CN113761452B (zh) * 2021-07-30 2024-04-12 山东电力工程咨询院有限公司 一种输电塔用拉线盘弯矩确定方法及系统
CN113627056B (zh) * 2021-08-03 2023-09-19 中国矿业大学 基于火灾导致楼盖、屋盖角柱失效后极限载荷的计算方法
CN113919123A (zh) * 2021-08-12 2022-01-11 同济大学 锈蚀双筋混凝土梁正截面抗弯承载力计算方法
CN113704848B (zh) * 2021-08-20 2024-02-06 武汉大学 膨胀土中刚性挡墙上最大侧向压力计算方法
CN113962126B (zh) * 2021-10-21 2024-03-15 广西路桥工程集团有限公司 一种钢管混凝土初应力的评估方法
CN113962128B (zh) * 2021-10-26 2024-04-12 河北工业大学 考虑混凝土高温爆裂的rc梁残余抗弯承载力的预测方法
CN114297902B (zh) * 2022-01-05 2023-08-01 江南大学 约束混凝土组合柱在偏压作用下承载力的计算方法
CN114330019B (zh) * 2022-01-10 2022-12-20 广西北投公路建设投资集团有限公司 体内无粘结预应力波形钢腹板组合梁抗弯承载力计算方法
CN114577593B (zh) * 2022-03-02 2024-05-31 郑州大学 基于声发射的预应力混凝土梁消压弯矩的确定方法和装置
CN115310179B (zh) * 2022-07-27 2024-03-29 武汉大学 一种基于钢绞线应变的滑坡推力确定方法
CN116305405B (zh) * 2023-01-17 2023-09-29 安徽省交通控股集团有限公司 体外拉索极限应力及体外拉索加劲梁截面强度分析方法
CN219365030U (zh) * 2023-02-21 2023-07-18 中国地震局地球物理研究所 一种新型结构的剪力墙
CN116720368B (zh) * 2023-06-14 2023-12-15 西南交通大学 钢纤维混凝土抗拉本构模型建立方法及系统
CN117290914B (zh) * 2023-10-27 2024-03-29 湘潭大学 一种考虑界面摩擦作用的栓钉连接钢-uhpc界面抗剪承载力计算方法
CN117951791A (zh) * 2024-02-05 2024-04-30 深圳大学 一种frp-混凝土梁正截面的复核方法和抗弯设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105893689A (zh) * 2016-04-15 2016-08-24 中山市公路局 一种桥梁可靠度预测方法及其养护方法
CN105956256A (zh) * 2016-04-28 2016-09-21 河海大学 一种既有混凝土桥梁复杂区域的承载力评估与加固计算方法
JP2017009384A (ja) * 2015-06-19 2017-01-12 太平洋セメント株式会社 コンクリートの評価方法
CN106485029A (zh) * 2016-10-27 2017-03-08 北京市市政工程研究院 基于残余应变的钢筋砼梁桥损伤后承载能力评估方法
JP2017096684A (ja) * 2015-11-19 2017-06-01 日本工営株式会社 粗石コンクリートの強度評価方法及び粗石コンクリートの強度評価プログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010103232A (ko) * 2000-05-08 2001-11-23 윤덕용 콘크리트 구조물의 온도응력 측정장치 및 방법
KR101461657B1 (ko) * 2013-05-02 2014-11-20 조명기 콘크리트의 모르타르 경화 과정 모니터링/측정 시스템 및 콘크리트의 모르타르 경화 과정 모니터링/측정 방법
KR101528893B1 (ko) 2013-12-05 2015-06-18 서울대학교산학협력단 해양 콘크리트 구조물의 복합열화 모의시험 방법
KR101636650B1 (ko) 2015-05-04 2016-07-05 인하대학교 산학협력단 공항 콘크리트 포장상태지수 분석 장치 및 그것을 이용한 콘크리트 포장상태지수 분석 방법
CN108920798B (zh) * 2018-06-22 2020-06-16 长沙理工大学 粘结退化影响下pc构件抗弯承载力计算方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017009384A (ja) * 2015-06-19 2017-01-12 太平洋セメント株式会社 コンクリートの評価方法
JP2017096684A (ja) * 2015-11-19 2017-06-01 日本工営株式会社 粗石コンクリートの強度評価方法及び粗石コンクリートの強度評価プログラム
CN105893689A (zh) * 2016-04-15 2016-08-24 中山市公路局 一种桥梁可靠度预测方法及其养护方法
CN105956256A (zh) * 2016-04-28 2016-09-21 河海大学 一种既有混凝土桥梁复杂区域的承载力评估与加固计算方法
CN106485029A (zh) * 2016-10-27 2017-03-08 北京市市政工程研究院 基于残余应变的钢筋砼梁桥损伤后承载能力评估方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019242366A1 (zh) * 2018-06-22 2019-12-26 长沙理工大学 粘结退化影响下pc构件抗弯承载力计算方法
CN109933838B (zh) * 2019-01-11 2022-05-17 重庆交通大学 一种装配式剪力连接件全过程滑移计算方法
CN109933838A (zh) * 2019-01-11 2019-06-25 重庆交通大学 一种装配式剪力连接件全过程滑移计算方法
CN110206226A (zh) * 2019-05-31 2019-09-06 河海大学 一种型钢-钢纤维混凝土极限黏结强度计算方法
CN110717211B (zh) * 2019-09-20 2021-05-11 河海大学 地下连续墙钢筋搭接接头处抗弯能力计算方法
CN110717211A (zh) * 2019-09-20 2020-01-21 河海大学 地下连续墙钢筋搭接接头处抗弯能力计算方法
CN110929321A (zh) * 2019-11-18 2020-03-27 同济大学建筑设计研究院(集团)有限公司 粘钢加固预应力混凝土梁相对界限受压区高度计算方法
CN112948909A (zh) * 2019-12-11 2021-06-11 武汉大学 各向同性双管混凝土柱承载力计算方法及系统
CN112948909B (zh) * 2019-12-11 2022-04-01 武汉大学 各向同性双管混凝土柱承载力计算方法及系统
CN111241617A (zh) * 2020-01-08 2020-06-05 中国矿业大学 一种板的承载力计算方法
CN111241617B (zh) * 2020-01-08 2024-05-28 中国矿业大学 一种板的承载力计算方法
CN111985027A (zh) * 2020-08-13 2020-11-24 宁波大学 组合梁抗弯承载力的计算方法
CN111985027B (zh) * 2020-08-13 2023-09-01 宁波大学 组合梁抗弯承载力的计算方法
CN112613103A (zh) * 2020-12-22 2021-04-06 长沙理工大学 一种混凝土胀裂影响下先张法构件传递长度计算方法
CN112613103B (zh) * 2020-12-22 2022-09-20 长沙理工大学 一种混凝土胀裂影响下先张法构件传递长度计算方法

Also Published As

Publication number Publication date
KR102291531B1 (ko) 2021-08-19
CN108920798B (zh) 2020-06-16
WO2019242366A1 (zh) 2019-12-26
KR20200000436A (ko) 2020-01-02

Similar Documents

Publication Publication Date Title
CN108920798A (zh) 粘结退化影响下pc构件抗弯承载力计算方法
WO2020019782A1 (zh) 一种预测混凝土顺筋开裂后预应力损失方法
Li et al. Effects of the position and chloride-induced corrosion of strand on bonding behavior between the steel strand and concrete
Chernin et al. Prediction of corrosion-induced cover cracking in reinforced concrete structures
Pothisiri et al. Modeling of bonding between steel rebar and concrete at elevated temperatures
Campbell et al. Design and evaluation of a wedge-type anchor for fibre reinforced polymer tendons
CN109781501B (zh) 一种钢筋-钢纤维混凝土盾构管片裂缝宽度的计算方法
Zhang et al. Effect of load distribution on the behaviour of RC beams strengthened in flexure with near-surface mounted (NSM) FRP
Li et al. Pitting damage characteristics on prestressing steel strands by combined action of fatigue load and chloride corrosion
Ayinde et al. Numerical analysis of concrete degradation due to chloride-induced steel corrosion
Tong et al. Formulae for hot-spot stress concentration factors of concrete-filled CHS T-joints based on experiments and FE analysis
Liu et al. Experimental study of dynamic bond behaviour between corroded steel reinforcement and concrete
Zhao et al. Numerical analysis of the degradation characteristics of bearing capacity of a corroded reinforced concrete beam
Dong et al. Failure analysis of a prestressed concrete cylinder pipe under clustered broken wires by FEM
Asadian et al. Splice Strength of Staggered and Non-Staggered Bundled Glass Fiber-Reinforced Polymer Reinforcing Bars in Concrete.
Li et al. The influence of longitudinal rebar type and stirrup ratio on the bond performance of reinforced concrete with corrosion
Carpinteri et al. Size-Scale Effects on Plastic Rotational Capacity of Reinforced Concrete Beams.
Deng et al. Study on crack width and crack resistance of eccentrically tensioned steel-reinforced concrete members prestressed by CFRP tendons
Li et al. Corrosion of anchorage head system of post‐tensioned prestressed concrete structures under chloride environment
Shin et al. Performance of concrete beams reinforced with GFRP bars
Au et al. Partially prestressed concrete
Jeremic et al. Performance of Glass Fiber-Reinforced Polymer Bent Bars.
Wu et al. Experimental study on the bond capacity of RC beams incorporating concrete strength, corrosion and loading rate
Cheng Shear capacity of steel-plate reinforced concrete coupling beams
Zhang Theoretical and numerical study on the three-edge bearing capacity of prestressed concrete cylinder pipe

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Wang Lei

Inventor after: Dai Lichao

Inventor after: Zhang Xuhui

Inventor after: Zhang Jianren

Inventor after: Ma Yafei

Inventor before: Wang Lei

Inventor before: Dai Lichao

Inventor before: Zhang Xuhui

Inventor before: Zhang Jianren

Inventor before: Ma Yafei