CN108788131B - 一种软磁钴微米棒材料及其制备方法 - Google Patents
一种软磁钴微米棒材料及其制备方法 Download PDFInfo
- Publication number
- CN108788131B CN108788131B CN201810725362.5A CN201810725362A CN108788131B CN 108788131 B CN108788131 B CN 108788131B CN 201810725362 A CN201810725362 A CN 201810725362A CN 108788131 B CN108788131 B CN 108788131B
- Authority
- CN
- China
- Prior art keywords
- cobalt
- soft magnetic
- micron rod
- micron
- precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 title claims abstract description 57
- 229910017052 cobalt Inorganic materials 0.000 title claims abstract description 55
- 239000010941 cobalt Substances 0.000 title claims abstract description 55
- 239000000463 material Substances 0.000 title claims abstract description 24
- 238000002360 preparation method Methods 0.000 title claims abstract description 14
- 239000002243 precursor Substances 0.000 claims abstract description 16
- 238000010438 heat treatment Methods 0.000 claims abstract description 12
- 239000011148 porous material Substances 0.000 claims abstract description 11
- 239000002245 particle Substances 0.000 claims abstract description 5
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 20
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 10
- 150000001868 cobalt Chemical class 0.000 claims description 6
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 claims description 5
- 235000019253 formic acid Nutrition 0.000 claims description 5
- 229910052573 porcelain Inorganic materials 0.000 claims description 4
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 229940011182 cobalt acetate Drugs 0.000 claims description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 claims description 2
- 229910001981 cobalt nitrate Inorganic materials 0.000 claims description 2
- 229940044175 cobalt sulfate Drugs 0.000 claims description 2
- 229910000361 cobalt sulfate Inorganic materials 0.000 claims description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 2
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 claims description 2
- 238000002156 mixing Methods 0.000 claims description 2
- 239000002904 solvent Substances 0.000 claims description 2
- 238000004729 solvothermal method Methods 0.000 claims description 2
- 238000004321 preservation Methods 0.000 claims 1
- 230000005415 magnetization Effects 0.000 abstract description 17
- 239000000696 magnetic material Substances 0.000 abstract description 12
- 238000000034 method Methods 0.000 abstract description 8
- 239000012621 metal-organic framework Substances 0.000 abstract description 7
- 230000008569 process Effects 0.000 abstract description 6
- 238000011161 development Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract description 3
- 238000005457 optimization Methods 0.000 abstract description 3
- 238000003786 synthesis reaction Methods 0.000 abstract description 3
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000000203 mixture Substances 0.000 abstract description 2
- 230000035699 permeability Effects 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 101100095841 Escherichia coli (strain K12) sixA gene Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000001241 arc-discharge method Methods 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/142—Thermal or thermo-mechanical treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Thermal Sciences (AREA)
- Electromagnetism (AREA)
- Manufacturing & Machinery (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
本发明属于磁性材料领域,尤其是一种软磁钴微米棒材料及其制备方法;所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中;本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;本发明制备工艺简单、成本低,可实现规模化大批量生产;金属有机骨架材料的多孔及可设计特性为产物的组成及结构控制提供了基础,为其他类似工艺提供借鉴;热处理工艺的优化有力的控制了产物的长度,直径,孔径等参数,确保了所述钴微米棒的高饱和磁化强度,低矫顽力及高磁导率;本发明为钴基软磁材料的合成及发展提供了崭新的思路。
Description
技术领域
本发明属于磁性材料领域,尤其是一种软磁钴微米棒材料及其制备方法。
背景技术
软磁材料磁滞回线窄,基本与磁化曲线重合,适宜作为电感线圈、变压器等的铁心。长期的研究应用表面,较高的饱和磁化强度以及较低的矫顽力是软磁材料设计的目标。饱和磁化强度对于固定材料而言基本是固定的,一般可通过增加材料尺寸、增加结晶性来实现。但最有效的途径仍是选择高饱和磁化强度的材料。金属钴理论饱和磁化强度高,稳定性好,成本适中是优质软磁材料的选择之一。Wu等以氯化钴为原料成功使用水热法制备出三维球形钴微晶,所制备的产物具有151.7emu·g-1的饱和磁化强度(JournalofAlloysandCompounds2012,513,245-250)。另外,研究者通过对软磁材料进行结构设计可达到控制矫顽力的目的。Xiao等采用简单的水热法成功制备出一种可溶于水的超顺磁Fe3O4颗粒,平均尺寸约为5mn,饱和磁化强度约为47emug-1,表现出优良的软磁特性(ACSNano2011,5,6315-6324)。Singh等以直流电弧放电法制备Co/Ni@SWCNTs,所制备产物具有超顺磁特性,可作为电磁屏蔽材料(JournalofMaterialsChemistryA2015,3,13203-13209)。虽然研究取得了很大的进展,传统的软磁材料仍需要解决如下问题:(1)高纯度、高结晶度、高饱和磁化强度的材料制备;(2)通过尺寸的增大有效降低矫顽力;(3)开发无毒无害,成本低,产量大的新工艺。有鉴于此,本发明以特定金属有机骨架化合物为前驱体成功制备高纯度、高结晶度的钴微米棒,具有高饱和磁化强度及低矫顽力的特点,表现出优良的软磁特性,为解决软磁材料发展面临的问题提高了崭新的思路。
发明内容
本发明要解决的技术问题是:克服现有技术中不足,提供一种软磁钴微米棒材料,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;
本发明的另一个目的是提供一种软磁钴微米棒材料的制备方法,该制备方法工艺简单、成本低,能够适用于工业化大规模生产。
为实现上述目的,本发明采用的技术方案如下:
一种软磁钴微米棒材料,所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中。
进一步的,所述微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm。
制备一种软磁钴微米棒材料的方法,所述方法包括以下步骤:
(1)制备Co3[HCOO]6·DMF平行六面体前驱体:将一定量的钴盐,N,N-二甲基甲酰胺和甲酸充分溶解混合,转移入反应釜,之后放入烘箱中溶剂热处理。所得产物经分离清洗后干燥备用;
(2)制备软磁钴微米棒:将上述前驱体放入瓷舟中,转移到管式炉中,在惰性气氛保护下高温热处理,获得所述软磁钴微米棒。
进一步的,步骤(1)中,所述钴盐的质量为1~16g,所述N,N-二甲基甲酰胺的体积为20~80mL,所述甲酸的体积为1~20mL,溶剂热反应的温度为80~120oC,时间为1~48h。
进一步的,所述步骤(1)中钴盐选用硝酸钴,氯化钴,硫酸钴,乙酸钴中的一种。
进一步的,步骤2中,惰性气氛选用N2或Ar,热处理升温速率为1~20oC·min-1,温度为350~650oC,保温时间为1~8h。
采用本发明的技术方案的有益效果是:
1、本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,该软磁钴微米棒材料具有高饱和磁化强度,低矫顽力及高磁导率;
2、本发明的制备方法,制备工艺简单、成本低,可实现规模化大批量生产。金属有机骨架材料的多孔及可设计特性为产物的组成及结构控制提供了基础,为其他类似工艺提供借鉴。热处理工艺的优化有力的控制了产物的长度,直径,孔径等参数,确保了所述钴微米棒的高饱和磁化强度,低矫顽力及高磁导率。本发明为钴基软磁材料的合成及发展提供了崭新的思路。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1为本发明实施例1制得的Co3[HCOO]6·DMF平行六面体前驱体的SEM照片;
图2为本发明实施例1制得的软磁钴微米棒的SEM照片;
图3为本发明实施例1制得的软磁钴微米棒的XRD谱图;
图4为本发明实施例1制得的软磁钴微米棒的磁滞回线谱图;
图5为本发明实施例1制得的软磁钴微米棒的复磁导率谱图。
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明,但是这些实施例不是对本发明保护范围的限制。此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本说明书中不同地方出现的“在一个实施例中”并非均指同一个实施例,也不是单独的或选择性的与其他实施例互相排斥的实施例。
实施例1
一种软磁钴微米棒材料,由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中;微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm。
制备方法,具体包含如下步骤:
步骤1:在56mLN,N-二甲基甲酰胺中加入8g六水合硝酸钴,7mL甲酸,完全搅拌溶解后,在100℃下溶剂热24h;产物经过滤、洗涤、干燥后,得到前驱体Co3[HCOO]6·DMF平行六面体;
步骤2:将前驱体粉末在N2气氛中以5℃/min的升温速率升至500℃并保温5h,自然冷却后得到所述钴微米棒。
图1为本发明实施例1制得的Co3[HCOO]6·DMF平行六面体前驱体的SEM照片。从图1可以看出,所制备前驱体具有明显均一的平行六面体结构,且表面光滑。其长度约为15μm,宽度约为2μm。
图2为本发明实施例1制得的软磁钴微米棒的SEM照片。可以看出,平行六面体结构保持较为完整,但长度大幅缩短为8μm左右,直径缩短为1μm左右,同时可以看出钴微米棒由大量钴颗粒组成,且相互之间形成孔道结构,孔径约为200nm。
图3为本发明实施例1制得的软磁钴微米棒的XRD谱图。可以看出三个主要的衍射峰,分别位于44.2o,51.5o和75.8o,归属于立方晶系钴的(111)(200)(220)晶面,说明所制备产物为高纯单质钴。另外,衍射峰的强度较高,说明所制备钴的结晶度较高。高纯度及高结晶度确保了所述钴微米棒具有高饱和磁化强度。
图4为本发明实施例1制得的软磁钴微米棒的磁滞回线谱图。从中可以清楚看出所制备钴微米棒具有优良的软磁特性,其饱和磁化强度可达93.7emu·g-1,矫顽力约为140Oe。其优良的软磁特性源于钴的纯度,结晶度及棒状结构。微米级一维结构有利于获得较低的矫顽力。
图5为本发明实施例1制得的软磁钴微米棒的复磁导率谱图。测试样品由同等质量的钴微米棒及石蜡组成,在微波波段(2-18GHz)内表现出较高的复磁导率。其实部从2GHz的1.38缓慢下降到18GHz的0.89,虚部同样从2GHz的0.40波动下降到18GHz的0.25。样品较高的复磁导率源于材料优良的软磁特性。
本发明经由金属有机骨架为前驱体制备一种软磁钴微米棒,制备工艺简单、成本低,可实现规模化大批量生产。通过控制热处理金属有机骨架材料的工艺参数,获得了结晶度、长度、直径、孔径等参数可调的钴微米棒。经参数优化后,确保所述钴微米棒具有高饱和磁化强度,低矫顽力及高磁导率,即优良的软磁特性。本发明为钴基软磁材料的合成及发展提供了崭新的思路。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。
Claims (3)
1.一种软磁钴微米棒材料,其特征在于:所述软磁钴微米棒由钴颗粒相互连结组成,保有部分前驱体平行六面体的特征,保有部分孔结构,孔均匀分布于微米棒中;
所述微米棒的长度为1~30μm,直径为1~20μm,孔径为50~1000nm;
所述的一种软磁钴微米棒材料的制备方法包括以下步骤:
(1)制备Co3[HCOO]6·DMF平行六面体前驱体:将一定量的钴盐,N,N-二甲基甲酰胺和甲酸充分溶解混合,转移入反应釜,之后放入烘箱中溶剂热处理;
所得产物经分离清洗后干燥备用;
(2)制备软磁钴微米棒:将上述前驱体放入瓷舟中,转移到管式炉中,在惰性气氛保护下高温热处理,温度为500~650℃,获得所述软磁钴微米棒;
步骤(1)中,所述钴盐的质量为1~16g,所述N,N-二甲基甲酰胺的体积为20~80mL,所述甲酸的体积为1~20mL,溶剂热反应的温度为80~120℃,时间为1~48h。
2.根据权利要求1所述的一种软磁钴微米棒材料,其特征在于:所述步骤(1)中钴盐选用硝酸钴,氯化钴,硫酸钴,乙酸钴中的一种。
3.根据权利要求1所述的一种软磁钴微米棒材料,其特征在于:步骤(2)中,惰性气氛选用N2或Ar,热处理升温速率为1~20℃·min-1,保温时间为1~8h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810725362.5A CN108788131B (zh) | 2018-07-04 | 2018-07-04 | 一种软磁钴微米棒材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810725362.5A CN108788131B (zh) | 2018-07-04 | 2018-07-04 | 一种软磁钴微米棒材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108788131A CN108788131A (zh) | 2018-11-13 |
CN108788131B true CN108788131B (zh) | 2022-04-22 |
Family
ID=64074448
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810725362.5A Active CN108788131B (zh) | 2018-07-04 | 2018-07-04 | 一种软磁钴微米棒材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108788131B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109757091A (zh) * | 2019-02-02 | 2019-05-14 | 南京航空航天大学 | 一种钴MOFs电磁吸波剂及其制备方法 |
CN118256929A (zh) * | 2022-12-27 | 2024-06-28 | 中国科学院宁波材料技术与工程研究所 | 一种多孔核壳结构整体式催化剂及其制备方法和应用 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005023856A1 (de) * | 2005-05-24 | 2006-11-30 | Basf Ag | Verfahren zur Herstellung poröser metall-organischer Gerüstmaterialien |
CN102962036B (zh) * | 2012-10-30 | 2016-06-29 | 中国科学院大连化学物理研究所 | 基于过渡金属钴的多孔金属有机骨架材料及其制备方法 |
CN105328202A (zh) * | 2014-08-13 | 2016-02-17 | 南京理工大学 | 一种钴纳米材料的制备方法 |
CN105489885B (zh) * | 2016-01-08 | 2018-07-17 | 厦门大学 | 一种多孔微米棒状四氧化三钴及其制备方法与应用 |
CN105854882A (zh) * | 2016-03-31 | 2016-08-17 | 华南理工大学 | 一种磁性Co3O4-C纳米材料及其制法与作为催化剂活化过一硫酸盐应用于废水处理中 |
CN106450288A (zh) * | 2016-11-04 | 2017-02-22 | 济南大学 | 一种多孔状四氧化三钴的制备方法及其应用 |
CN106904596A (zh) * | 2017-03-06 | 2017-06-30 | 武汉理工大学 | 基于金属有机框架化合物低温热解制备的碳纳米管组装的纳米结构材料及其制备和应用 |
-
2018
- 2018-07-04 CN CN201810725362.5A patent/CN108788131B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN108788131A (zh) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN112961650B (zh) | 一种三金属有机框架衍生铁镍合金/多孔碳超薄吸波剂及其制备方法 | |
CN109705808B (zh) | 一种具有mof结构的钴镍合金-多孔碳复合吸波材料及其制备方法 | |
CN109310038B (zh) | 一种多孔Co/Cu/C复合吸波材料及其制备方法 | |
CN103755336B (zh) | 一种纳米铁氧体颗粒的制备方法 | |
CN109494038B (zh) | 四氧化三铁-纳米多孔碳纳米复合材料及其制备方法与应用 | |
CN113088252A (zh) | 一种铁钴镍合金/碳/石墨烯超薄吸波材料及其制备方法 | |
Liu et al. | Ultrasonic-assisted ultra-rapid synthesis of monodisperse meso-SiO2@ Fe3O4 microspheres with enhanced mesoporous structure | |
CN108788131B (zh) | 一种软磁钴微米棒材料及其制备方法 | |
CN113347863B (zh) | 一种磁性金属mof衍生的磁电共损吸波剂及制备方法 | |
CN109264787B (zh) | 一种ZnFe2O4立方块体结构的制备方法及所得产品 | |
Chen et al. | Preparation and magnetic properties of Fe3O4 microparticles with adjustable size and morphology | |
CN117809925B (zh) | 一种高频变压器纳米晶磁芯材料及其制备方法 | |
CN113620349B (zh) | 一种金属有机框架衍生的一维铁基吸波材料及其制备方法 | |
Jiang et al. | A simple route to synthesize ZnFe2O4 hollow spheres and their magnetorheological characteristics | |
CN114212771A (zh) | CNTs/Fe3O4/三聚氰胺复合炭泡沫及其制备方法和应用 | |
Tudorache et al. | Structural Investigations and Magnetic Properties of BaFe_12O_19 Crystals | |
CN110564365B (zh) | 一种负载磁性空心纳米球的石墨烯泡沫复合材料的制备方法 | |
CN102503393A (zh) | 一种微波烧结法制备高性能铁氧体材料的方法 | |
CN112591801A (zh) | 一种z型六角铁氧体超细粉的制备方法 | |
CN103204676A (zh) | 一种微波辅助低温快速合成铁氧体微粉的方法 | |
CN105565390B (zh) | 一种硅藻土基/镍锌铁氧体吸波剂及其制备方法 | |
CN108977684B (zh) | 一种软磁CoCuC复合材料及其制备方法 | |
CN112479265A (zh) | 一种四氧化三钴纳米颗粒的制备方法 | |
CN109817405B (zh) | 一种纳米磁性颗粒的制备方法 | |
CN109757091A (zh) | 一种钴MOFs电磁吸波剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20210918 Address after: No. 280, changzhugeng village committee, Jincheng Town, Jintan District, Changzhou City, Jiangsu Province, 213200 Applicant after: Changzhou Qinxing Electronic Technology Co.,Ltd. Address before: 213200 Xinghua Road, Jintan District, Changzhou, Jiangsu Province, No. 258 Applicant before: CHANGZHOU JINTAN MAGNETIC MATERIALS Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |