CN108893482B - 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用 - Google Patents

丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用 Download PDF

Info

Publication number
CN108893482B
CN108893482B CN201810647879.7A CN201810647879A CN108893482B CN 108893482 B CN108893482 B CN 108893482B CN 201810647879 A CN201810647879 A CN 201810647879A CN 108893482 B CN108893482 B CN 108893482B
Authority
CN
China
Prior art keywords
smtps8
gene
salvia miltiorrhiza
terpene synthase
seq
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810647879.7A
Other languages
English (en)
Other versions
CN108893482A (zh
Inventor
罗红梅
刘琬菁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Medicinal Plant Development of CAMS and PUMC
Original Assignee
Institute of Medicinal Plant Development of CAMS and PUMC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Medicinal Plant Development of CAMS and PUMC filed Critical Institute of Medicinal Plant Development of CAMS and PUMC
Priority to CN201810647879.7A priority Critical patent/CN108893482B/zh
Publication of CN108893482A publication Critical patent/CN108893482A/zh
Application granted granted Critical
Publication of CN108893482B publication Critical patent/CN108893482B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/002Preparation of hydrocarbons or halogenated hydrocarbons cyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Nutrition Science (AREA)
  • Cell Biology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了一条主要催化合成丹参中倍半萜类化合物反式橙花叔醇和单萜类化合物桧烯、β‑月桂烯等的萜类合酶基因序列(SmTPS8);本发明所提供的SmTPS8基因具有SEQ ID No.1所示的核苷酸序列,所述基因编码蛋白质具有SEQ ID No.2所示的氨基酸序列。本发明利用获得的SmTPS8基因序列,通过检测该基因的催化产物,验证基因功能。结果表明SmTPS8在丹参转基因植株中主要具有单萜合酶活性,而在大肠杆菌中主要具有倍半萜合酶活性。反式橙花叔醇([E]‑nerolidol)具有较强的香气和生物活性,是医药、食品、香料和化妆品工业的重要原料。本发明为基于SmTPS8基因功能的丹参萜类次生代谢途径研究奠定基础,有利于开发SmTPS8催化合成的倍半萜化合物、单萜类化合物在医药、香料以及生物防治方面的商业用途。

Description

丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物 及应用
技术领域
本发明属于植物分子生物学和植物基因工程技术领域,具体涉及一种在大肠杆菌中参与合成(+/-)-反式-橙花叔醇、在丹参植物体内催化桧烯、β-月桂烯等单萜类化合物合成的酶基因的克隆鉴定及功能验证方法。
背景技术
丹参(Salvia miltiorrhiza Bunge)为唇形科、鼠尾草属双子叶药用植物,根部入药,具有活血祛瘀、通经止痛、清心除烦、凉血消痈之功效,在临床治疗心脑血管疾病有较高药用价值。丹参具有染色体数目少(2n=16)、基因组小、生育周期短、遗传转化体系稳定等特点,被广泛认为是一种理想的药用模式植物。目前,丹参的药理学、化学等研究已取得显著进展。
丹参植物体内存在大量次生代谢产物,其中以萜类化合物占主要成分。植物中的萜类化合物对促进植物生长发育、抵御虫害、对抗生物/非生物逆境等有重要作用。丹参中含有大量挥发性萜类化合物,这些化合物主要由倍半萜化合物和单萜化合物催化合成。
倍半萜合酶和单萜合酶都属于植物萜类合酶(Terpene synthase,TPS)。利用生物工程技术将萜类合酶基因进行异源表达,可定向催化获得大量目标萜类化合物,从而获得有具有开发价值或实际用途的萜类产物。
橙花叔醇是丹参挥发性成分中的一种主要化合物,目前广泛应用于精油、玫瑰型紫丁香型等香精合成中;该化合物具有抑制棒孢霉、白腐菌生长的作用,可增强大豆、猕猴桃、草莓等对植物病原菌的防御能力。
SmTPS8是丹参萜类合酶(SmTPS)基因家族中的成员,属于TPS-g亚家族。TPS-g亚家族TPS多催化合成无环萜类产物,合成无环单帖-、倍半萜-、双萜-醇类,如芳樟醇、月桂烯、罗勒烯等。研究发现,SmTPS8在大肠杆菌异源生物合成体系中主要催化(+/-)-反式-橙花叔醇的生物合成,而在转基因植物中,催化桧烯、β-月桂烯等单萜类化合物的合成。本发明为利用生物工程技术生产SmTPS8催化的目标化合物提供可选择的有效方法,同时也为应用丹参萜类合酶基因合成有生物活性的萜类化合物用于医药产品开发奠定基础。
发明内容
本发明的目的在于系统分析丹参基因组中的萜类合酶基因家族的基因,研究丹参萜类合酶基因在丹参次生代谢产物合成中的功能,并提供一种参与倍半萜和单萜合成的萜类合酶基因及其编码的蛋白质、其扩增引物、以及表达载体pGEX-4T-1-SmTPS8、其催化产物及应用。
本发明的另一目的在于提供对萜类合酶基因SmTPS8的功能验证方法。
本发明提供的SmTPS8基因,其核苷酸序列为SEQ ID No.1所示。
本发明提供的SmTPS8基因编码的蛋白质,其氨基酸序列如SEQ ID No.2所示。
本发明设计出了扩增SmTPS8基因的克隆引物,其碱基序列如SEQ ID NO.3和SEQID NO.4所示。
构建了原核表达载体pGEX-4T-1-SmTPS8、植物表达载体PCAMBIA1302-SmTPS8和PKTWG2D-SmTPS8,其碱基序列含SmTPS8基因的cDNA碱基序列。
本发明目的可通过如下技术方案实现:
技术方案一:结合基因功能注释、TPS保守功能域和在NCBI网站进行BLAST比对,获得丹参中全部TPS数据。选择长度大于300个氨基酸的丹参TPS序列(序列长度短于300个氨基酸的TPS因结构域不完整而无法构建系统进化树)与番茄全部TPS基因家族成员进行系统进化树的构建,并将丹参SmTPS基因家族分为5个亚家族,分别为TPS-a、TPS-b、TPS-c、TPS-e/f、TPS-g。其中TPS-a亚家族包含27个成员;TPS-b亚家族包含20个成员;TPS-c亚家族包含7个成员;TPS-e/f亚家族包含3个成员;TPS-g亚家族包含3个成员。
技术方案二:构建植物瞬时表达载体PCAMBIA1302-SmTPS8,转化至根瘤农杆菌(GV3101)中,以叶背面摁压注射的方法侵染约6周大小的烟草叶片,侵染2-4天后,剪下侵染部位的叶片,观察荧光,发现SmTPS8主要定位于细胞质体和保卫细胞。
技术方案三:构建蛋白表达载体pGEX-4T-1-SmTPS8,转化至大肠杆菌表达菌株,以0.5mM IPTG(异丙基硫代半乳糖苷)进行蛋白诱导表达。通过固相微萃取技术和气质联用(GC-MS)技术检测基因在原核表达系统中的催化产物,获得SmTPS8主要催化产物橙花叔醇。
技术方案四:构建植物过表达载体PKTWG2D-SmTPS8,转入发根农杆菌(ACCC10060)中,再侵染丹参叶片,获得阳性毛状根,通过定量PCR(RT-qPCR)技术检测基因在转基因株系中的表达情况,获得阳性转基因株系;并检测转基因株系和对照株系中挥发性萜类化合物产物的异同,与对照株系相比,发现SmTPS8过表达株系中桧烯、β-月桂烯、别罗勒烯等单萜类化合物的含量显著升高。表明SmTPS8在丹参植物体内主要参与单萜类化合物的合成。本发明提供了一种在丹参体内鉴定萜类合酶基因功能的研究方法。
附图说明
图1所示为SmTPS基因家族(长度大于300个氨基酸)系统进化树
图2所示为SmTPS基因家族(长度大于300个氨基酸)与番茄已发表TPS基因家族构建系统发育进化树
图3所示为SmTPS基因家族(具有表达水平的SmTPS)在丹参不同组织器官中的差异表达谱
图4所示为SmTPS8在丹参不同组织器官中的差异表达谱
图5所示为SmTPS8在烟草瞬时表达体系中所示的亚细胞定位区域
图6所示为SmTPS8在原核表达体系中GC-MS检测的催化产物
图7所示为SmTPS8在原核表达体系中各催化产物的质谱图
图8所示为SmTPS8过表达的丹参毛状根
图9所示为PKTWG2D-SmTPS8转基因毛状根中基因的表达量
图10所示为PKTWG2D-SmTPS8转基因株系中的挥发性化合物检测
具体实施方式
以下结合实例详细说明本发明。实施是为更好的理解本发明,但不限定于本发明。以下实施方法中的实验方法均为常规方法,所涉及的实验试剂均为常规生化试剂。
实施例1 基于丹参基因组信息筛选SmTPS基因家族
1)基于丹参基因组注释结果,筛选到SmTPS基因家族的73个成员,完整TPS的氨基酸序列长度一般从500个氨基酸到800个氨基酸。
2)采用MEGA比对并建立系统进化树,选取SmTPS基因家族中预测序列长度大于300个氨基酸的TPS,与番茄(Lycopersicon esculentum Mill.)TPS基因家族成员进行序列比对并构建系统进化树,将丹参TPS基因家族分为5个亚家族,依次为:TPS-a、b、c、e/f、g。TPS-a亚家族包含27个成员,TPS-b亚家族包含20个成员,TPS-c亚家族包含7个成员,TPS-e/f亚家族包含3个成员,TPS-g亚家族包含3个成员,其中SmTPS8为TPS-g亚家族的成员;其余的13个TPS因其序列长度短于300个氨基酸,无法用于构建进化树,故未被划分至各亚家族。如图1、图2所示。
3)采用RNA-seq技术对丹参根茎叶花等不同器官中TPS基因进行表达谱分析。如图3所示。
4)根据SmTPS8在丹参根茎叶花不同器官中的RT-qPCR检测表达谱,发现SmTPS8在丹参花中显著高丰度表达,如图4所示。
实施例2 SmTPS8的基因克隆及其编码蛋白质序列
依据丹参基因组中的SmTPS8序列设计引物,以丹参cDNA为模板进行扩增,获得长度为1569bp的核苷酸序列,如SEQ ID No.1。根据全长cDNA序列翻译后获得SmTPS8编码的氨基酸序列,如SEQ ID No.2。
实施例3 SmTPS8的亚细胞定位
1)选取Bgl II/Spe I作为酶切位点,对SmTPS8和PCAMBIA1302载体进行酶切及连接,构建PCAMBIA1302-SmTPS8基因表达载体。
2)分别将PCAMBIA1302空载体和PCAMBIA1302-SmTPS8转化至GV3101感受态中,将转化细胞涂布于含有50mg/L Rif(利福平)和15mg/L Gen(庆大霉素),50mg/L Kana(卡那霉素)抗性的YEB平板筛选阳性克隆。
3)对于包含PCAMBIA1302空载体和PCAMBIA1302-SmTPS8的阳性菌株、P19菌株扩大培养。转接一次后,待OD值达到0.4-0.6时,离心去除培养液,保留菌体。并分别用1mL烟草侵染液重悬菌体(每100mL烟草侵染液包含1mL 1M的MgCl2(氯化镁),1mL 1M的MES(2吗啉代乙磺酸),100μL 0.2M的乙酰丁香酮,98mL的ddH2O。侵染液需现配现用)。将携带质粒的阳性菌株与P19菌株分别按照1∶0.6的比例混合,28℃避光放置2-4h。
4)选取培养6周大、生长状态良好的烟草植株。用1mL的注射器针头从烟草叶面背面戳孔,用注射器摁压式向戳孔位置注射入菌液混合液。置于25℃培养箱,2-4天后,准备观察荧光。
5)剪取叶片小块,制备植物玻片,通过共聚焦显微镜油镜40×倍镜观察荧光。如图5所示,发现SmTPS8主要定位于细胞质体和保卫细胞中。
实施例4 SmTPS8基因的原核表达体系构建及催化产物检测
1)选取Sma I/Xho I作为酶切位点,对SmTPS8和pGEX-4T-1载体进行酶切及连接,构建pGEX-4T-1-SmTPS8基因表达载体。
2)分别将pGEX-4T-1空载体(对照)和pGEX-4T-1-SmTPS8转化至BL21(DE3)感受态细胞中,将转化细胞涂布于含有50mg/L Amp(氨苄霉素)的平板筛选阳性克隆。挑选单菌落接种于含相应抗生素(50mg/L Amp)的LB液体培养基中,培养过夜后,按1∶50转接进行扩大培养,待菌液的OD600达到0.4-0.6之间时,加入0.5mM的IPTG,于25℃摇床中,避光诱导20h,转速为110r/min。
3)取10mL诱导后菌液置于20mL顶空瓶中,萃取温度为60℃、震荡频率为500rpm,萃取时间约为30min,以固相微萃取柱(萃取纤维PDMS,100μm)进行萃取。
4)GC-MS仪器为岛津QP2010ultra(HP-5ms:30m×0.25mm×0.25μm),直接由固相微萃取柱进样。热脱附温度280℃,脱附时间:3min。色谱条件:40℃保持2min,以10℃/min涨至300℃保持5min,氦气流速1mL/min。质谱条件:离子源温度200℃,接口温度250℃,scan模式采集45-500。GC-MS检测结果:相对于对照菌株(pGEX-4T-1空载体转化的菌株),含pGEX-4T-1-SmTPS8的菌株在9.565min出现产物芳樟醇,14.927min出现产物(E)-(β)-合金欢烯,16.184min出现产物(+)-橙花叔醇,17.101min出现产物(+/-)-反式-橙花叔醇,其中以(+/-)-反式-橙花叔醇为主要产物,如图6所示。说明SmTPS8在原核表达体系中,仅以大肠杆菌内源FPP为底物,主要合成(+/-)-反式-橙花叔醇,显示出倍半萜合酶活性。
实施例5 SmTPS8基因的过表达体系构建及催化产物检测
1)本发明采用Gateway技术进行基因过表达体系构建。对SmTPS8基因进行引物设计时,在全长引物的基础上,正向引物5′端添加attB1序列:GGGGACAAGTTTGTACAAAAAAGCAGGCT,反向引物3′端添加attB2序列:GGGGACCACTTTGTACAAGAAAGCTGGGT。
2)Gateway构建过表达体系中分为两个反应:BP和LR反应。BP反应:取25ng的attBPCR回收产物和75ng pDONR221入门载体,加水混匀至4μL,然后加入1μL的BP clonase IIenzyme,混匀,25℃孵育3h,加入0.5μL的Proteinase K,37℃孵育10min,转化DH5α感受态细胞,于50mg/L Kan抗性LB固体培养基上筛选阳性克隆,并进行测序验证序列的正确性。LR反应:取75ng的pDONR221-SmTPS8和75ng PKTWG2D受体载体,加水混匀至4μL,然后加入1μL的LR clonase II enzyme,混匀,25℃孵育3h,加入0.5μL的Proteinase K,37℃孵育10min,转化DH5α感受态细胞,于50mg/L Spec(壮观霉素)抗性LB固体培养基上筛选阳性克隆并进行测序,测序成功的阳性克隆提取重组质粒PKTWG2D-SmTPS8,转化发根农杆菌ACCA10060感受态细胞。
3)采用发根农杆菌ACCC10060侵染丹参叶片获得转基因毛状根的方法如下:分别选择含空质粒PKTWG2D(对照)和重组质粒PKTWG2D-SmTPS8的发根农杆菌ACCC10060阳性克隆,将其接种于50mg/L Spec和50mg/L Rif的YEB液体培养基中,置于28℃摇床中震荡培养,至OD600达到0.4-0.6之间;收集菌液离心后,用等体积的MS液体培养基重悬菌体沉淀。在无菌条件下,先将丹参无菌苗幼嫩叶片剪成0.5cm2的叶盘,于MS固体培养基在光照条件下预培养2-3天。将经过预培养的叶盘放入含农杆菌菌体的MS液体培养基中浸泡10min,取出叶盘,用无菌滤纸吸干叶盘表面液体后,将叶盘正面朝上置于MS固体培养基上,25℃黑暗培养48-72h。将叶盘取出置于含400mg/L Car(羧苄青霉素)的无菌水中清洗10min,转入含50mg/L Kan+400mg/L Car的MS固体培养基中,25℃黑暗条件下进行筛选培养,培养2周左右。选择长势较好的2.0cm-3.0cm抗性毛状根,切取毛状根并转移至含有50mg/L Kan+400mg/L Car+0.1mg/L IAA(吲哚-3-乙酸)的6,7-V平板中,25℃黑暗中培养1周,刺激毛状根侧根生长。将阳性毛状根转入含15mg/L Kan+200mg/L Car的6,7-V固体培养基中,25℃黑暗条件下大量培养。
4)对于生长长度达到5cm的阳性毛状根,转移至6,7-V培养液中,25℃黑暗条件下,110r/min摇床震荡培养。一个月后取部分毛状根提取RNA,用于检测SmTPS8过表达株系中的基因表达量。
5)SmTPS8的基因表达量检测采用实时荧光定量核酸扩增检测系统(RT-qPCR)。对SmTPS8设计特异性的定量分析引物。引物序列分别为:SmTPS8F:GGCTTCTCTTCCGCAACTC;SmTPS8R:ATAGGAGTGATTTGGCGAGTG。所用基因表达定量检测仪器为:伯乐CFX96TM Real-timePCR Detection System,参照Takara公司的SYBR Premic Ex TagTM(Tli RnaseH Plus)说明书。RT-qPCR反应体系为:2×SYBR qPCR Master Mix 7.5μL,引物(10μM)各1μL,cDNA模板1μL,ddH2O 4.5μL,共15μL体系。反应程序为:95℃30s,40个循环(95℃5s,60℃ 34s,72℃15s),溶解曲线:95℃15s,60℃ 1min,95℃15s。如图9所示,通过检测发现,与对照材料相比,在过表达株系中,SmTPS8基因表达量显著提高。
实施例6 SmTPS8的阳性转基因植株培养及代谢产物检测
1)分别取SmTPS8过表达转基因阳性毛状根(SmTPS8 OE)和仅转入空质粒PKTWG2D的毛状根阳性株系(PKOE)置于1/2MS固体培养基中,25℃光照培养,16h光培养,8h暗培养,诱导毛状根分化生芽。将幼芽转至单独的1/2MS固体培养基中培养约60天,分别取SmTPS8OE和PKOE整株幼苗,置于液氮中研磨成粉末,快速精密称取1g研磨粉末置于顶空瓶中。
2)采取与SmTPS8基因原核表达体系中的产物检测的相同方法检测转基因植株中的萜类化合物含量。如图10所示,与PKOE(对照株系)相比,在SmTPS8OE株系中,发现:桧烯、β-月桂烯、别罗勒烯、水芹醛、石竹烯氧化物分别提高70%、70%、43%、49%、58%。说明SmTPS8在丹参植物体中,优先发挥单萜合酶的活性。结合分析SmTPS8在原核表达体系的催化产物检测结果,表明SmTPS8同时具有倍半萜合酶和单萜合酶活性。
本发明基于丹参基因组信息对SmTPS基因家族进行挖掘、分析、鉴定,对TPS-g亚家族成员SmTPS8进行基因克隆、功能验证及产物检测,发现SmTPS8在原核表达体系中仅以FPP为底物时主要催化合成丹参(+/-)-反式-橙花叔醇;而在该基因的过表达转基因植株中,优先发挥单萜合酶催化活性,主要催化桧烯、β-月桂烯、别罗勒烯等单萜类化合物合成。本发明为鉴定丹参萜类合酶的功能提供研究基础,也为解析丹参中部分单萜类化合物的来源提供分子证据。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
Figure ISB0000176231740000011
Figure ISB0000176231740000021
Figure ISB0000176231740000031
Figure ISB0000176231740000041

Claims (6)

1.一种丹参萜类合酶SmTPS8编码基因,其特征在于,核苷酸序列如SEQ ID No.1所示。
2.根据权利要求1所述的丹参萜类合酶SmTPS8编码基因的氨基酸序列,其特征在于,所述氨基酸序列如SEQ ID No.2所示。
3.一种原核表达体系检测基因产物的方法,其特征在于,将采用权利要求1所述的丹参萜类合酶SmTPS8编码基因构建得到的pGEX-4T-1-SmTPS8载体质粒转化到大肠杆菌BL21(DE3)中,经氨苄霉素筛选获得阳性克隆,对阳性克隆进行扩大培养后,加入0.5mM的IPTG,于25℃摇床中,110r/min,避光诱导蛋白表达20h;诱导结束后,取10mL菌液在萃取温度60℃、震荡频率500rpm、萃取时间30min条件下,以固相微萃取柱进行萃取;利用GC-MS仪器进行产物检测。
4.一种植物过表达载体,其特征在于,所述过表达载体含有权利要求1所述的丹参萜类合酶SmTPS8编码基因的CDS全长序列。
5.权利要求1所述的丹参萜类合酶SmTPS8编码基因在细菌、真菌和植物基因工程中的应用,其特征在于,SmTPS8基因在细菌、真菌和植物中通过基因工程手段参与萜类化合物的合成。
6.根据权利要求5所述的应用,其特征在于:外源基因导入宿主需要一种用于携带SmTPS8基因的质粒,质粒可选自pET系列、pGEX系列原核表达载体、pCAMBIA系列植物表达载体,并含有权利要求1中的核苷酸序列。
CN201810647879.7A 2018-06-22 2018-06-22 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用 Active CN108893482B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810647879.7A CN108893482B (zh) 2018-06-22 2018-06-22 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810647879.7A CN108893482B (zh) 2018-06-22 2018-06-22 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用

Publications (2)

Publication Number Publication Date
CN108893482A CN108893482A (zh) 2018-11-27
CN108893482B true CN108893482B (zh) 2021-11-05

Family

ID=64345481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810647879.7A Active CN108893482B (zh) 2018-06-22 2018-06-22 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用

Country Status (1)

Country Link
CN (1) CN108893482B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109943584B (zh) * 2019-03-27 2020-12-29 天津大学 一种用于生产桧烯的重组载体及重组酵母菌株及其构建方法和应用
CN110066784B (zh) * 2019-04-08 2020-12-29 华中农业大学 一种香桧烯合酶及其编码基因和应用
CN112779242B (zh) * 2019-11-07 2023-03-28 四川弘合生物科技有限公司 梅片树单萜合酶CbTPS1及其相关生物材料与应用
CN111621508B (zh) * 2020-06-11 2022-07-01 云南中烟工业有限责任公司 烟草萜类合成酶NtTPS7基因及其载体与应用
CN113430218B (zh) * 2021-04-30 2022-06-21 中国医学科学院药用植物研究所 倍半萜类化合物的生物酶催化合成方法
CN113699139B (zh) * 2021-08-17 2024-02-20 北京林业大学 紫薇属萜烯合酶基因及其应用
CN114807177B (zh) * 2022-06-23 2022-09-02 中国中药有限公司 一种金荞麦转录因子FdFAR1基因及其应用
WO2024011263A2 (en) * 2022-07-08 2024-01-11 Cibus Us Llc Producing sesquiterpenes and other terpenes using plant-based biomasses
CN115960191A (zh) * 2022-12-08 2023-04-14 安徽农业大学 一种调控丹参挥发性萜类化合物合成的myc转录因子及其编码基因和应用

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064764A2 (en) * 2001-02-12 2002-08-22 Plant Research International B.V. Terpene synthase/cyclase and olefin synthase and uses thereof
WO2005087181A3 (en) * 2004-02-27 2006-01-05 Colgate Palmolive Co Dry deodorant containing a sesquiterpene alcohol and zinc oxide
CN101074443A (zh) * 2006-11-14 2007-11-21 西南大学 携带质体转运肽的紫槐二烯合成酶融合基因及应用
CN101319220A (zh) * 2007-06-05 2008-12-10 中国中医科学院中药研究所 一种丹参二萜合酶基因及其编码产物与应用
CN101538576A (zh) * 2008-07-10 2009-09-23 中国中医科学院中药研究所 一个与丹参酮类化合物生成相关的二萜合酶基因及其编码产物与应用
CN101928716A (zh) * 2009-06-30 2010-12-29 中国中医科学院中药研究所 丹参法呢基焦磷酸合酶(SmFPS)基因及其编码的蛋白和应用
FR2987231A1 (fr) * 2012-02-23 2013-08-30 Osmobio Emulsion efficace pour eradiquer les mousses et les lichens
WO2014076016A1 (en) * 2012-11-13 2014-05-22 Global Bioenergies Process for the enzymatic preparation of isoprene from isoprenol
CN103820344A (zh) * 2011-12-30 2014-05-28 天津工业生物技术研究所 生产次丹参酮二烯的酿酒酵母基因工程菌及其构建方法与应用
CN104673813A (zh) * 2015-03-24 2015-06-03 武汉大学 一种蛇孢假壳素类化合物母核合成基因AuOS及其应用
CN105154420A (zh) * 2015-08-20 2015-12-16 中国医学科学院药用植物研究所 赤芝萜类合酶GL22395编码基因cDNA序列及其应用
CN106434703A (zh) * 2016-03-24 2017-02-22 中国医学科学院药用植物研究所 参与丹参酮类化合物生物合成的细胞色素p450基因cyp71d410及其编码产物与应用
WO2017051929A1 (ja) * 2015-09-25 2017-03-30 味の素株式会社 リナロール組成物及びその製造方法
CN106636142A (zh) * 2017-02-25 2017-05-10 中国医学科学院药用植物研究所 一种参与丹参酮合成的2‑酮戊二酸依赖性双加氧酶基因克隆鉴定及应用
CN107058418A (zh) * 2016-12-12 2017-08-18 首都医科大学 雷公藤二萜合酶TwCPS1在制备松香烷型二萜化合物中的应用
CN107058274A (zh) * 2016-12-12 2017-08-18 首都医科大学 雷公藤焦磷酸合酶TwCPS4及其制备松香烷型二萜化合物的应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069847A2 (en) * 2013-11-06 2015-05-14 Massachusetts Institute Of Technology Co-culture based modular engineering for the biosynthesis of isoprenoids, aromatics and aromatic-derived compounds

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064764A2 (en) * 2001-02-12 2002-08-22 Plant Research International B.V. Terpene synthase/cyclase and olefin synthase and uses thereof
WO2005087181A3 (en) * 2004-02-27 2006-01-05 Colgate Palmolive Co Dry deodorant containing a sesquiterpene alcohol and zinc oxide
CN101074443A (zh) * 2006-11-14 2007-11-21 西南大学 携带质体转运肽的紫槐二烯合成酶融合基因及应用
CN101319220A (zh) * 2007-06-05 2008-12-10 中国中医科学院中药研究所 一种丹参二萜合酶基因及其编码产物与应用
CN101538576A (zh) * 2008-07-10 2009-09-23 中国中医科学院中药研究所 一个与丹参酮类化合物生成相关的二萜合酶基因及其编码产物与应用
CN101928716A (zh) * 2009-06-30 2010-12-29 中国中医科学院中药研究所 丹参法呢基焦磷酸合酶(SmFPS)基因及其编码的蛋白和应用
CN103820344A (zh) * 2011-12-30 2014-05-28 天津工业生物技术研究所 生产次丹参酮二烯的酿酒酵母基因工程菌及其构建方法与应用
FR2987231A1 (fr) * 2012-02-23 2013-08-30 Osmobio Emulsion efficace pour eradiquer les mousses et les lichens
WO2014076016A1 (en) * 2012-11-13 2014-05-22 Global Bioenergies Process for the enzymatic preparation of isoprene from isoprenol
CN104673813A (zh) * 2015-03-24 2015-06-03 武汉大学 一种蛇孢假壳素类化合物母核合成基因AuOS及其应用
CN105154420A (zh) * 2015-08-20 2015-12-16 中国医学科学院药用植物研究所 赤芝萜类合酶GL22395编码基因cDNA序列及其应用
WO2017051929A1 (ja) * 2015-09-25 2017-03-30 味の素株式会社 リナロール組成物及びその製造方法
CN108138168A (zh) * 2015-09-25 2018-06-08 味之素株式会社 芳樟醇组合物及其制造方法
CN106434703A (zh) * 2016-03-24 2017-02-22 中国医学科学院药用植物研究所 参与丹参酮类化合物生物合成的细胞色素p450基因cyp71d410及其编码产物与应用
CN107058418A (zh) * 2016-12-12 2017-08-18 首都医科大学 雷公藤二萜合酶TwCPS1在制备松香烷型二萜化合物中的应用
CN107058274A (zh) * 2016-12-12 2017-08-18 首都医科大学 雷公藤焦磷酸合酶TwCPS4及其制备松香烷型二萜化合物的应用
CN106636142A (zh) * 2017-02-25 2017-05-10 中国医学科学院药用植物研究所 一种参与丹参酮合成的2‑酮戊二酸依赖性双加氧酶基因克隆鉴定及应用

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
(3S)-linalool synthase, partial [Salvia officinalis];Ali,M.等;《GenBank Database》;20171129;Accession No. AQY54370.1 *
Advances in chemical constituents and bioactivity of Salvia genus;Peng Q等;《Zhongguo Zhong Yao Za Zhi》;20150630;第40卷(第11期);2096-2105 *
Effects of Streptomyces pactum Act12 on Salvia miltiorrhiza hairy root growth and tanshinone synthesis and its mechanisms;Yan Y等;《Appl Biochem Biotechnol》;20140415;第173卷(第4期);883-893 *
Salvia officinalis (3S)-linalool synthase mRNA, partial cds;Ali,M.等;《GenBank Database》;20171129;Accession No. KY399786.1 *
Transcriptome analysis of medicinal plant Salvia miltiorrhiza and identification of genes related to tanshinone biosynthesis;Yang L等;《PLoS One》;20131130;第8卷(第11期);e80464 *
丹参中四种倍半萜类合酶基因的克隆及功能鉴定;崔孟颖;《中国优秀硕士学位论文全文数据库(电子期刊)基础科学辑》;20170215(第02期);A006-301 *
倍半萜合酶催化机制的研究进展;张瑞等;《生命的化学》;20180215;第38卷(第1期);135-143 *
基于cDNA文库的毛喉鞘蕊花CPS基因的克隆分析及多效唑促进isoforskolin合成机制研究;方颖;《中国学位论文全文数据库》;20180119;全文 *
植物次生代谢基因簇研究进展;吕海舟等;《植物科学学报》;20170809;第35卷(第4期);609-610,612-621 *

Also Published As

Publication number Publication date
CN108893482A (zh) 2018-11-27

Similar Documents

Publication Publication Date Title
CN108893482B (zh) 丹参萜类合酶基因SmTPS8、其克隆引物、表达载体、催化产物及应用
Sui et al. Transcriptome analysis of Bupleurum chinense focusing on genes involved in the biosynthesis of saikosaponins
Falara et al. A copal-8-ol diphosphate synthase from the angiosperm Cistus creticus subsp. creticus is a putative key enzyme for the formation of pharmacologically active, oxygen-containing labdane-type diterpenes
Yahyaa et al. Identification, functional characterization, and evolution of terpene synthases from a basal dicot
CN107099540B (zh) 影响烟草色素含量的NtFERL基因及其应用
CN108795960B (zh) 一种应用丹参SmTPS3基因合成多种倍半萜类化合物的方法
CN105647880A (zh) 一个参与dmnt和tmtt生物合成的cyp450基因及其编码产物与应用
CN108795915B (zh) 丹参倍半萜合酶基因SmTPS21、其克隆引物、表达载体、催化产物及应用
CN108893483B (zh) 丹参萜类合酶基因SmTPS11、其克隆引物、表达载体、催化产物及应用
CN107177604B (zh) 影响烟草色素含量的NtWRKY69基因及其应用
CN112746062A (zh) 与紫苏萜类物质生物合成有关的蛋白及其编码基因与应用
CN110904111B (zh) 一种靶向敲除FcMYC2基因的sgRNA序列、CRISPR/Cas9载体及其应用
CN110819643A (zh) 人参PgCYP309基因及其应用
CN113699139B (zh) 紫薇属萜烯合酶基因及其应用
US20060137032A1 (en) Plant alpha farnesene synthase and polynucleotides encoding same
Huang et al. The PcbZIP44 transcription factor inhibits patchoulol synthase gene expression and negatively regulates patchoulol biosynthesis in Pogostemon cablin
CN113046361B (zh) 基于NtFER基因的改造在提高植物青枯病抗性中的应用
CN109371020B (zh) PcFPS基因的引物对及利用该引物对扩增的基因在提高广藿香中百秋李醇含量的应用
CN115948430A (zh) 梨醛脱氢酶PusALDH1及其编码基因和应用
CN111218462B (zh) 编码鸡血藤查尔酮合成酶的基因及其应用
Gherbi et al. Molecular methods for research on actinorhiza
BR112017021401B1 (pt) Produção de compostos fragrantes
Khlifa et al. Agrobacterium rhizogenes-mediated transformation of Hypericum sinaicum L. for the development of hairy roots containing hypericin
CN111500606A (zh) 一个参与桃芳樟醇生物合成的基因及其应用
CN111500604A (zh) 铁皮石斛DcCSLA8基因及其在促进植物多糖的合成中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant