CN108863042A - 一种pcvd工艺制作光纤预制棒芯棒的方法 - Google Patents
一种pcvd工艺制作光纤预制棒芯棒的方法 Download PDFInfo
- Publication number
- CN108863042A CN108863042A CN201810927253.1A CN201810927253A CN108863042A CN 108863042 A CN108863042 A CN 108863042A CN 201810927253 A CN201810927253 A CN 201810927253A CN 108863042 A CN108863042 A CN 108863042A
- Authority
- CN
- China
- Prior art keywords
- optical fiber
- stick
- glass
- prefabricated rod
- fiber prefabricated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/018—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by glass deposition on a glass substrate, e.g. by inside-, modified-, plasma-, or plasma modified- chemical vapour deposition [ICVD, MCVD, PCVD, PMCVD], i.e. by thin layer coating on the inside or outside of a glass tube or on a glass rod
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/50—Glass production, e.g. reusing waste heat during processing or shaping
- Y02P40/57—Improving the yield, e-g- reduction of reject rates
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
本发明涉及光纤制造技术领域,具体地说是一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,通过通入含F气体在光学芯层之外再沉积出SiO2‑F玻璃阻挡层;本发明和现有技术相比,避免了空心预制棒在移动至融缩车床过程中环境水汽对光纤芯层的污染,可将PCVD工艺制造预制棒工艺过程中因移棒引入的OH‑污染进行有效的消除,进而降低光纤预制棒中的OH‑吸收损耗,极大的降低了PCVD工艺车间对环境湿度的依赖性,对制造低水峰甚至无水峰光纤提供了一种新的手段,还可防止光纤中心的Ge在融缩过程的过量蒸发,进而引起光纤中心折射率紊乱,对光纤的模式带宽特性有一定的改善作用。
Description
技术领域
本发明涉及光纤制造技术领域,具体地说是一种PCVD工艺制作光纤预制棒芯棒的方法。
背景技术
参见图2,在光纤预制棒芯棒制造工艺中,PCVD工艺是众所周知的一种预制棒芯棒制造工艺,包括沉积工艺过程和熔缩工艺过程两个工序。在SiO2-GeO2-F光纤预制棒的沉积工序中,SiCl4,GeCl4,O2及其它如含F掺杂剂气体通入位于温度约1000℃以上预热炉中的衬底管内,在高能微波等离子体的作用下在衬底管内壁进行微波等离子体化学气相沉积反应,形成具有预设波导结构的透明石英玻璃沉积层,最终形成空心预制棒。沉积工序完成后,需要将空心预制棒在维持高温的情况下,将空心预制棒从沉积机床中移出并固定在熔缩机床的卡盘上进行熔缩工序。熔缩工序主要利用往返移动的外部加热热源将空心预制棒玻璃体进行加热至2000~2300℃,在熔融玻璃态的表面张力作用下,将空心预制棒逐步塌缩,并最终烧实成实心的预制棒芯棒。在熔缩工艺进程中,空心预制棒内部还需要通入高纯的氧气保持空心预制棒内部的洁净度并提供一个富氧环境,同时,由于熔缩过程中预制棒芯层中的Ge在高温下容易挥发,还需要在烧实前通入含F气体,将由于Ge挥发造成的折射率下降的玻璃层进行腐蚀,腐蚀去除的玻璃随着熔缩车床尾端的抽风被移除,达到消除芯棒中心折射率剖面凹陷的目的。
显而易见的,由于在沉积完成后,需要将空心预制棒从沉积机床卸下,并转移至熔缩机床上进行后续的熔缩工艺。在这个方法过程中,环境中的水汽将不可避免的吸附在高温的空心预制棒中心内表面,并与玻璃发生反应形成化学健:
SiOH基团:si-O-si+H2O→SiOH+HOSi
GeOH基团:Ge-O-si+H2O→GeOH+HOSi
在熔融玻璃中,Si,O,Ge等原子间化学健的断裂和重新结合是连续发生的,随着温度的升高,更多的化学健会断裂,因此并随着熔缩工艺的进行,SiOH基,GeOH基将逐步向玻璃层内部扩散,在现有技术中,在空心预制棒烧实前通入的含F气体,可对玻璃层进行刻蚀,除消除芯棒中心折射率剖面凹陷的作用外,还可对部分含有SiOH基,GeOH的玻璃进行了刻蚀清除:
3·SiO2+2·C2F6+O2→3·SiF4+4·CO2
而事实上,由于SiO2-GeO2-F玻璃组份的光纤预制棒中心部位的高GeO2浓度,OH-的扩散深度远高于GeO2挥发的带来的折射率下降影响的玻璃厚度。显然,在生产中,我们不会因OH-的扩散而将折射率正常的预制棒芯层进行更深层的刻蚀,这将造成光纤预制棒生产成本的明显增加和生产效率的下降。预制棒中OH-存在将给光纤带来附加的吸收损耗,最终影响到光纤的损耗,对光纤的应用带来不利的影响。
现有技术为降低环境中的水汽对光纤羟基的影响,一般通过保持生产车间低湿度(<5%RH)的方法,但过低的生产车间湿度对操作人员的健康、身体舒适度有着非常不利的影响。因此,在人体感觉相对舒适的湿度下,如何有效的控制SiO2-GeO2-F玻璃组份光纤预制棒中的OH-含量,制备出损耗更低的低水峰甚至无水峰光纤,一直是PCVD工艺的技术难点。
因此,现有技术还有待发展。
发明内容
鉴于上述现有技术的不足之处,本发明的目的在于提供一种PCVD工艺制作光纤预制棒芯棒的方法。旨在解决现有技术中羟基扩散造成光纤损耗、生产车间湿度过低、影响生产环境的问题。
为了达到上述目的,本发明采取了以下技术方案:
本发明提供一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,按照如下步骤进行:
1)沉积工序准备;在高纯O2吹扫的情况下将一根两端熔接好尾管的洁净石英衬底管安装在PCVD沉积机床上,逐步升温预热炉至1000~1200℃,具体可为1080℃并保持,开启沉积机床平移、旋转机构,并开启微波等离子体功率输出;
2)使用含F气体对石英衬底管进行刻蚀清洁;
3)在石英衬底管内壁沉积出若干层过渡包层玻璃;
4)在过渡包层玻璃外再沉积出若干层光学芯层玻璃;
5)在光学芯层玻璃外沉积出SiO2-F玻璃阻挡层,制成空心预制棒;
6)将空心预制棒转移至已完成熔缩预备条件的熔缩机床上,并对空心预制棒中心进行升温、大流量高纯O2吹扫净化;
7)对空心预制棒进行缩棒工艺;
8)在高温状态下通入含F气体,对空心预制棒进行1~2趟刻蚀掉阻挡层;
9)在高温状态下对空心预制棒中心部位通入高纯O2进行吹扫;
10)将空心预制棒烧实成实心预制棒;
11)对实心预制棒进行退火、拉棒操作。
进一步的,所述步骤3)中通过通入SiCl4、O2及含F气体沉积出过渡包层玻璃。
进一步的,所述步骤4)中通过通入SiCl4、GeCl4、O2及含F气体沉积出光学芯层玻璃。进一步的,所述步骤5)中的SiO2-F阻挡层的厚度为0.008mm~0.03mm,所述SiO2-F阻挡层中F的含量在0.15wt%~1.0wt%。
进一步的,所述步骤5)中通过通入SiCl4、O2、含F气体沉积出SiO2-F玻璃阻挡层,通入气体中F的含量为0.15wt%~1.00wt%,其中SiCl4的摩尔流量为400~1000sccm,O2的摩尔流量为SiCl4摩尔流量的3~5倍。
进一步的,所述步骤6)中的高纯O2的质量流量为200sccm~1000sccm,并设定空心预制棒尾端压力与环境压力的压差为-40pa~40pa,控制熔缩炉旋转速度为20~40rpm,具体可为30rpm,移动速度为200~1200mm/min,具体可为500mm/min,熔缩炉逐步升温至2000~2150℃,具体可为2100℃。
进一步的,所述步骤7)中的缩棒工艺将空心预制棒内孔孔径塌缩至1.5~2.5mm。
进一步的,所述步骤8)中的含F气体包括C2F6、CF4、SF6中的一种或多种,通入流量为60sccm~100sccm;所述熔缩炉的炉温保持在1950℃~2100℃之间,移动速度在80~150mm/min之间。
进一步的,所述步骤9)中的高纯O2的质量流量为100~1000sccm,具体可为600sccm,控制熔缩炉的移动速度为150~400mm/min,具体可为300mm/min,并逐步将炉温升至2150~2250℃,具体可为2190℃。
进一步的,所述步骤10)中,将熔缩炉的炉温保持在2150~2250℃,具体可为2190℃,熔缩炉的移动速度为10~30mm/min,具体可为30mm/min。
本发明与现有技术相比,通过沉积阻挡层,避免了空心预制棒在移动至融缩车床过程中环境水汽对光纤芯层的污染,可将PCVD工艺制造预制棒工艺过程中因移棒引入的OH-污染进行有效的消除,进而降低光纤预制棒中的OH-吸收损耗,极大的降低了PCVD工艺车间对环境湿度的依赖性,对制造低水峰甚至无水峰光纤提供了一种新的手段,同时,阻挡层还可防止光纤中心的GeO2在融缩过程的受热蒸发,避免了光纤中心折射率紊乱,对光纤的模式带宽特性有一定的改善作用。
附图说明
图1为本发明工艺方法流程示意图;
图2为现有技术工艺方法流程示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
实施例1
参见图1,本发明提供一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,按照如下步骤进行:
1)沉积工序准备,车间温度为24.1℃,湿度为42%RH的人体舒适的条件;在高纯O2吹扫的情况下将一根两端熔接好尾管的洁净石英衬底管安装在PCVD沉积机床上,逐步升温预热炉至1080℃并恒温保持,开启沉积机床平移、旋转机构,并开启微波等离子体功率输出;
2)使用150sccm~300sccm的C2F6气体对石英衬底管进行刻蚀清洁;
3)根据预设光纤预制棒的参数,通入SiCl4、O2及C2F6气体沉积出第一过渡包层、第二过渡包层;
4)根据预设光纤预制棒的参数,通入SiCl4、GeCl4、O2及C2F6气体沉积出第一芯层、第二芯层;
5)通入SiCl4、O2、C2F6气体沉积出SiO2-F玻璃阻挡层,,其中SiCl4的摩尔流量为400~1000sccm,O2的摩尔流量为SiCl4摩尔流量的3~5倍,沉积出的SiO2-F玻璃阻挡层的厚度为0.02mm,其中F的含量在0.4wt%;
6)将空心预制棒转移至已完成熔缩预备条件的熔缩机床上,启动熔缩机床的平移,旋转机构;通入800sccm高纯O2进行吹扫,设置尾端压力为5pa,熔缩炉旋转速度为30rpm,移动速度为500mm/min,并将熔缩炉的温度自预备状态逐步升温至2100℃;
7)在温度达到2100℃后,启动熔缩工艺,按照预设的熔缩参数逐步对空心预制棒进行缩棒工艺,将空心预制棒内孔孔径塌缩至1.5~2.5mm;
8)在2050℃的熔缩炉温度下,通入80sccm的含F气体,400sccm的高纯O2,分别在100mm/min和130mm/min的移动速度下,将衬底管进行2趟(往返)的刻蚀;
9)根据预设的熔缩工艺参数,控制熔缩炉的移动速度为300mm/min,将炉温逐步升高至2190℃,对空心预制棒中心部位通入600sccm的高纯O2进行吹扫;
10)根据预设的熔缩工艺参数,控制熔缩炉的移动速度为24mm/min,在炉温2190℃的温度下,将空心预制棒烧实成实心预制棒;
11)根据预设的熔缩工艺参数,对实心预制棒进行退火、拉棒操作。
对本实施例中所制造出的光纤预制棒拉制出来的光纤(50/125um多模光纤)进行测量,1383nm处的吸收峰无明显尖峰,1300nm波长光纤损耗典型值为0.49db/km,而现有技术同条件下常规50/125um多模光纤在1300nm波长处的光纤损耗典型值为0.58db/km,显然,本发明的方法对羟基的隔离起到了非常明显的作用。
本发明的特别之处主要在于以下3点:
1、为阻挡外部的羟基向光学芯层扩散,本发明在完成光学芯层沉积后,再沉积一个阻挡层,在熔缩过程中,随着玻璃的熔融,Si,O,Ge等原子间越来越多的化学健会断裂和重新结合,这个过程中容易造成Si+,Ge+,SiO+及GeO+等缺陷,这些缺陷极易与OH结合,形成强的吸收峰,而F可与这些缺陷结合,阻止OH-与缺陷结合,对缺陷起到一个很好的愈合作用,相应的化学方程式为:
因此,在含F-的玻璃中,SiOH基团中的OH-非常容易被F-取代,阻挡层的设置可以有效的阻挡外部的羟基向预制棒光学芯层的扩散。
且本发明所采用的阻挡层因避免了GeO2和环境的直接接触,同时可防止光纤中心的GeO2受热蒸发,避免了光纤中心折射率的紊乱,对光纤的模式带宽特性有一定的改善作用。
2、另外,本发明在完成沉积工艺、空心预制棒移至熔缩机床后,对预制棒进行升温的过程中,使用较大流量的高纯O2对预制棒中心部位进行吹扫和净化。吹扫净化的目的是在玻璃内表面热能尚未达到最大时,对空心预制棒内壁进行吹扫净化,降低因移棒带入的水气量,降低羟基在玻璃表面的含量。
3、本发明的阻挡层会在融缩工序中通过腐蚀工艺刻蚀去除:
3·SiO2+2·C2F6+O2→3·SiF4+4·CO2。
Claims (10)
1.一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,按照如下步骤进行:
1)沉积工序准备;
2)使用含F气体对石英衬底管进行刻蚀清洁;
3)在石英衬底管内壁沉积出若干层过渡包层玻璃;
4)在过渡包层玻璃外再沉积出若干层光学芯层玻璃;
5)在光学芯层玻璃外沉积出SiO2-F玻璃阻挡层,制成空心预制棒;
6)将空心预制棒转移至已完成熔缩预备条件的熔缩机床上,并对空心预制棒中心进行升温、大流量高纯O2吹扫净化;
7)对空心预制棒进行缩棒工艺;
8)在高温状态下通入含F气体,对空心预制棒进行1~2趟刻蚀掉玻璃阻挡层;
9)在高温状态下对空心预制棒中心部位通入高纯O2进行吹扫;
10)将空心预制棒烧实成实心预制棒;
11)对实心预制棒进行退火、拉棒操作。
2.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤3)中通过通入SiCl4、O2及含F气体沉积出过渡包层玻璃。
3.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤4)中通过通入SiCl4、GeCl4、O2及含F气体沉积出光学芯层玻璃。
4.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤5)中的SiO2-F玻璃阻挡层的厚度为0.008mm~0.03mm,所述SiO2-F玻璃阻挡层中F的含量在0.15wt%~1.0wt%。
5.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤5)中通过通入SiCl4、O2、含F气体沉积出SiO2-F玻璃阻挡层,通入气体中F的含量为0.15wt%~1.00wt%,其中SiCl4的摩尔流量为400~1000sccm,O2的摩尔流量为SiCl4摩尔流量的3~5倍。
6.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤6)中的高纯O2的质量流量为200sccm~1000sccm,并设定空心预制棒尾端压力与环境压力的压差为-40pa~40pa,控制熔缩炉旋转速度为20~40rpm,移动速度为200~1200mm/min,熔缩炉逐步升温至2000~2150℃。
7.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤7)中的缩棒工艺将空心预制棒内孔孔径塌缩至1.5~2.5mm。
8.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤8)中的含F气体包括C2F6、CF4、SF6中的一种或多种,通入流量为60sccm~100sccm;所述熔缩炉的炉温保持在1950℃~2100℃之间,移动速度在80~150mm/min之间。
9.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤9)中的高纯O2的质量流量为100~1000sccm,控制熔缩炉的移动速度为150~400mm/min,并逐步将炉温升至2150~2250℃。
10.根据权利要求1所述的一种PCVD工艺制作光纤预制棒芯棒的方法,其特征在于,所述步骤10)中,将熔缩炉的炉温保持在2150~2250℃,熔缩炉的移动速度为10~30mm/min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810927253.1A CN108863042B (zh) | 2018-08-15 | 2018-08-15 | 一种pcvd工艺制作光纤预制棒芯棒的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810927253.1A CN108863042B (zh) | 2018-08-15 | 2018-08-15 | 一种pcvd工艺制作光纤预制棒芯棒的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108863042A true CN108863042A (zh) | 2018-11-23 |
CN108863042B CN108863042B (zh) | 2023-02-17 |
Family
ID=64318057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810927253.1A Active CN108863042B (zh) | 2018-08-15 | 2018-08-15 | 一种pcvd工艺制作光纤预制棒芯棒的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108863042B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115072986A (zh) * | 2022-06-15 | 2022-09-20 | 中国工程物理研究院激光聚变研究中心 | 一种改善光纤预制棒折射率中心偏移的制备方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971614A (en) * | 1988-09-29 | 1990-11-20 | At&T Bell Laboratories | Method and apparatus for making optical fiber preform rods |
CN1472151A (zh) * | 2003-06-27 | 2004-02-04 | 长飞光纤光缆有限公司 | 一种低水峰单模光纤的制造方法 |
CN1569704A (zh) * | 2004-05-10 | 2005-01-26 | 烽火通信科技股份有限公司 | 一种低水峰光纤的制造方法 |
CN101811822A (zh) * | 2010-04-16 | 2010-08-25 | 长飞光纤光缆有限公司 | 一种pcvd工艺制作大直径光纤芯棒的方法 |
CN102249533A (zh) * | 2011-04-28 | 2011-11-23 | 长飞光纤光缆有限公司 | 一种制造大型低水峰光纤预制棒的方法 |
CN104291676A (zh) * | 2014-08-25 | 2015-01-21 | 长飞光纤光缆股份有限公司 | 一种大尺寸弯曲不敏感多模光纤预制棒的制造方法 |
CN104402213A (zh) * | 2014-10-30 | 2015-03-11 | 浙江富通光纤技术有限公司 | 一种纯二氧化硅松散体玻璃化掺氟方法 |
CN106116135A (zh) * | 2016-06-21 | 2016-11-16 | 浙江富通光纤技术有限公司 | 一种纯硅芯低损耗光纤的制造方法 |
-
2018
- 2018-08-15 CN CN201810927253.1A patent/CN108863042B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4971614A (en) * | 1988-09-29 | 1990-11-20 | At&T Bell Laboratories | Method and apparatus for making optical fiber preform rods |
CN1472151A (zh) * | 2003-06-27 | 2004-02-04 | 长飞光纤光缆有限公司 | 一种低水峰单模光纤的制造方法 |
CN1569704A (zh) * | 2004-05-10 | 2005-01-26 | 烽火通信科技股份有限公司 | 一种低水峰光纤的制造方法 |
CN101811822A (zh) * | 2010-04-16 | 2010-08-25 | 长飞光纤光缆有限公司 | 一种pcvd工艺制作大直径光纤芯棒的方法 |
CN102249533A (zh) * | 2011-04-28 | 2011-11-23 | 长飞光纤光缆有限公司 | 一种制造大型低水峰光纤预制棒的方法 |
CN104291676A (zh) * | 2014-08-25 | 2015-01-21 | 长飞光纤光缆股份有限公司 | 一种大尺寸弯曲不敏感多模光纤预制棒的制造方法 |
CN104402213A (zh) * | 2014-10-30 | 2015-03-11 | 浙江富通光纤技术有限公司 | 一种纯二氧化硅松散体玻璃化掺氟方法 |
CN106116135A (zh) * | 2016-06-21 | 2016-11-16 | 浙江富通光纤技术有限公司 | 一种纯硅芯低损耗光纤的制造方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115072986A (zh) * | 2022-06-15 | 2022-09-20 | 中国工程物理研究院激光聚变研究中心 | 一种改善光纤预制棒折射率中心偏移的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108863042B (zh) | 2023-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5490379B2 (ja) | 光ファイバ用の母材を気相成長プロセスによって製造する方法 | |
EP2933239B1 (en) | Apparatus for manufacturing depressed cladding ultra-low water peak optical fiber core rod and method thereof | |
KR20060033861A (ko) | 점도 불일치를 감소시킨 광섬유 | |
JP5249954B2 (ja) | 圧密中の光ファイバケーン/プレフォーム変形の削減 | |
JPH11209141A (ja) | セグメントコア光導波路プリフォームの製造方法 | |
JP2007513862A (ja) | アルカリがドープされた光ファイバ、そのプリフォームおよびその作成方法 | |
CN106116135A (zh) | 一种纯硅芯低损耗光纤的制造方法 | |
JPH0476935B2 (zh) | ||
WO2006106068A2 (en) | Process for the manufacture of a preform for optical fibres | |
CN108863042A (zh) | 一种pcvd工艺制作光纤预制棒芯棒的方法 | |
JP2010064915A (ja) | 光ファイバ母材の製造方法 | |
CN112062460B (zh) | 低损耗g.652.d光纤及其制作方法 | |
EP0100174A1 (en) | Method of making glass optical fiber | |
US6474107B1 (en) | Fluorinating an optical fiber preform in a pure aluminum oxide muffle tube | |
CN109399909A (zh) | 一种pcvd工艺制作低羟基光纤预制棒芯棒的方法 | |
CN104086079A (zh) | 一种光纤预制棒芯棒的熔缩制备方法 | |
JP2007063094A (ja) | 石英管の内面処理方法、光ファイバ母材製造方法及び光ファイバ製造方法 | |
JPH051221B2 (zh) | ||
WO2020177352A1 (zh) | 一种基于连熔石英套管的光纤预制棒及其制造方法 | |
KR100545813B1 (ko) | 탈수 및 탈염소공정을 포함하는 수정화학기상증착공법을 이용한 광섬유 프리폼 제조방법 및 이 방법에 의해 제조된 광섬유 | |
US20020178761A1 (en) | Method of low PMD optical fiber manufacture | |
KR100802815B1 (ko) | Mcvd 공정을 이용한 저 수산기 농도를 갖는 광섬유모재의 제조방법 | |
KR100315475B1 (ko) | 광섬유 모재의 제조방법 | |
CN113461322A (zh) | 光纤及光纤预制棒的制造方法 | |
JP5380018B2 (ja) | 光ファイバ母材の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |