CN108912362B - 一种多胺功能化聚苯并咪唑交联膜及制备方法 - Google Patents

一种多胺功能化聚苯并咪唑交联膜及制备方法 Download PDF

Info

Publication number
CN108912362B
CN108912362B CN201810783483.5A CN201810783483A CN108912362B CN 108912362 B CN108912362 B CN 108912362B CN 201810783483 A CN201810783483 A CN 201810783483A CN 108912362 B CN108912362 B CN 108912362B
Authority
CN
China
Prior art keywords
polybenzimidazole
membrane
solvent
solution
cpbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810783483.5A
Other languages
English (en)
Other versions
CN108912362A (zh
Inventor
焉晓明
胡磊
贺高红
阮雪华
郑文姬
代岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201810783483.5A priority Critical patent/CN108912362B/zh
Publication of CN108912362A publication Critical patent/CN108912362A/zh
Application granted granted Critical
Publication of CN108912362B publication Critical patent/CN108912362B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2218Synthetic macromolecular compounds
    • C08J5/2256Synthetic macromolecular compounds based on macromolecular compounds obtained by reactions other than those involving carbon-to-carbon bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/02Polyamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种多胺功能化聚苯并咪唑交联膜及制备方法,属于离子交换膜技术领域。步骤如下:(1)通过接枝反应,利用1‑溴‑4‑氯丁烷对聚苯并咪唑功能化,得到功能化聚苯并咪唑;(2)室温下往功能化聚苯并咪唑溶液中加入聚乙烯亚胺,均匀混合,真空干燥,得到多胺功能化聚苯并咪唑交联膜。聚乙烯亚胺促进了膜中微相分离结构的形成,显著地提高了膜内质子的传导。同时,通过膜内交联结构和聚合物质子化形成的唐南效应,显著降低了钒离子渗透率。本发明所述的多胺功能化聚苯并咪唑交联膜制备工艺简单,成本低廉,质子传导率高,离子选择性高,化学稳定性优异,能够满足全钒液流电池使用要求,具有较好的应用前景。

Description

一种多胺功能化聚苯并咪唑交联膜及制备方法
技术领域
本发明属于离子交换膜技术领域,具体涉及一种多胺功能化聚苯并咪唑交联膜及制备方法。
背景技术
全钒液流电池(VRFB)正在成为潜在的大规模储能技术,它高效、安全、可靠性高,并且具有最优组合—高效率和长循环性。隔膜是VRFB的重要组件之一,全钒液流电池需要选择透过性的离子交换膜来维持充电和放电过程中的电荷平衡。离子交换膜是全钒液流电池系统中最核心的部件,用于分离正负电解液,避免交叉污染;传导质子,保持电池回路。迄今为止,一些VFRB生产商基于其出色的化学稳定性选择Nafion膜,然而,其成本太高,钒离子渗透率太高,促使了研究者探索其他膜替代Nafion膜。阳离子交换膜的离子电导率与Nafion膜相差不大,阻钒性能比Nafion膜好,但是化学稳定性较差,使用寿命短。阴离子交换膜的阻钒性能好,但是离子电导率低,能量转换效率低,不能满足实际应用。两性离子交换膜具有好的阻钒性能和高的离子电导率,但是制备复杂,不确定因素多,且化学稳定性较差。非离子多孔膜利用孔的尺寸大小阻止钒离子的透过,而允许质子传导,但是制备工艺复杂。因此研宂一种化学稳定性好、离子传导率高、阻钒性能好且成本低廉的膜,对于全钒液流电池具有重大的意义。
聚苯并咪唑(PBI)主链结构是由重复的苯并咪唑环组成的,该结构具有两性性质,被质子酸(磷酸或磺酸)质子化后,既可以作为质子传输的导体,又可以作为质子受体。PBI具有优良的化学稳定性、热稳定性和机械强度,将其质子化后作为理想的全钒液流电池隔膜材料,而且其成本也显著低于全氟磺酸质子膜。但是PBI膜的质子传导率较低,极大的影响着电池性能,需要进一步对其进行改性。主要包括物理改性,涉及无机共混和掺杂等,虽然物理改性在一定程度上可以改善聚合物的一些性能,但是由于其分子间存在的是范德华力,因此共混或掺杂的材料会出现结构不均匀的现象,往往会导致聚合物稳定性降低。另一种化学改性,通过对聚苯并咪唑分子链进行嵌段、接枝、交联等方法,或者在主链引入新的官能团。基于此,本发明提出利用聚乙烯亚胺(PEI)对PBI进行改性,制备得到多胺功能化聚苯并咪唑交联膜,其全钒液流电池性能优异。
发明内容
本发明目的在于提供一种多胺功能化聚苯并咪唑交联膜的制备方法,该制备方法主要是通过引入亲水性的聚乙烯亚胺对聚苯并咪唑进行交联改性,诱导微相分离结构的产生,从而显著提高了质子传导率。同时通过膜内交联结构以及聚合物质子化效应有效降低钒离子渗透。
本发明的技术方案:
一种多胺功能化聚苯并咪唑交联膜,其结构式如下:
Figure BDA0001733166590000031
一种多胺功能化聚苯并咪唑交联膜的制备方法,步骤如下:
(1)在氮气保护下,将PBI聚合物充分溶解于溶剂中,后加入氢化钠,在室温下反应24h;然后加入1-溴-4-氯丁烷,在0℃下反应12h;待反应结束后,将产物用沉淀剂析出,然后反复洗涤,真空干燥,得到功能化聚苯并咪唑(CPBI)材料,其中,沉淀剂为冰水,洗涤用去离子水和乙醇;
(2)将步骤(1)中的CPBI溶于溶剂中,得到均一溶液;将聚乙烯亚胺(PEI)溶于溶剂中,得到均一溶液;然后抽取不同质量比的两种溶液在室温下进行均匀混合,得到均一透明的铸膜液;将铸膜液浇铸成膜,真空干燥,得到聚合物成膜。然后将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜,厚度为30-40微米。
所述的溶剂为N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺;
所述的PBI与溶剂的w/v为2~5%;
所述的PBI重复单元和氢化钠的摩尔比为1:1~1.5;
所述的PBI重复单元和1-溴-4-氯丁烷的摩尔比为1:0.1~8;
所述的CPBI与溶剂的w/v为2~10%;
所述的PEI与溶剂的w/v为2~10%;
所述的CPBI和PEI的质量比为95:5~50:50。
所述的浇铸成膜的干燥温度为50~60℃,时间为12~72h。
本发明的有益效果:使用亲水性聚乙烯亚胺对聚苯并咪唑进行交联改性,以构建连续的离子传递通道,显著提高膜内质子传导。同时,引入交联结构以限制溶胀、提高膜的稳定性,并且CPBI和PEI质子化形成唐南效应,显著降低钒离子渗透。制备所得的多胺功能化聚苯并咪唑交联膜综合性能优异:质子传导率高、离子选择性高、化学稳定性优异,可应用于全钒液流电池。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例1:本发明方法包括以下步骤:
(1)功能化聚苯并咪唑(CPBI)的制备
在氮气保护下称取1g PBI聚合物加入100mL三口烧瓶中,用50mLDMSO溶解,待聚合物充分溶解后加入0.25g NaH(质量分数为60%,储存于煤油中),反应体系在室温下反应24h。将0.145mL 1-溴-4-氯丁烷加入烧瓶中,体系在0℃条件下反应12h。反应结束后将产物用冰水析出,然后再用乙醇反复洗涤,真空干燥,即可制得功能化聚苯并咪唑(CPBI)。
(2)多胺功能化聚苯并咪唑交联膜的制备
将CPBI聚合物溶于N-甲基吡咯烷酮,完全溶解制备成w/v为5%的溶液。将聚乙烯亚胺(PEI)溶于N-甲基吡咯烷酮,完全溶解制备成w/v为5%的溶液。然后分别抽取一定量的两种溶液,质量比为90/10(CPBI/PEI),得到聚合物混合物。并将混合物均匀混合,离心并浇铸在玻璃板上铸膜。在50℃下烘干48h,得到聚合物成膜。然后将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜。所得交联膜在120mA·cm-2下电池的库伦效率为98.9%,电压效率为81.2%,能量效率为80.3%。
实施例2:本发明所述方法包括以下步骤:
(1)功能化聚苯并咪唑(CPBI)的制备
在氮气保护下称取1g PBI聚合物加入100mL三口烧瓶中,用50mLDMAc溶解,待聚合物充分溶解后加入0.2g NaH(质量分数为60%,储存于煤油中),反应体系在室温下反应24h。将0.145mL 1-溴-4-氯丁烷加入烧瓶中,体系在0℃条件下反应12h。反应结束后将产物用冰水析出,然后再用乙醇反复洗涤,真空干燥,即可制得功能化聚苯并咪唑(CPBI)。
(2)多胺功能化聚苯并咪唑交联膜的制备
将CPBI聚合物溶解于二甲基亚砜,完全溶解制备成w/v为3%的溶液,将聚乙烯亚胺(PEI)溶解于二甲基亚砜,完全溶解制备成w/v为5%的溶液。然后分别抽取一定量的两种溶液,质量比为85/15(CPBI/PEI),得到聚合物混合物。并将混合物均匀混合,离心并浇铸在玻璃板上铸膜。在60℃下烘干30h,得到聚合物成膜。然后将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜。所得交联膜在120mA·cm-2下电池的库伦效率为98.8%,电压效率为83.6%,能量效率为82.6%。
实施例3:本发明所述方法包括以下步骤:
(1)功能化聚苯并咪唑(CPBI)的制备
在氮气保护下称取1g PBI聚合物加入100mL三口烧瓶中,用50mLDMSO溶解,待聚合物充分溶解后加入0.25g NaH(质量分数为60%,储存于煤油中),反应体系在室温下反应24h。将0.145mL 1-溴-4-氯丁烷加入烧瓶中,体系在0℃条件下反应12h。反应结束后将产物用冰水析出,然后再用乙醇反复洗涤,真空干燥,即可制得功能化聚苯并咪唑(CPBI)。
(2)多胺功能化聚苯并咪唑交联膜的制备
将CPBI聚合物溶解于N-甲基吡咯烷酮,完全溶解制备成w/v为2%的溶液,将聚乙烯亚胺(PEI)溶解于N-甲基吡咯烷酮,完全溶解制备成w/v为2%的溶液。然后分别抽取一定量的两种溶液,质量比为80/20(CPBI/PEI),得到聚合物混合物。并将混合物均匀混合,离心并浇铸在玻璃板上铸膜。在50℃下烘干48h,得到聚合物成膜。然后将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜。所得交联膜在120mA·cm-2下电池的库伦效率为98.8%,电压效率为86.6%,能量效率为85.5%。同时该膜在120mA/cm2电流密度下进行2000个充放电循环,效率保持稳定。可见该膜具有良好的稳定性。
实施例4:本发明所述方法包括以下步骤:
(1)功能化聚苯并咪唑(CPBI)的制备
在氮气保护下称取1g PBI聚合物加入100mL三口烧瓶中,用50mLDMAc溶解,待聚合物充分溶解后加入0.2g NaH(质量分数为60%,储存于煤油中),反应体系在室温下反应24h。将0.145mL 1-溴-4-氯丁烷加入烧瓶中,体系在0℃条件下反应12h。反应结束后将产物用冰水析出,然后再用乙醇反复洗涤,真空干燥,即可制得功能化聚苯并咪唑(CPBI)。
(2)多胺功能化聚苯并咪唑交联膜的制备
将CPBI聚合物溶解于二甲基亚砜,完全溶解制备成w/v为3%的溶液,将聚乙烯亚胺(PEI)溶解于二甲基亚砜,完全溶解制备成w/v为3%的溶液。然后分别抽取一定量的两种溶液,质量比为75/25(CPBI/PEI),得到聚合物混合物。并将混合物均匀混合,离心并浇铸在玻璃板上铸膜。在60℃下烘干30h,得到聚合物成膜。然后将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜。所得交联膜在120mA·cm-2下电池的库伦效率为98.4%,电压效率为86.4%,能量效率为85.1%。

Claims (2)

1.一种多胺功能化聚苯并咪唑交联膜的制备方法,其特征在于,步骤如下:
(1)在氮气保护下,将聚苯并咪唑PBI聚合物充分溶解于溶剂中,后加入氢化钠,在室温下反应24h;然后加入1-溴-4-氯丁烷,在0℃下反应12h;待反应结束后,将产物用沉淀剂析出,然后反复洗涤,真空干燥,得到功能化聚苯并咪唑CPBI材料,其中,沉淀剂为冰水,洗涤用去离子水和乙醇;
(2)将步骤(1)中的CPBI溶于溶剂中,得到均一溶液;将聚乙烯亚胺PEI溶于溶剂中,得到均一溶液;然后抽取不同质量比的两种溶液在室温下进行均匀混合,得到均一透明的铸膜液;将铸膜液浇铸成膜,真空干燥,得到透明的成膜;将膜浸泡于1mol L-1稀硫酸溶液中24~48h,用去离子水浸泡并洗涤至中性,即可制得多胺功能化聚苯并咪唑交联膜,厚度为30-40微米;
所述的溶剂为N-甲基吡咯烷酮、二甲基亚砜、N,N-二甲基甲酰胺或N,N-二甲基乙酰胺;
所述的PBI与溶剂的w/v为2~5%;
所述的PBI重复单元和氢化钠的摩尔比为1:1~1.5;
所述的PBI重复单元和1-溴-4-氯丁烷的摩尔比为1:0.1~8;
所述的CPBI与溶剂的w/v为2~10%;
所述的PEI与溶剂的w/v为2~10%;
所述的CPBI和PEI的质量比为95:5~50:50。
2.根据权利要求1所述的制备方法,其特征在于,所述的浇铸成膜的干燥温度为50~60℃,时间为12~72h。
CN201810783483.5A 2018-07-17 2018-07-17 一种多胺功能化聚苯并咪唑交联膜及制备方法 Active CN108912362B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810783483.5A CN108912362B (zh) 2018-07-17 2018-07-17 一种多胺功能化聚苯并咪唑交联膜及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810783483.5A CN108912362B (zh) 2018-07-17 2018-07-17 一种多胺功能化聚苯并咪唑交联膜及制备方法

Publications (2)

Publication Number Publication Date
CN108912362A CN108912362A (zh) 2018-11-30
CN108912362B true CN108912362B (zh) 2021-01-19

Family

ID=64415511

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810783483.5A Active CN108912362B (zh) 2018-07-17 2018-07-17 一种多胺功能化聚苯并咪唑交联膜及制备方法

Country Status (1)

Country Link
CN (1) CN108912362B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437341B (zh) * 2021-06-28 2022-04-12 泰山学院 一种液流电池用两性离子传导膜及其制备方法
CN116251488B (zh) * 2023-03-13 2024-05-24 石河子大学 一种用于分离二氧化碳的含氨基功能材料及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716352A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 交联型聚苯并咪唑多孔分离膜在液流电池中的应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104716352A (zh) * 2013-12-15 2015-06-17 中国科学院大连化学物理研究所 交联型聚苯并咪唑多孔分离膜在液流电池中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
On the tissue compatibility of poly(ether imide) membranes: an in vitro study on their interaction with human dermal fibroblasts and keratinocytes;Altankov G等;《Journal of biomaterials science》;20051231;23-42 *
聚苯并咪唑(PBI)渗透汽化膜的研究进展;夏玲玲等;《膜科学与技术》;20141031;第34卷(第5期);116-124 *

Also Published As

Publication number Publication date
CN108912362A (zh) 2018-11-30

Similar Documents

Publication Publication Date Title
CN110336052B (zh) 一种混合基质型阳离子交换膜及其制备方法
CN111269550B (zh) 一种基于聚苯醚/聚乙烯醇的交联阴离子交换膜及制备方法
US10854890B2 (en) Cross-linked porous membrane from hydrolysis of ester-containing side chain and preparation method thereof
Mu et al. Novel ether-free membranes based on poly (p-terphenylene methylimidazole) for vanadium redox flow battery applications
CN101931070B (zh) 一种适用于钒电池的有机无机复合质子交换膜的制备方法
CN110350223B (zh) 纳米插层内选择SPEEK/GO/TiO2复合离子选择膜的制备方法
CN110993998A (zh) 一种含萘环聚苯并咪唑型质子交换膜及其制备方法和应用
CN108878933B (zh) 一种Nafion/lignin复合质子交换膜的制备方法
Jiang et al. Improvement of proton conductivity and efficiency of SPEEK-based composite membrane influenced by dual-sulfonated flexible comb-like polymers for vanadium flow battery
CN109830725B (zh) 一种长侧链型聚苯并咪唑阴离子膜及其制备方法
CN108912362B (zh) 一种多胺功能化聚苯并咪唑交联膜及制备方法
CN102093584A (zh) 一种全氟磺酸复合质子交换膜的制备方法
CN113437341B (zh) 一种液流电池用两性离子传导膜及其制备方法
CN110429293B (zh) 一种用于全钒液流电池的cof/pbi膜及其制备方法
CN102544541A (zh) 一种非对称性psfa/pp/speek复合隔膜的制备方法
Wu et al. Crosslinked proton exchange membranes with a wider working temperature based on phosphonic acid functionalized siloxane and PPO
CN103319741B (zh) 一种磺化聚酰亚胺/二氧化钛复合质子导电膜的制备方法
CN111333892A (zh) 一种有机/无机两性离子传导复合膜的制备方法
CN101768283A (zh) 一种适用于钒电池的磺化聚合物复合膜的制备方法
CN111525167B (zh) 全氟磺酸树脂/改性木质素复合离子交换膜的制备方法
CN108649244B (zh) 一种SPEEK/lignin复合隔膜的制备方法
CN115584046B (zh) 钒电池用全氟磺酸/己酮糖复合离子交换膜及其制备方法
CN109103483B (zh) 一种用于全钒液流电池的两性离子膜
CN113363541A (zh) 一种poss共价杂化聚苯并咪唑离子交换膜及制备方法
CN115101790A (zh) 一种高导电能力的复合电解质膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant