CN108779500B - 用于检测寨卡病毒的组合物和方法 - Google Patents

用于检测寨卡病毒的组合物和方法 Download PDF

Info

Publication number
CN108779500B
CN108779500B CN201780016233.2A CN201780016233A CN108779500B CN 108779500 B CN108779500 B CN 108779500B CN 201780016233 A CN201780016233 A CN 201780016233A CN 108779500 B CN108779500 B CN 108779500B
Authority
CN
China
Prior art keywords
oligonucleotide
zika virus
seq
sample
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780016233.2A
Other languages
English (en)
Other versions
CN108779500A (zh
Inventor
S.杜根尼
E.H.菲斯
J.方
M.海尔
E.斯皮尔
J.孙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
F Hoffmann La Roche AG
Original Assignee
F Hoffmann La Roche AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by F Hoffmann La Roche AG filed Critical F Hoffmann La Roche AG
Publication of CN108779500A publication Critical patent/CN108779500A/zh
Application granted granted Critical
Publication of CN108779500B publication Critical patent/CN108779500B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • C12Q1/701Specific hybridization probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6818Hybridisation assays characterised by the detection means involving interaction of two or more labels, e.g. resonant energy transfer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

描述了用于快速检测生物样品或非生物样品中寨卡病毒的存在或不存在的方法。该方法可以包括执行扩增步骤、杂交步骤和检测步骤。此外,提供了靶向寨卡病毒的引物和探针以及试剂盒,其设计用于检测寨卡病毒。

Description

用于检测寨卡病毒的组合物和方法
发明领域
本发明涉及病毒诊断领域,并且更具体地涉及寨卡病毒(Zika virus)的检测。
发明背景
寨卡病毒,黄病毒科(Flaviviridae)和黄病毒属(Flavivirus)的成员,是由伊蚊属蚊子(Aedes)传播的病毒,所述伊蚊属蚊子包括埃及伊蚊(A. aegypti)和白纹伊蚊(A. albopictus)。寨卡病毒与登革病毒、黄热病病毒、日本脑炎病毒(JEV)和西尼罗病毒(WNV)有关。由寨卡病毒感染称为蚊传热,其在人中可以引起发烧、皮疹和不适。寨卡病毒感染与成人的神经学状况包括格林-巴利综合征有关。另外,截至2016年初,孕妇中的寨卡病毒感染已与流产和/或小头畸形联系。迄今为止,还没有针对寨卡病毒感染的已知的有效药物治疗或疫苗。
在2013-2014年,大洋洲存在寨卡病毒的流行性爆发。在2015年5月,巴西鉴定了第一例确诊的寨卡病毒感染病例。自2015年5月以来,巴西估计有440,000至1,300,000人被感染。巴西的最近爆发已与大量脑过小的诊断相联系。截至2016年初,寨卡病毒的广泛爆发正在进行,主要是在美洲,源自巴西并传播到南美洲的其他国家、中美洲、墨西哥和加勒比海地区。
已开发出针对寨卡病毒的血清学测试(酶联免疫吸附测定(ELISA)或免疫荧光)。然而,与其他黄病毒包括登革热或黄热病的交叉反应性,限制了IgM抗体诊断测试的效用。此外,在感染的早期阶段可能不存在抗体,这进一步降低了血清学测试对于急性感染的效应和适合性。因此,本领域需要快速、可靠、特异性和灵敏的方法来检测寨卡病毒。
发明概述
本发明的某些实施方案涉及用于快速检测生物样品或非生物样品中寨卡病毒的存在或不存在的方法,例如通过在单个试管中的定量实时逆转录酶聚合酶链反应( PCR)多路检测寨卡病毒。实施方案包括检测寨卡病毒的方法,其包括执行至少一个循环步骤,其可以包括扩增步骤和杂交步骤。此外,实施方案包括设计用于在单个管中检测寨卡病毒的引物、探针和试剂盒。检测方法设计为靶向寨卡病毒基因组的各个区域。例如,该方法设计为靶向编码包膜(E)区域的基因组区域,和/或靶向非结构(NS)区域,例如NS3、NS4B和NS5。
在一个实施方案中,提供了用于检测样品中的寨卡病毒的方法,其包括执行扩增步骤,包括使样品与一组引物接触,以在样品中存在寨卡病毒时产生扩增产物;执行杂交步骤,其包括使扩增产物与一种或多种可检测探针接触;并且检测扩增产物的存在或不存在,其中所述扩增产物的存在指示样品中存在寨卡病毒,并且其中所述扩增产物的不存在指示样品中不存在寨卡病毒;其中所述引物组包含以下或由以下组成:选自SEQ ID NO:1、2、3、4、5、6、7和8的序列或其互补物;并且其中可检测探针包含以下或由以下组成:选自SEQ IDNO:9、10、11和12的序列或其互补物。
在一个实施方案中,用于扩增寨卡病毒靶的引物组包括第一引物和第二引物,所述第一引物包含选自SEQ ID NO:1、2、3和4的第一寡核苷酸序列或其互补物,所述第二引物包含选自SEQ ID NO:5、6、7和8的第二寡核苷酸序列或其互补物,并且用于检测扩增产物的可检测探针包括SEQ ID NO:9、10、11和12的核酸序列或其互补物。
其他实施方案提供了包含选自SEQ ID NO:1-12的核苷酸序列或其互补物或者由其组成的寡核苷酸,所述寡核苷酸具有100个或更少的核苷酸。在另一个实施方案中,本发明提供了寡核苷酸,其包括与SEQ ID NO:1-12之一具有至少70%序列同一性(例如,至少75%、80%、85%、90%或95%等)的核酸或其互补物,所述寡核苷酸具有100个或更少的核苷酸。一般地,这些寡核苷酸在这些实施方案中可以是引物核酸、探针核酸等等。在这些实施方案的某些中,寡核苷酸具有40个或更少的核苷酸(例如35-40个核苷酸,35个或更少的核苷酸,例如30-35个核苷酸,30个或更少的核苷酸,例如25-30个核苷酸,25个或更少的核苷酸,例如20-25个核苷酸,20个或更少的核苷酸,例如15-20个核苷酸,15个或更少的核苷酸,例如5-15个核苷酸等)。在一些实施方案中,寡核苷酸包含至少一个经修饰的核苷酸,例如,相对于未修饰的核苷酸,以改变核酸杂交稳定性。任选地,寡核苷酸包含至少一个标记和任选的至少一个猝灭剂部分。在一些实施方案中,寡核苷酸包括至少一种保守修饰的变异。特定核酸序列的“保守修饰的变异”或简单地“保守变异”指那些核酸,其编码相同或基本上相同的氨基酸序列,或者,当核酸不编码氨基酸序列时,基本上相同的序列。本领域技术人员将认识到改变、添加或缺失编码序列中的单个核苷酸或小百分比的核苷酸(通常小于5%,例如,0.5%-5%,更通常小于4%、2%或1%,但多于0.1%)的各个取代、缺失或添加是“保守修饰的变异”,其中所述改变导致氨基酸的缺失、氨基酸的添加或氨基酸由化学上相似的氨基酸的取代。
在一个方面,扩增可以采用具有5'至3'核酸酶活性的聚合酶。因此,供体荧光部分和受体部分,例如猝灭剂,沿着探针的长度可以在彼此不超过5至20个核苷酸内(例如,在8或10个核苷酸内)。在另一个方面,探针包括允许二级结构形成的核酸序列。此类二级结构形成可以导致第一荧光部分和第二荧光部分之间的空间接近。根据该方法,探针上的第二荧光部分可以是猝灭剂。
在一个方面,特定的寨卡病毒探针可以用荧光染料标记,所述荧光染料充当报道分子。探针还可以具有第二染料,其充当猝灭剂。在限定的波长下测量报道染料,因此允许检测和区分扩增的寨卡病毒靶。完整探针的荧光信号被猝灭染料压制。在PCR扩增步骤期间,探针与特定单链DNA模板的杂交导致DNA聚合酶的5'至3'核酸酶活性的切割,导致报道分子和猝灭染料的分离以及荧光信号的生成。对于每个PCR循环,生成增加量的切割探针,并且报道染料的累积信号伴随地增加。任选地,一种或多种另外的探针(例如,内部参考对照或其他靶向探针(例如,其他病毒核酸))也可以用报道荧光染料标记,所述报道荧光染料独特且不同于与寨卡病毒探针结合的荧光染料标记。在此类情况下,因为特异性报道染料在限定的波长下测量,所以同时检测和区分扩增的寨卡靶和一种或多种另外的探针是可能的。
本发明还提供了检测来自个体的生物样品中寨卡病毒或寨卡病毒核酸的存在或不存在的方法。这些方法可以用于检测血浆中寨卡病毒或寨卡病毒核酸的存在或不存在,用于血液筛查和诊断测试。另外,相同的测试可以由本领域技术人员用于评价尿和其他样品类型,以检测寨卡病毒或寨卡病毒核酸。此类方法一般包括执行至少一个循环步骤,其包括扩增步骤和染料结合步骤。通常,扩增步骤包括使样品与多对寡核苷酸引物接触,以产生一种或多种扩增产物(如果样品中存在核酸分子),并且染料结合步骤包括使扩增产物与双链DNA结合染料接触。这些方法还包括检测结合到扩增产物内的双链DNA结合染料的存在或不存在,其中所述结合的存在指示样品中寨卡病毒或寨卡病毒核酸的存在,并且其中所述结合的不存在指示样品中寨卡病毒或寨卡病毒核酸的不存在。代表性的双链DNA结合染料是溴化乙锭。其他核酸结合染料包括DAPI、Hoechst染料、PicoGreen®、RiboGreen®、OliGreen®和花青染料如YO-YO®和SYBR® Green。另外,此类方法还可以包括确定扩增产物和双链DNA结合染料之间的解链温度,其中所述解链温度证实寨卡病毒或寨卡病毒核酸的存在或不存在。
在一个进一步实施方案中,提供了用于检测寨卡病毒的一种或多种核酸的试剂盒。该试剂盒可以包括对于扩增基因靶特异性的一组或多组引物;以及对于检测扩增产物特异性的一种或多种可检测的寡核苷酸探针。
在一个方面,试剂盒可以包括已经用供体和相应的受体部分,例如另一种荧光部分或暗猝灭剂标记的探针,或者可以包括用于标记探针的荧光部分。试剂盒还可以包括三磷酸核苷,核酸聚合酶和对于核酸聚合酶功能所必需的缓冲液。该试剂盒还可以包括使用引物、探针和荧光团部分来检测样品中寨卡病毒核酸的存在或不存在的包装插页和说明书。
除非另外定义,否则本文使用的所有技术和科学术语都具有与本发明所属领域的普通技术人员通常理解相同的含义。尽管与本文描述的那些类似或等价的方法和材料可以用于本主题的实践或测试,但下文描述了合适的方法和材料。
在附图和下文描述中阐述了本发明的一个或多个实施例的细节。本发明的其他特点、目的和优点根据附图和详细描述以及权利要求将是显而易见的。
附图简述
图1显示了实验的PCR生长曲线,显示了对于寨卡病毒基因组的E(a)、NS3(b)和NS5(c)区域特异性的引物和探针检测寨卡病毒。
图2显示了实验的PCR生长曲线,显示了对于寨卡病毒基因组的E和NS5区域特异性的引物和探针检测寨卡病毒。
图3显示了在内部参考对照的存在下,实验的PCR生长曲线,显示了寨卡病毒引物和探针关于用其他靶/核酸多路化的能力。
图4显示了实验的PCR生长曲线,显示了引物和探针使用ENV和NS5测定检测来自生物样品例如血浆的寨卡病毒。
发明详述
通过核酸扩增诊断寨卡病毒感染提供了用于快速、准确、可靠、特异性且灵敏地检测病毒感染的方法。本文描述了用于检测非生物样品或生物样品中的寨卡病毒的定量实时逆转录酶PCR测定。提供了用于检测寨卡病毒的引物和探针,以及含有这些引物和探针的制造物品或试剂盒。与其他方法相比,用于检测寨卡病毒的实时PCR的特异性和灵敏度的增加,以及实时PCR的改善特点,包括样品容纳和扩增产物的实时检测,使得这种技术实施用于临床实验室中的寨卡病毒感染的常规诊断成为可行。另外,该技术可以用于血液筛查以及预后。该寨卡病毒检测测定也可以与其他测定多路化,用于平行检测其他核酸,例如登革病毒、基孔肯雅病毒和西尼罗病毒。
寨卡病毒基因组是10,794碱基长的正义单链RNA分子,具有称为5'NCR和3'NCR的两个非编码区。寨卡病毒的开放阅读框架读取5’-C-prM-E-NS1-NS2A-NS2B-NS3-NS4A-NS4B-NS5-3’。它编码多肽,所述多肽随后切割成衣壳(C)、前体膜(prM)、包膜(E)和非结构蛋白(NS)。包膜包含大部分病毒粒子表面并且涉及复制方面。
本发明包括与寨卡病毒基因组(例如,编码包膜(E)区域,和/或靶向非结构(NS)区域,例如NS3、NS4B和NS5的基因组区域)杂交的寡核苷酸引物和荧光标记的水解探针,以便使用例如TaqMan®扩增和检测技术特异性鉴定寨卡病毒。寡核苷酸与包膜(E)区域特异性杂交和/或靶非结构(NS)区域,例如NS3、NS4B和NS5。与靶向单拷贝遗传基因座相比,具有与基因组中的多个位置杂交的寡核苷酸有利于改善灵敏度。
所公开的方法可以包括执行至少一个循环步骤,其包括使用一对或多对引物从样品中扩增核酸分子基因靶的一个或多个部分。如本文使用的,“寨卡病毒引物”指寡核苷酸引物,其与寨卡病毒基因组中发现的核酸序列特异性退火,并且在适当条件下从其起始DNA合成,产生分别的扩增产物。在寨卡病毒基因组中发现的核酸序列的实例包括包膜(E)区域内的核酸,和/或靶向非结构(NS)区域,例如NS3、NS4B和NS5。所讨论的寨卡病毒引物各自与包膜(E)区域内的靶退火,和/或靶向非结构(NS)区域,例如NS3、NS4B和NS5,使得每个扩增产物的至少一部分含有对应于靶的核酸序列。如果样品中存在一种或多种核酸,则产生一种或多种扩增产物,因此一种或多种扩增产物的存在指示样品中寨卡病毒的存在。扩增产物应含有与用于寨卡病毒的一种或多种可检测探针互补的核酸序列。如本文使用的,“寨卡病毒探针”指与寨卡病毒基因组中发现的核酸序列特异性退火的寡核苷酸探针。每个循环步骤包括扩增步骤、杂交步骤和检测步骤,其中使样品与一种或多种可检测的寨卡病毒探针接触,用于检测样品中寨卡病毒的存在或不存在。
如本文使用的,术语“扩增”指合成核酸分子的过程,所述核酸分子与模板核酸分子的一条或两条链互补(例如,来自寨卡病毒基因组的核酸分子)。扩增核酸分子通常包括使模板核酸变性,在低于引物的解链温度的温度下使引物与模板核酸退火,并且从引物酶促延伸以生成扩增产物。扩增通常需要存在三磷酸脱氧核糖核苷、DNA聚合酶(例如,Platinum® Taq)和适当的缓冲液和/或辅因子(为了聚合酶(例如MgCl2和/或KCl)的最佳活性)。
如本文使用的,术语“引物”是本领域技术人员已知的,并且指寡聚化合物,主要是寡核苷酸,但也指能够通过模板依赖性DNA聚合酶“引发”DNA合成的经修饰的寡核苷酸,即例如寡核苷酸的3'末端提供游离的3'-OH基团,其中进一步的“核苷酸”可以通过模板依赖性DNA聚合酶特征附接,建立3'至5'磷酸二酯键,由此使用三磷酸脱氧核苷,并且由此释放焦磷酸盐。
术语“杂交”指一种或多种探针与扩增产物的退火。“杂交条件”通常包括低于探针的解链温度,但避免探针的非特异性杂交的温度。
术语“5'至3'核酸酶活性”指核酸聚合酶的活性,通常与核酸链合成相关,由此从核酸链的5'末端去除核苷酸。
术语“热稳定聚合酶”指热稳定的聚合酶,即该酶催化与模板互补的引物延伸产物形成,并且当经受升高的温度共实现双链模板核酸变性所需的时间时,不会不可逆地变性。一般地,合成在每个引物的3'末端处起始,并且沿着模板链在5'至3'方向上前进。热稳定聚合酶已从以下中分离:黄栖热菌(Thermus flavus)、红色栖热菌(T. ruber)、嗜热栖热菌(T. thermophilus)、水生栖热菌(T. aquaticus)、T. lacteusT. rubens、嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)和炽热甲烷嗜热菌(Methanothermus fervidus)。然而,需要时,如果补充酶,则并非热稳定的聚合酶也可以用于PCR测定中。
术语“其互补物”指与给定核酸相同长度且确切互补的核酸。
当关于核酸使用时,术语“延伸”或“延长”指将另外的核苷酸(或其他类似分子)掺入核酸内。例如,核酸任选地通过掺入核苷酸的生物催化剂,例如通常在核酸的3'末端处添加核苷酸的聚合酶延伸。
在两个或更多个核酸序列的上下文中,术语“等同”或“同一性”百分比指当就最大对应性比较且比对时,例如如使用本领域技术人员可用的序列比较算法之一或通过目视检查测量的,两个或更多个序列或子序列是相同的或具有指定百分比的相同核苷酸。适合于确定序列同一性和序列相似性百分比的示例性算法是BLAST程序,其在例如以下中描述:Altschul等人(1990)“Basic local alignment search tool” J. Mol. Biol. 215:403-410,Gish等人(1993)“Identification of protein coding regions by databasesimilarity search” Nature Genet. 3:266-272,Madden等人(1996)“Applications ofnetwork BLAST server” Meth. Enzymol. 266:131-141,Altschul等人(1997)“GappedBLAST and PSI-BLAST: a new generation of protein database search programs”Nucleic Acids Res. 25:3389-3402,以及Zhang等人(1997)“PowerBLAST: A new networkBLAST application for interactive or automated sequence analysis andannotation” Genome Res. 7:649-656。
在寡核苷酸的上下文中的“经修饰的核苷酸”指这样的改变,其中寡核苷酸序列的至少一个核苷酸被替换为对寡核苷酸提供所需性质的不同核苷酸。可在本文所述的寡核苷酸中取代的示例性经修饰的核苷酸包括例如叔丁基苄基、C5-甲基-dC、C5-乙基-dC、C5-甲基-dU、C5-乙基-dU、2,6-二氨基嘌呤、C5-丙炔基-dC、C5-丙炔基-dU、C7-丙炔基-dA、C7-丙炔基-dG、C5-炔丙基氨基-dC、C5-炔丙基氨基-dU、C7-炔丙基氨基-dA、C7-炔丙基氨基-dG、7-脱氮-2-脱氧黄苷、吡唑并嘧啶类似物、假-dU、硝基吡咯、硝基吲哚、2'-O-甲基核-U、2 '-O-甲基核-C、N4-乙基-dC、N6-甲基-dA等等。可以在寡核苷酸中被取代的许多其他经修饰的核苷酸在本文中提及或者是本领域另外已知的。在某些实施方案中,经修饰的核苷酸取代相对于相应的未修饰的寡核苷酸的解链温度修饰寡核苷酸的解链温度(Tm)。为了进一步说明,在一些实施方案中,某些经修饰的核苷酸取代可以减少非特异性核酸扩增(例如,使引物二聚体形成最小化等等),增加预期靶扩增子的产率等等。这些类型的核酸修饰的实例描在例如美国专利号6,001,611中描述。其他经修饰的核苷酸取代可以改变寡核苷酸的稳定性,或提供其他期望的特点。
寨卡病毒的检测
本发明提供了通过扩增例如寨卡病毒核酸序列的一部分来检测寨卡病毒的方法。寨卡病毒的核酸序列是可用的(例如,参考毒株:Uganda 1957,登录:NC_012532)。具体地,在本发明中通过实施方案提供了扩增和检测寨卡病毒核酸分子靶的引物和探针。
为了检测寨卡病毒,提供了扩增寨卡病毒的引物和探针。除了本文例示的那些以外的寨卡病毒核酸也可以用于检测样品中的寨卡病毒。例如,通过本领域技术人员使用常规方法可以评估功能变体的特异性和/或敏感性。代表性的功能变体可以包括例如本文公开的寨卡病毒核酸中的一个或多个缺失、插入和/或取代。
更具体地,寡核苷酸的实施方案各自包括具有选自SEQ ID NO:1-12的序列的核酸,其基本上相同的变体,其中所述变体与SEQ ID NO:1-12之一、或者SEQ ID NO:1-12的互补物和变体具有至少例如80%、90%或95%的序列同一性。
表1:寨卡病毒正向引物
Figure 102917DEST_PATH_IMAGE001
表2:寨卡病毒反向引物
Figure 776344DEST_PATH_IMAGE002
表3:寨卡病毒探针
Figure 926702DEST_PATH_IMAGE003
在一个实施方案中,使用上述的寨卡病毒引物和探针组,以便在怀疑含有寨卡病毒的生物样品中检测寨卡病毒(表1-3)。引物和探针组可以包含对于寨卡病毒核酸序列特异性的引物和探针或由其组成,所述引物和探针包含SEQ ID NO:1-12的核酸序列或由其组成。在另一个实施方案中,关于寨卡病毒靶的引物和探针包含SEQ ID NO:1-12的引物和探针中任一的功能活性变体或由其组成。
可以通过使用所公开方法中的引物和/或探针来鉴定SEQ ID NO:1-12的引物和/或探针中任一的功能活性变体。SEQ ID NO:1-12中任一的引物和/或探针的功能活性变体涉及引物和/或探针,其在所述方法或试剂盒中提供与SEQ ID NO:1-12的分别序列相比相似或更高的特异性和灵敏度。
变体可以例如通过一个或多个核苷酸添加、缺失或取代,例如在SEQ ID NO:1-12的分别序列的5'末端和/或3'末端处的一个或多个核苷酸添加、缺失或取代,而不同于SEQID NO:1-12的序列。如上所述,引物(和/或探针)可以是化学修饰的,即引物和/或探针可以包含经修饰的核苷酸或非核苷酸化合物。然后探针(或引物)是经修饰的寡核苷酸。“经修饰的核苷酸”(或“核苷酸类似物”)通过一些修饰与天然“核苷酸”不同,但仍然由碱基或碱基样化合物、戊呋喃糖基糖或戊呋喃糖基糖样化合物、磷酸盐部分或磷酸盐样部分或其组合组成。例如,“标记”可以特征附接到“核苷酸”的碱基部分,由此获得“经修饰的核苷酸”。“核苷酸”中的天然碱基也可以被替换为例如7-脱氮嘌呤,由此同样获得“经修饰的核苷酸”。术语“经修饰的核苷酸”或“核苷酸类似物”在本申请中可互换使用。“经修饰的核苷”(或“核苷类似物”)通过一些修饰而不同于天然核苷,其方式如上文对于“经修饰的核苷酸”(或“核苷酸类似物”)概述的。
使用例如计算机程序如OLIGO(Molecular Biology Insights Inc.,Cascade,Colo.),可以设计寡核苷酸(包括经修饰的寡核苷酸和寡核苷酸类似物),其扩增编码寨卡病毒靶的核酸分子,例如编码寨卡病毒的替代部分的核酸。当设计待用作扩增引物的寡核苷酸时的重要特点包括但不限于,促进检测(例如通过电泳)的适当大小的扩增产物,关于一对引物的成员的类似解链温度,以及每个引物的长度(即,引物需要足够长用于以序列特异性退火并引发合成,但不能太长使得保真度在寡核苷酸合成期间降低)。通常,寡核苷酸引物为长度8至50个核苷酸(例如,长度8、10、12、14、16、18、20、22、24、26、28、30、32、34、36、38、40、42、44、46、48或50个核苷酸)。
除一组引物之外,该方法还可以使用一种或多种探针,以检测寨卡病毒的存在或不存在。术语“探针”指在合成或生物上产生的核酸(DNA或RNA),所述核酸通过设计或选择含有特定的核苷酸序列,其允许它们在限定的预定严格性下与“靶核酸”,在本文情况下中与寨卡病毒(靶)核酸特异性(即,优先地)杂交。“探针”可以被称为“检测探针”,意指它检测靶核酸。
在一些实施方案中,所述寨卡病毒探针可以用至少一种荧光标记进行标记。在一个实施方案中,寨卡病毒探针可以用供体荧光部分例如荧光染料、以及相应的受体部分例如猝灭剂进行标记。在一个实施方案中,探针包含荧光部分或由荧光部分组成,并且核酸序列包含SEQ ID NO:9-12或由SEQ ID NO:9-12组成。
设计待用作探针的寡核苷酸可以以与引物设计类似的方式执行。实施方案可以使用单个探针或一对探针用于检测扩增产物。取决于实施方案,探针使用可以包含至少一种标记和/或至少一种猝灭剂部分。与引物一样,探针通常具有相似的解链温度,并且每个探针的长度必须足以用于序列特异性杂交发生,但不能太长使得保真度在合成期间降低。寡核苷酸探针一般为长度15至40(例如,16、18、20、21、22、23、24或25)个核苷酸。
构建体可以包括各自含有寨卡病毒引物和探针核酸分子(例如,SEQ ID NO:1、2、3、4、5、6、7、8、9和10)之一的载体。例如,构建体可以用作对照模板核酸分子。适合使用的载体是商购可得的和/或通过本领域常规的重组核酸技术方法生产。寨卡病毒核酸分子可以通过例如化学合成,从寨卡病毒直接克隆或通过核酸扩增获得。
除寨卡病毒核酸分子(例如,含有SEQ ID NO:1-12中的一个或多个序列的核酸分子)之外,适用于该方法的构建体通常还包括编码可选择标记物(例如抗生素抗性基因)的序列,用于选择所需的构建体和/或转化体、以及复制起点。载体系统的选择通常取决于几个因素,包括但不限于宿主细胞的选择、复制效率、选择性、诱导性和回收的容易性。
含有寨卡病毒核酸分子的构建体可以在宿主细胞中繁殖。如本文使用的,术语宿主细胞意欲包括原核生物和真核生物,例如酵母、植物和动物细胞。原核宿主可以包括大肠杆菌(E. coli)、鼠伤寒沙门氏菌(Salmonella typhimurium)、粘质沙雷氏菌(Serratia marcescens)和枯草芽孢杆菌(Bacillus subtilis)。真核宿主包括酵母例如酿酒酵母(S. cerevisiae)、粟酒裂殖酵母(S. pombe)、巴斯德毕赤酵母(Pichia pastoris),哺乳动物细胞例如COS细胞或中国仓鼠卵巢(CHO)细胞、昆虫细胞和植物细胞例如拟南芥(Arabidopsis thaliana)和烟草(Nicotiana tabacum)。可以使用本领域普通技术人员通常已知的技术中的任一种将构建体引入宿主细胞内。例如,磷酸钙沉淀、电穿孔、热休克、脂转染、显微注射和病毒介导的核酸转移是用于将核酸引入宿主细胞内的通常方法。另外,裸露DNA可以直接递送至细胞(参见例如,美国专利号5,580,859和5,589,466)。
聚合酶链反应(PCR)
美国专利或4,683,202、4,683,195、4,800,159和4,965,188公开了常规PCR技术。PCR通常采用两种寡核苷酸引物,其与选择的核酸模板(例如DNA或RNA)结合。在一些实施方案中可用的引物包括能够在所述寨卡病毒核酸序列(例如,SEQ ID NO:1-8)内充当核酸合成起始点的寡核苷酸。可以通过常规方法从限制性消化物中纯化引物,或者它可以合成产生。为了最大扩增效率,引物优选是单链的,但引物也可以是双链的。首先使双链引物变性,即处理以分离链。使双链核酸变性的一种方法是通过加热。
如果模板核酸是双链的,则必须将两条链分开,然后它才可以用作PCR中的模板。链分离可以通过任何合适的变性方法完成,所述方法包括物理、化学或酶促手段。分离核酸链的一种方法涉及加热核酸直至它占优势地变性(例如,大于50%、60%、70%、80%、90%或95%变性)。用于使模板核酸变性所必须的加热条件将取决于例如缓冲盐浓度以及待变性核酸的长度和核苷酸组成,但通常范围为约90℃至约105℃共取决于反应的特点如温度和核酸长度的时间。变性通常执行约30秒至4分钟(例如,1分钟至2分钟30秒、或1.5分钟)。
如果双链模板核酸通过加热变性,则允许反应混合物冷却至促进每种引物与其靶序列退火的温度。关于退火的温度通常为约35℃至约65℃(例如,约40℃至约60℃;约45℃至约50℃)。退火时间可以是约10秒至约1分钟(例如,约20秒至约50秒;约30秒至约40秒)。然后将反应混合物调整至在其下聚合酶的活性得到促进或优化的温度,即对于延伸从退火的引物发生以生成与模板核酸互补的产物足够的温度。温度应该足以从与核酸模板退火的每个引物合成延伸产物,但不应该高至使得延伸产物与其互补模板变性(例如,用于延伸的温度一般范围为约40℃至约80℃(例如,约50℃至约70℃;约60℃)。延伸时间可以是约10秒至约5分钟(例如,约30秒至约4分钟;约1分钟至约3分钟;约1分钟30秒至约2分钟)。
逆转录病毒或RNA病毒例如寨卡病毒以及其他黄病毒的基因组,由核糖核酸即RNA组成。在这种情况下,必须首先经由酶逆转录酶的作用将模板核酸RNA转录成互补DNA(cDNA)。逆转录酶使用RNA模板和与RNA的3'末端互补的短引物,以指导第一链cDNA的合成,然后可以将所述第一链cDNA直接用作用于聚合酶链反应的模板。
PCR测定可以采用寨卡病毒核酸,例如RNA或DNA(cDNA)。模板核酸无需是纯化的;它可以是复杂混合物例如人细胞中含有的寨卡病毒核酸的一小部分。寨卡病毒核酸分子可以通过常规技术从生物样品中提取,所述常规技术例如Diagnostic Molecular Microbiology: Principles and Applications(Persing等人(编辑),1993, AmericanSociety for Microbiology, Washington D.C.)中所述的那些。核酸可以从许多来源获得,例如质粒,或天然来源,包括细菌、酵母、病毒、细胞器、或高等生物例如植物或动物。
寡核苷酸引物(例如,SEQ ID NO:1-8)在诱导引物延伸的反应条件下与PCR试剂组合。例如,链延伸反应一般包括50 mM KCl、10 mM Tris-HCl(pH 8.3)、15 mM MgCl2、0.001%(w/v)明胶、0.5-1.0 μg变性模板DNA、50 pmole每种寡核苷酸引物、2.5 U Taq聚合酶和10%DMSO)。反应通常含有150至320 μM dATP、dCTP、dTTP、dGTP中的每种或者其一种或多种类似物。
新合成的链形成双链分子,其可以用于反应的后续步骤中。链分离、退火和延伸的步骤可以根据需要经常重复,以产生对应于靶寨卡病毒核酸分子的所需数量的扩增产物。反应中的限制因素是反应中存在的引物、热稳定酶和三磷酸核苷的量。循环步骤(即变性、退火和延伸)优选重复至少一次。对于在检测中使用,循环步骤的数目将取决于例如样品的性质。如果样品是核酸的复杂混合物,则需要更多循环步骤以扩增足以用于检测的靶序列。一般地,循环步骤重复至少约20次,但可重复多达40、60或甚至100次。
荧光共振能量转移(FRET)
FRET技术(参见例如,美国专利号4,996,143、5,565,322、5,849,489和6,162,603)基于以下概念:当供体荧光部分和相应的受体荧光部分位于彼此的一定距离内时,能量转移在两个荧光部分之间发生,其可以目视观察到或以其他方式检测和/或定量。当供体通过具有合适波长的光辐射激发时,供体通常将能量转移到受体。受体通常以具有不同波长的光辐射形式重新发射转移的能量。在某些系统中,非荧光能量可以通过生物分子在供体部分和受体部分之间转移,所述生物分子包括基本上非荧光的供体部分(参见例如,美国专利号7,741,467)。
在一个实例中,寡核苷酸探针可以含有供体荧光部分(例如,HEX)和相应的猝灭剂(例如,BlackHole Quenchers™(BHQ)),其可以是或不是荧光的,并且以除光外的形式消散转移的能量。当探针完整时,能量转移通常在供体部分和受体部分之间发生,使得来自供体荧光部分的荧光发射被受体部分猝灭。在聚合酶链反应的延伸步骤期间,与扩增产物结合的探针被例如Taq聚合酶的5'至3'核酸酶活性切割,使得供体荧光部分的荧光发射不再被猝灭。用于此目的示例性探针在例如美国专利号5,210,015、5,994,056和6,171,785中描述。通常使用的供体-受体对包括FAM-TAMRA对。常用的猝灭剂是DABCYL和TAMRA。常用的暗猝灭剂包括BlackHole Quenchers™(BHQ)(Biosearch Technologies,Inc.,Novato,Cal.)、Iowa Black™(Integrated DNA Tech.,Inc.,Coralville,Iowa)、BlackBerry™Quencher 650(BBQ- 650)(Berry & Assoc.,Dexter,Mich.)。
在另一个实例中,各自含有荧光部分的两个寡核苷酸探针可以在特定位置处与扩增产物杂交,所述特定位置由寡核苷酸探针与寨卡病毒靶核酸序列的互补性确定。在寡核苷酸探针在适当位置处与扩增产物核酸杂交后,生成FRET信号。杂交温度范围可以为约35℃至约65℃共约10秒至约1分钟。
荧光分析可以使用例如光子计数表面荧光显微镜系统(包含适当的二向色镜和滤波器用于监测在特定范围下的荧光发射)、光子计数光电倍增器系统或荧光计进行。可以用氩离子激光器、高强度汞(Hg)弧光灯、氙灯、光纤光源或对于在所需范围内的激发适当地过滤的其他高强度光源进行激发,以起始能量转移或允许荧光团的直接检测。
如本文关于供体部分和相应的受体部分使用的,“相应的”指受体荧光部分或暗猝灭剂,其具有与供体荧光部分的发射光谱重叠的吸收光谱。受体荧光部分的发射光谱的波长最大值应该比供体荧光部分的激发光谱的波长最大值大至少100 nm。相应地,可以在其间产生有效的非辐射能量转移。
一般就以下选择荧光供体和相应的受体部分:(a)高效Foerster能量转移;(b)大的最终斯托克斯位移(>100 nm);(c)发射位移尽可能远地进入可见光谱的红色部分(> 600nm)内;以及(d)发射位移到比在供体激发波长下由激发产生的Raman水荧光发射更高的波长。例如,供体荧光部分可以选择为在激光线附近具有其激发最大值(例如,氦-镉442 nm或氩488 nm)、高消光系数、高量子产率、以及其荧光发射与相应受体荧光部分的激发光谱的良好重叠。相应的受体荧光部分可以选择为具有高消光系数、高量子产率、其激发与供体荧光部分的发射的良好重叠、以及在可见光谱的红色部分(> 600 nm)中的发射。
可以在FRET技术中与各种受体荧光部分一起使用的代表性供体荧光部分包括荧光素、荧光黄、B-藻红蛋白、9-吖啶异硫氰酸酯、荧光黄VS、4-乙酰氨基-4'-异硫氰酸芪-2,2'-二磺酸、7-二乙氨基-3-(4'-异硫氰酸基苯基)-4-甲基香豆素、1-芘丁酸琥珀酰亚胺酯和4-乙酰氨基-4'-异硫氰酸芪-2,2'-二磺酸衍生物。取决于使用的供体荧光部分,代表性的受体荧光部分包括LC Red 640、LC Red 705、Cy5、Cy5.5、丽丝胺罗丹明B磺酰氯、四甲基罗丹明异硫氰酸酯、罗丹明x异硫氰酸酯、赤藓红异硫氰酸酯、荧光素、二亚乙基三胺五乙酸酯、或镧系离子(如铕或铽)的其他螯合物。供体荧光部分和受体荧光部分可以例如从Molecular Probes(Junction City,Oreg.)或Sigma Chemical Co.(St. Louis,Mo.)获得。
供体荧光部分和受体荧光部分可以经由连接臂特征附接至适当的探针寡核苷酸。每个连接臂的长度是重要的,因为连接臂将影响供体荧光部分和受体荧光部分之间的距离。连接臂的长度可以是从核苷酸碱基到荧光部分以埃(Å)计的距离。一般而言,连接臂为约10 Å至约25 Å。连接臂可以具有WO 84/03285中描述的种类。WO84/03285还公开了用于将连接臂特征附接至特定核苷酸碱基的方法,以及用于将荧光部分特征附接至连接臂的方法。
受体荧光部分,例如LC Red 640,可以与含有氨基接头的寡核苷酸(例如,可从ABI(Foster City,Calif.)或Glen Research(Sterling,VA)获得的C6-氨基亚磷酰胺)组合,以产生例如LC Red 640标记的寡核苷酸。将供体荧光部分(例如荧光素)偶联到寡核苷酸的经常使用的接头,包括硫脲接头(FITC衍生的,例如来自Glen Research或ChemGene(Ashland,Mass.)的荧光素-CPG)、酰胺接头(荧光素-NHS-酯衍生的,例如来自BioGenex(San Ramon,Calif.)的CX-荧光素-CPG)、或3'-氨基-CPG,其在寡核苷酸合成后需要荧光素-NHS-酯的偶联。
寨卡病毒的检测
本发明提供了用于检测生物样品或非生物样品中寨卡病毒的存在或不存在的方法。提供的方法避免了样品污染、假阴性和假阳性的问题。该方法包括执行至少一个循环步骤,其包括使用一对或多对寨卡病毒引物从样品中扩增寨卡病毒靶核酸分子的一部分,和FRET检测步骤。优选在热循环仪中执行多重循环步骤。可以使用寨卡病毒引物和探针执行方法,以检测寨卡病毒的存在,并且寨卡病毒的检测指示样品中寨卡病毒的存在。
如本文所述,可以使用利用FRET技术的标记杂交探针检测扩增产物。一种FRET形式利用TaqMan®技术来检测扩增产物的存在或不存在,并且因此检测寨卡病毒的存在或不存在。TaqMan®技术利用一种单链杂交探针,其用例如一种荧光染料(例如HEX)和一种猝灭剂(例如BHQ)标记,所述猝灭剂可以是或不是荧光的。当用合适波长的光激发第一荧光部分时,根据FRET的原理,将吸收的能量转移到第二荧光部分或暗猝灭剂。第二部分一般是猝灭剂分子。在PCR反应的退火步骤期间,标记的杂交探针与靶DNA(即扩增产物)结合,并且在随后的延长期过程中被例如Taq聚合酶的5'至3'核酸酶活性降解。结果,荧光部分和猝灭剂部分在空间上彼此分离。因此,在不存在猝灭剂的情况下激发第一荧光部分后,可以检测来自第一荧光部分的荧光发射。举例来说,ABI PRISM® 7700 Sequence Detection System(Applied Biosystems)使用TaqMan®技术,并且适合于执行本文所述的用于检测样品中寨卡病毒的存在或不存在的方法。
与FRET结合的分子信标也可以用于使用实时PCR方法检测扩增产物的存在。分子信标技术使用由第一荧光部分和第二荧光部分标记的杂交探针。第二荧光部分一般是猝灭剂,并且荧光标记通常位于探针的每个末端处。分子信标技术使用具有允许二级结构形成(例如发夹)的序列的探针寡核苷酸。作为探针内的二级结构形成的结果,当探针在溶液中时,两个荧光部分均处于空间接近。在与靶核酸(即扩增产物)杂交后,探针的二级结构被破坏并且荧光部分变得彼此分离,使得在用合适波长的光激发后,第一荧光部分的发射可以被检测到。
FRET技术的另一种常见形式利用两种杂交探针。每种探针可以用不同的荧光部分标记,并且一般设计为在靶DNA分子(例如扩增产物)中彼此紧密接近地杂交。供体荧光部分例如荧光素由LightCycler® Instrument的光源在470 nm处激发。在FRET期间,荧光素将其能量转移至受体荧光部分,例如LightCycler®-Red 640(LC Red 640)或LightCycler®-Red 705(LC Red 705)。受体荧光部分然后发射更长波长的光,其由LightCycler®仪器的光学检测系统检测。有效的FRET可以仅在荧光部分处于直接局部接近时,以及在供体荧光部分的发射光谱与受体荧光部分的吸收光谱重叠时发生。发射信号的强度可以与原始靶DNA分子的数目(例如,寨卡病毒基因组的数目)相关联。如果发生寨卡病毒靶核酸的扩增并且产生扩增产物,则杂交步骤导致基于该探针对的成员之间的FRET的可检测信号。
一般地,FRET的存在指示样品中寨卡病毒的存在,并且FRET的不存在指示样品中寨卡病毒的不存在。然而,不充分的样本收集、运输延迟、不适当的运输条件或某些收集拭子(海藻酸钙或铝轴)的使用均是可以影响测试结果的成功和/或准确度的条件。
可以用于实践该方法的代表性生物样品包括但不限于呼吸道样本、尿、粪便样本、血液样本、血浆、皮肤拭子、鼻拭子、伤口拭子、血液培养物、皮肤和软组织感染。生物样品的收集和贮存方法是本领域技术人员已知的。可以处理(例如,通过本领域已知的核酸提取方法和/或试剂盒)生物样品,以释放寨卡病毒核酸,或者在一些情况下,可以使生物样品与PCR反应组分和适当的寡核苷酸直接接触。
解链曲线分析是可以包括在循环概况中的另外步骤。解链曲线分析基于以下事实:DNA在称为解链温度(Tm)的特征温度下解链,所述解链温度被定义为在其下一半DNA双链体已分离成单链的温度。DNA的解链温度主要取决于其核苷酸组成。因此,富含G和C核苷酸的DNA分子具有比的Tm高于具有丰富的A和T核苷酸的那些。通过检测在其下信号丢失的温度,可以确定探针的解链温度。类似地,通过检测在其下信号生成的温度,可以确定探针的退火温度。来自寨卡病毒扩增产物的寨卡病毒探针的解链温度可以证实样品中寨卡病毒的存在或不存在。
在每个热循环仪运行内,对照样品同样可以循环。阳性对照样品可以使用例如对照引物和对照探针扩增靶核酸对照模板(除靶基因的所述扩增产物外)。阳性对照样品也可以扩增,例如,含有靶核酸分子的质粒构建体。此类质粒对照可以在内部(例如,在样品内)或在与患者的样品并排运行的分开样品中进行扩增,使用与用于检测预期靶相同的引物和探针。此类对照是扩增、杂交和/或FRET反应成功或失败的指示剂。每个热循环仪运行还可以包括阴性对照,其例如缺少靶模板DNA。阴性对照可以测量污染。这确保了系统和试剂不产生假阳性信号。因此,对照反应可以容易地确定,例如,引物以序列特异性退火且起始延伸的能力,以及探针以序列特异性杂交和用于FRET发生的能力。
在一个实施方案中,该方法包括避免污染的步骤。例如,在美国专利号5,035,996、5,683,896和5,945,313中描述了利用尿嘧啶-DNA糖基化酶的酶促方法,以减少或消除一个热循环仪运行和下一个之间的污染。
与FRET技术结合的常规PCR方法可以用于实践该方法。在一个实施方案中,使用LightCycler®仪器。下述专利申请描述了如LightCycler®技术中使用的实时PCR:WO 97/46707、WO 97/46714和WO 97/46712。
LightCycler®可以使用PC工作站进行操作,并且可以利用Windows NT操作系统。当机器将毛细管序贯地定位在光学单元上时,获得来自样品的信号。该软件可在每次测量后立即实时展示荧光信号。荧光采集时间为10-100毫秒(msec)。在每个循环步骤之后,对于所有样品可以连续更新荧光相对于循环数的定量展示。所生成的数据可以存储用于进一步分析。
作为FRET的替代方案,可以使用双链DNA结合染料,例如荧光DNA结合染料(例如,SYBR® Green或SYBR® Gold(Molecular Probes))检测扩增产物。在与双链核酸相互作用后,这种荧光DNA结合染料在用以合适波长的光激发后发射荧光信号。也可以使用双链DNA结合染料,例如核酸嵌入染料。当使用双链DNA结合染料时,通常执行解链曲线分析用于确认扩增产物的存在。
本领域技术人员将了解,也可以采用其他核酸或信号放大方法。此类方法的实例包括但不限于,分支DNA信号放大、环介导等温扩增(LAMP)、基于核酸序列的扩增(NASBA)、自我持续序列复制(3SR)、链置换扩增(SDA)、或智能扩增过程版本2(SMAP 2)。
应理解,本发明的实施例不受一种或多种商购可得仪器的配置的限制。
制造物品/试剂盒
本发明的实施方案进一步提供了检测寨卡病毒的制造物品或试剂盒。制造物品可以包括用于检测寨卡病毒基因靶的引物和探针,连同合适的包装材料。用于检测寨卡病毒的代表性引物和探针能够与寨卡病毒靶核酸分子杂交。另外,试剂盒还可以包括对于DNA固定、杂交和检测所需的适当包装的试剂和材料,例如固体支持物、缓冲液、酶和DNA标准。本文公开了设计引物和探针的方法,并且提供了扩增寨卡病毒靶核酸分子且与寨卡病毒靶核酸分子杂交的引物和探针的代表性实例。
制造物品还可以包括用于标记探针的一个或多个荧光部分,或可替代地,可以标记随试剂盒提供的探针。例如,制造物品可以包括用于标记寨卡病毒探针的供体荧光部分和/或受体荧光部分。上文提供了合适的FRET供体荧光部分和相应的受体荧光部分的实例。
制造物品还可以含有包装插页或包装标签,在其上具有关于使用寨卡病毒引物和探针来检测样品中的寨卡病毒的说明。制造物品可以另外包括用于进行本文公开的方法的试剂(例如,缓冲液、聚合酶、辅因子或防止污染的试剂)。这些试剂可以对于本文所述的商购可得仪器之一是特异性的。
将在下述实施例中进一步描述本发明的实施方案,所述实施例不限制权利要求中描述的本发明的范围。
实施例
提供下述实施例和附图以帮助理解主题,其实际范围在所附权利要求中阐述。应理解,可以在所述程序中做出修改,而不背离本发明的精神。
寨卡病毒基因组的靶向区域包括结构区域(例如,包膜(E))以及非结构区域(例如,NS3、NS4B和NS5)两者。将所有核酸序列比对,并且考虑所有引物和探针,并且就对于所有已知的Zika分离株和其他性质的预测包容性进行评分。通过考虑循环中的病毒序列来产生阳性对照。输出来自公开可用数据库的序列且执行序列比对。然后过滤序列以考虑从2007年开始的当代序列。制备cDNA克隆以充当阳性DNA或RNA对照。cDNA克隆基于Suriname2015毒株相对于参考毒株(非洲谱系,Uganda)和历史非洲毒株。序列相对于引物和探针进行比对,并且对序列做出轻微调整。
实施例1:培养的寨卡病毒的检测
使用QIAmp Viral RNA Mini Kit(Qiagen)提取来自培养的MR 766寨卡病毒的RNA。使用RiboGreen Assay(ThermoFisher Scientific)、Qubit(ThermoFisherScientific)和NanoDrop(ThermoFisher Scientific)定量总RNA。使用在不同浓度的ZikaRNA(即2.5 x 104和2.5 x 106个RNA拷贝/ml)下靶向E、NS3和NS5区域的引物和探针运行定量实时RT-PCR。结果显示引物和探针能够检测E区域(SEQ ID NO:1、5和9)、NS3(SEQ ID NO:3、7和11)和NS5(SEQ ID NO:2、6和10)(参见图1)。对更广泛范围的Zika RNA起始浓度(从2.5 x 100、2.5 x 101、2.5 x 102、2.5 x 103、2.5 x 104和2.5 x 105个RNA拷贝/ml开始)进行了进一步的研究,显示了引物和探针能够以剂量依赖性方式检测寨卡病毒的E和NS5区域(参见图2)。在内部参考对照引物/探针组的存在下,靶向E区域的另外测定证实了寨卡病毒引物和探针检测寨卡病毒,并且与用于检测的其他方法多路化的能力(参见图3)。
实施例2:生物样品中寨卡病毒的检测
为了显示检测寨卡病毒的引物和探针能够检测来自生物样品(例如体液)的寨卡病毒,针对从血浆样品中获得的寨卡病毒RNA测试靶向寨卡病毒基因组的E和NS5区域的引物和探针。结果显示寨卡病毒引物和探针能够以特异性和灵敏度检测血浆中的寨卡病毒。该完整过程进行几次,并且寨卡引物和探针显示可再现地检测寨卡病毒(代表性实例显示于图4中)。这些结果证实了寨卡病毒引物和探针检测生物样品(例如血浆)中寨卡病毒的存在。
实施例3:寨卡核酸测试用于血液筛查的测定性能
感染寨卡病毒(ZIKV)的人与小头畸形和神经疾病有关。因为大多数感染是无症状的,所以献血者可能不知不觉地具有感染。在2013-2014年法属波利尼西亚爆发期间,在2.8%的献血者中检测到ZIKV核酸,并且最近在巴西已报道了输血传播的病例。美国FDA发布了降低输血传播的ZIKV的风险的建议。在活跃传播的区域,血液设施必须停止采血,除非用关于ZIKV的核酸测试(NAT)筛选献血或者组分是病原体减少的(PR)。目前,PR仅限于血小板和血浆产品。
响应FDA建议,开发了cobas® Zika测试,使用聚合酶链反应(PCR)用于检测ZIKVRNA的定性方法,用于在cobas® 6800/8800系统上使用。这些系统掺入全自动化样品制备、扩增和检测、以及即用型试剂和对照。该测试预期检测来自全血和血液组分供体以及其他活体供体的血浆样本中的ZIKV RNA。
cobas® Zika测试设计为检测所有ZIKV谱系。大多数性能研究使用ZIKV培养上清液,其中使用ZIKV RNA转录物以拷贝/mL指定滴度。研究包括特异性、灵敏度、检测限(LoD)、干扰物质、基质等效性和交叉反应性。使用跨越多个浓度、试剂批次和天数的190个重复来评价LoD和可重复性。通过使用公开的寡核苷酸序列(Lanciotti,Emerg Infect Dis,2008)测试确认ZIKV阳性的25个样品来评估临床敏感性。另外,将5个临床样本掺料到阴性混合血浆内,用于产生以各种稀释度的250个人为样品。
关于cobas® Zika的95% Probit LoD为8.1个拷贝/mL,并且结果跨越多重参数是可重现的。在ZIKV非地方性流行区域收集的500个样品中特异性是100%。ZIKV的可检测性和特异性两者均未受到潜在干扰物质的影响,所述物质包括白蛋白、胆红素、血红蛋白、人DNA和甘油三酯或各种抗凝血剂。HIV、HBV、HCV、CHIKV、DENV血清型1-4和WNV不交叉反应。对于具有来自4个不同国家的25个确认的ZIKV阳性样品cobas® Zika的临床敏感度是100%。对于具有一系列病毒浓度的250个人为样品反应性是100%。
实施例4:波多黎各人献血者中寨卡病毒的检测
美国FDA发布了降低输血传播的寨卡病毒(ZIKV)的风险的建议,包括停止活跃ZIKV传播区域的血液收集,除非献血用ZIKV核酸测试(NAT)筛选或是病原体减少的(PR)。波多黎各被要求停止收集,因为没有FDA批准的NAT测试是可用的,并且PR仅对于血浆和血小板产品可用。响应FDA建议,开发了定性PCR NAT测定,以检测来自全血和血液组分供体的血浆中的ZIKV RNA。
开发了用于在cobas® 6800/8800系统上使用的cobas® Zika测试,以检测所有ZIKV谱系。通过研究确定了性能,包括特异性、灵敏度、检测限(LoD)、潜在干扰物质、基质等效性和交叉反应性。FDA批准了该测试作为研究用新药(IND)的用途。然后开始测试来自波多黎各的各个献血者(IDT)样品。反应性指数献血在模拟微型池(MP)6中重新测试。反应性指数献血也由参考实验室使用经修饰的CDC PCR ZIKV测定、估计的病毒载量(VL)、ZIKVIgM和IgG抗体、以及斑块减少中和测试(PRNT)对于IgM反应样品进行测试。邀请具有反应结果的供体参与随访研究。
通过cobas® Zika已筛选了3,573份献血,并且13份(0.36%)测试为反应性的。关于这些献血中的9份的另外结果显示在表4上。
Figure 993403DEST_PATH_IMAGE004
实施例5:用于鉴定样本中的寨卡核酸的替代测定
用于在cobas® 6800/8800系统上使用的cobas® Zika测试开发用于在研究用新药(IND)下的血液筛查。为了确定IND测试的灵敏度,FDA要求寨卡病毒(ZIKV)阳性样本的分析。由于高需求、ZIKV确认样本的不足、以及来自一些寨卡地方性流行国家的样本运送的障碍,ZIKV阳性样本的获得是挑战性的。开发了第二ZIKV PCR测定作为用于筛选具有未知状态的样本的工具。第二ZIKV PCR测定专门使用cobas omni Utility Channel,这对于快速原型化和高通量筛选是理想的。cobas omni Utility Channel利用用于cobas® IVD测试的大部分试剂,除了测定特异性引物和探针之外,允许在平台上执行实验室开发的测试的灵活性。
使用cobas® 6800/8800系统的cobas omni Utility Channel功能性开发了第二ZIKR PCR测定,其靶向与由cobas® Zika测试靶向的基因基因座不同的基因基因座。该测定用于通过筛选在哥伦比亚和萨尔瓦多收集的样品来鉴定“可能的”ZIKV样本。样本最初得自基孔肯雅热和登革热地方性流行区域,并且发现对于这些病毒是阴性的。对于筛选,由于有限的体积,将样本稀释为至少1:3.75并且单独测试。广泛的Ct验收标准用于鉴定“可能的”ZIKV阳性样本。通过该第二测定鉴定为“可能的”ZIKV的样品进一步以4个重复进行测试,使用RT-PCR与公布的CDC寡核苷酸序列(Lanciotti,2008),并且通过cobas® Zika测试来测试一次。如果使用CDC寡核苷酸观察到一致的反应性(4/4个重复),则样品视为对于ZIKV确认的。
通过在cobas omni Utility Channel上的内部测定筛选的1296个样本中,111个被鉴定为“可能”ZIKV阳性的。使用CDC寡核苷酸和cobas® Zika测试,测试了具有足够体积的三十七个样本。将具有有限体积的另外三个样本1:100稀释并测试。在这40个“可能”阳性中,23个样本,包括3个稀释的样本,通过CDC寡核苷酸证实为阳性的,并且全部与cobas®Zika是反应性的。十七个样本具有与CDC寡核苷酸的< 4/4个反应性结果;用cobas® Zika测试15/17个测试为阳性的。结果显示在表5上。
Figure 926724DEST_PATH_IMAGE005
虽然前述发明已相当详细地描述用于清楚和理解的目的,但通过本发明的阅读对于本领域技术人员明确的是,可以做出在形式和细节中的各种改变,而不背离本发明的实际范围。例如,上述所有技术和仪器都可以以各种组合使用。
Figure IDA0001794195390000011
Figure IDA0001794195390000021
Figure IDA0001794195390000031
Figure IDA0001794195390000041

Claims (22)

1.一组寡核苷酸引物和一种可检测寡核苷酸探针两者在制备用于进行检测样品中的寨卡病毒的方法的试剂盒中的用途,所述方法包括:
执行扩增步骤,其包括如果所述样品中存在核酸,则使所述样品与一组引物接触以产生扩增产物;
执行杂交步骤,其包括使所述扩增产物与一种可检测探针接触;和
检测所述扩增产物的存在或不存在,其中所述扩增产物的存在指示所述样品中寨卡病毒的存在,并且其中所述扩增产物的不存在指示所述样品中寨卡病毒的不存在;
其中一组寡核苷酸引物与寨卡病毒核酸的包膜(E)区域特异性杂交以在扩增步骤中产生扩增产物,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQID NO:1的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:5的寡核苷酸序列所示;和
其中所述可检测寡核苷酸探针与所述扩增产物特异性杂交且由SEQ ID NO:9的寡核苷酸序列所示。
2.权利要求1的用途,其中:
所述杂交步骤包括使所述扩增产物与可检测探针接触,所述可检测探针用供体荧光部分和相应的受体部分进行标记;和
所述检测步骤包括检测在所述探针的供体荧光部分和受体部分之间荧光共振能量转移(FRET)的存在或不存在,其中所述荧光的存在或不存在指示所述样品中寨卡病毒的存在或不存在。
3.权利要求1或2的用途,其中所述扩增步骤采用具有5'至3'核酸酶活性的聚合酶。
4.权利要求2的用途,其中所述供体荧光部分和所述相应的受体部分在所述探针上彼此相隔8-20个核苷酸。
5.权利要求2 的用途,其中所述受体部分是猝灭剂。
6.权利要求1、2、4和5中任一项的用途,其中所述样品是生物样品。
7.权利要求1、2、4和5中任一项的用途,所述方法进一步包括平行检测来自一种或多种其他病毒的核酸的方法。
8.权利要求7的用途,其中所述一种或多种其他病毒选自登革病毒、基孔肯雅病毒和西尼罗病毒。
9.权利要求1、2、4、5和8中任一项的用途,所述方法进一步包括在如果在样品中存在寨卡病毒的核酸则产生一种或多种另外的扩增产物的一个或多个另外的寡核苷酸引物组和一种或多种另外的可检测寡核苷酸探针的存在下执行扩增步骤和杂交步骤,其中所述一种或多种另外的扩增产物的存在指示所述样品中寨卡病毒的存在,并且其中所述一种或多种另外的扩增产物的不存在指示所述样品中寨卡病毒的不存在,且其中
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS5杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:2的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:6的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针与所述扩增产物特异性杂交且由SEQ ID NO:10的寡核苷酸序列所示;或/和
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS3杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:3的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:7的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针由SEQ ID NO:11的寡核苷酸序列所示。
10.一种用于检测寨卡病毒的核酸的试剂盒,其包括:
与寨卡病毒核酸的包膜(E)区域特异性杂交以产生扩增产物的一组寡核苷酸引物,包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:1的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:5的寡核苷酸序列所示;和
与所述扩增产物特异性杂交的荧光可检测标记的探针,其由SEQ ID NO:9的寡核苷酸序列所示。
11.权利要求10的试剂盒,其中所述荧光可检测标记的探针包含供体荧光部分和相应的受体部分。
12.权利要求10 - 11中任一项的试剂盒,其进一步包含三磷酸核苷、核酸聚合酶和对于所述核酸聚合酶的功能所必须的缓冲液。
13.权利要求10 - 11中任一项的试剂盒,其进一步包括一个或多个另外的寡核苷酸引物组和一种或多种另外的寡核苷酸探针,其中
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS5杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:2的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:6的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针由SEQ ID NO:10的寡核苷酸序列所示;或/和
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS3杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:3的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:7的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针由SEQ ID NO:11的寡核苷酸序列所示。
14.用于非诊断目的的检测样品中的寨卡病毒的方法,所述方法包括:
执行扩增步骤,其包括如果所述样品中存在核酸,则使所述样品与一组或多组引物接触以产生扩增产物;
执行杂交步骤,其包括使所述扩增产物与一种或多种可检测探针接触;和
检测所述扩增产物的存在或不存在,其中所述扩增产物的存在指示所述样品中寨卡病毒的存在,并且其中所述扩增产物的不存在指示所述样品中寨卡病毒的不存在;
其中一组寡核苷酸引物与寨卡病毒核酸的包膜(E)区域特异性杂交以在扩增步骤中产生扩增产物,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQID NO:1的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:5的寡核苷酸序列所示;和
其中所述可检测寡核苷酸探针与所述扩增产物特异性杂交且由SEQ ID NO:9的寡核苷酸序列所示。
15.权利要求14的方法,其中:
所述杂交步骤包括使所述扩增产物与可检测探针接触,所述可检测探针用供体荧光部分和相应的受体部分进行标记;和
所述检测步骤包括检测在所述探针的供体荧光部分和受体部分之间荧光共振能量转移(FRET)的存在或不存在,其中所述荧光的存在或不存在指示所述样品中寨卡病毒的存在或不存在。
16.权利要求14或15的方法,其中所述扩增步骤采用具有5'至3'核酸酶活性的聚合酶。
17.权利要求15的方法,其中所述供体荧光部分和所述相应的受体部分在所述探针上彼此相隔8-20个核苷酸。
18.权利要求15 的方法,其中所述受体部分是猝灭剂。
19.权利要求14、15、17和18中任一项的方法,其中所述样品是生物样品。
20.权利要求14、15、17和18中任一项的方法,其进一步包括平行检测来自一种或多种其他病毒的核酸的方法。
21.权利要求20的方法,其中所述一种或多种其他病毒选自登革病毒、基孔肯雅病毒和西尼罗病毒。
22.权利要求14、15、17、18和21中任一项的方法,其进一步包括在如果在样品中存在寨卡病毒的核酸则产生一种或多种另外的扩增产物的一个或多个另外的寡核苷酸引物组和一种或多种另外的可检测寡核苷酸探针的存在下执行扩增步骤和杂交步骤,其中所述一种或多种另外的扩增产物的存在指示所述样品中寨卡病毒的存在,并且其中所述一种或多种另外的扩增产物的不存在指示所述样品中寨卡病毒的不存在,且其中
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS5杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:2的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:6的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针与所述扩增产物特异性杂交且由SEQ ID NO:10的寡核苷酸序列所示;或/和
一个另外的寡核苷酸引物组与寨卡病毒核酸的非结构区域NS3杂交,且包含第一寡核苷酸引物和第二寡核苷酸引物,所述第一寡核苷酸引物由SEQ ID NO:3的寡核苷酸序列所示,所述第二寡核苷酸引物由SEQ ID NO:7的寡核苷酸序列所示;和一种另外的可检测寡核苷酸探针由SEQ ID NO:11的寡核苷酸序列所示。
CN201780016233.2A 2016-03-11 2017-03-10 用于检测寨卡病毒的组合物和方法 Active CN108779500B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662306803P 2016-03-11 2016-03-11
US62/306803 2016-03-11
US201662327688P 2016-04-26 2016-04-26
US62/327688 2016-04-26
PCT/EP2017/055650 WO2017153566A1 (en) 2016-03-11 2017-03-10 Compositions and methods for detection of zika virus

Publications (2)

Publication Number Publication Date
CN108779500A CN108779500A (zh) 2018-11-09
CN108779500B true CN108779500B (zh) 2022-12-13

Family

ID=58266622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780016233.2A Active CN108779500B (zh) 2016-03-11 2017-03-10 用于检测寨卡病毒的组合物和方法

Country Status (6)

Country Link
US (2) US10655190B2 (zh)
EP (1) EP3426805B1 (zh)
JP (1) JP6962927B2 (zh)
CN (1) CN108779500B (zh)
CA (1) CA3017265C (zh)
WO (1) WO2017153566A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531647A (zh) * 2018-03-30 2018-09-14 暨南大学 一种寨卡病毒一步法荧光rt-PCR检测方法及试剂盒
SG10201905641YA (en) * 2019-06-19 2021-01-28 Delta Electronics Int’L Singapore Pte Ltd Primer pair, kit and method for detecting zika virus
TWI754967B (zh) * 2019-06-19 2022-02-11 新加坡商台達電子國際(新加坡)私人有限公司 屈公病毒及茲卡病毒的多重檢測套組及方法與茲卡病毒的檢測套組及方法
CN112611742B (zh) * 2021-01-11 2022-12-06 佛山市第一人民医院(中山大学附属佛山医院) 一种利用光点击生物正交反应的寨卡病毒可视化标记策略
CN115029479B (zh) * 2021-11-16 2023-06-16 江汉大学 一种寨卡病毒的mnp标记位点、引物组合物、试剂盒及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2722399A1 (en) * 2012-10-18 2014-04-23 Roche Diagniostics GmbH Method for preventing high molecular weight products during amplification
CN104321443A (zh) * 2012-04-18 2015-01-28 霍夫曼-拉罗奇有限公司 Hev测定
CN104540967A (zh) * 2012-08-17 2015-04-22 霍夫曼-拉罗奇有限公司 用于检测单纯疱疹病毒1和2的组合物和方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0135587B2 (en) 1983-02-22 2002-12-18 Syngene, Inc. Defined sequence single strand oligonucleotides incorporating reporter groups, process for the chemical synthesis thereof, and nucleosides useful in such synthesis
US4683202A (en) 1985-03-28 1987-07-28 Cetus Corporation Process for amplifying nucleic acid sequences
US4683195A (en) 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US4965188A (en) 1986-08-22 1990-10-23 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences using a thermostable enzyme
US4996143A (en) 1985-12-23 1991-02-26 Syngene, Inc. Fluorescent stokes shift probes for polynucleotide hybridization
US4800159A (en) 1986-02-07 1989-01-24 Cetus Corporation Process for amplifying, detecting, and/or cloning nucleic acid sequences
US5703055A (en) 1989-03-21 1997-12-30 Wisconsin Alumni Research Foundation Generation of antibodies through lipid mediated DNA delivery
US5683896A (en) 1989-06-01 1997-11-04 Life Technologies, Inc. Process for controlling contamination of nucleic acid amplification reactions
US5035996A (en) 1989-06-01 1991-07-30 Life Technologies, Inc. Process for controlling contamination of nucleic acid amplification reactions
US5210015A (en) 1990-08-06 1993-05-11 Hoffman-La Roche Inc. Homogeneous assay system using the nuclease activity of a nucleic acid polymerase
US5994056A (en) 1991-05-02 1999-11-30 Roche Molecular Systems, Inc. Homogeneous methods for nucleic acid amplification and detection
ATE272068T1 (de) 1991-11-07 2004-08-15 Nanotronics Inc Hybridisierung von mit chromophoren und fluorophoren konjugierten polynukleotiden zur erzeugung eines donor-donor energietransfersystems
DE69727932T2 (de) 1996-06-04 2005-03-10 University Of Utah Research Foundation, Salt Lake City Vorrichtung und verfahren zur durchführung und überwachung von polymerase kettenreaktionen
EP1179600B1 (en) 1996-06-04 2005-05-11 University Of Utah Research Foundation Monitoring hybridization during PCR
DK0866071T3 (da) 1997-03-20 2005-01-17 Hoffmann La Roche Modificerede primere
US7465561B2 (en) * 2005-06-30 2008-12-16 Roche Molecular Systems, Inc. Probes and methods for hepatitis C virus typing using single probe analysis
ES2371088T3 (es) 2005-10-05 2011-12-27 F. Hoffmann-La Roche Ag Transferencia de energía no fluorescente.
PL1844164T3 (pl) * 2005-11-15 2010-12-31 Genoid Kft Sposób wykrywania patogenów z zastosowaniem sond typu "latarni molekularnych"
WO2014197607A1 (en) 2013-06-05 2014-12-11 The Regents Of The University Of California Detection of tick-borne diseases
KR101692436B1 (ko) 2016-05-13 2017-01-03 대한민국 지카바이러스 진단을 위한 프라이머 세트, 이를 포함하는 지카바이러스 진단용 키트, 및 이를 이용한 지카바이러스 진단방법
CN106244726A (zh) 2016-08-19 2016-12-21 中检国研(北京)科技有限公司 一种寨卡病毒环介导等温扩增检测试剂盒及使用方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104321443A (zh) * 2012-04-18 2015-01-28 霍夫曼-拉罗奇有限公司 Hev测定
CN104540967A (zh) * 2012-08-17 2015-04-22 霍夫曼-拉罗奇有限公司 用于检测单纯疱疹病毒1和2的组合物和方法
EP2722399A1 (en) * 2012-10-18 2014-04-23 Roche Diagniostics GmbH Method for preventing high molecular weight products during amplification

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Alyssa T Pyke等.Imported zika virus infection from the cook islands into australia, 2014.《PLoS Curr》.2014, *
D Tappe等.First case of laboratory-confirmed Zika virus infection imported into Europe, November 2013.《Euro Surveill》.2014,第19卷(第4期), *
First case of laboratory-confirmed Zika virus infection imported into Europe, November 2013;D Tappe等;《Euro Surveill》;20140130;第19卷(第4期);第1页右栏最后1段至第2页左栏第1段 *
Imported zika virus infection from the cook islands into australia, 2014;Alyssa T Pyke等;《PLoS Curr》;20140602;第2页第4段 *
Oumar Faye等.Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes.《Virol J》.2013,第10卷 *
Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes;Oumar Faye等;《Virol J》;20131022;第10卷;第5页表3 *

Also Published As

Publication number Publication date
CN108779500A (zh) 2018-11-09
US11155886B2 (en) 2021-10-26
US20200232051A1 (en) 2020-07-23
CA3017265A1 (en) 2017-09-14
CA3017265C (en) 2022-08-16
WO2017153566A1 (en) 2017-09-14
EP3426805A1 (en) 2019-01-16
JP2019519192A (ja) 2019-07-11
US10655190B2 (en) 2020-05-19
JP6962927B2 (ja) 2021-11-05
US20170260596A1 (en) 2017-09-14
EP3426805B1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
CN108779500B (zh) 用于检测寨卡病毒的组合物和方法
CN110651051B (zh) 用于检测巴贝虫的组合物和方法
JP2022546443A (ja) cccDNAから転写されたHBV RNAを含む、B型肝炎ウイルスRNAの増幅および検出のための組成物および方法
JP6117775B2 (ja) スタフィロコッカス・アウレウスの検出のための組成物及び方法
CN113166802A (zh) 用于检测耳道假丝酵母菌的组合物和方法
CN109983138B (zh) 用于检测bk病毒的组合物和方法
JP2024510465A (ja) スパイクタンパク質の変異を有する重症急性呼吸器症候群コロナウイルス2(sars-cov-2)バリアントを検出するための組成物および方法
JP2023552546A (ja) マラリアを検出するための組成物および方法
CN109154023B (zh) 用于检测阴道毛滴虫的组合物和方法
JP7478734B2 (ja) カンジダ・アウリス(candida auris)の検出のための組成物および方法
JP2024517835A (ja) 二重標的アッセイによりデルタ型肝炎ウイルスを検出するための組成物及び方法
JP6999645B2 (ja) 核酸の増幅及び検出/定量の効率を改良するためのヘルパーオリゴヌクレオチド
US11028451B2 (en) Compositions and methods for detection of Mycobacterium tuberculosis
CN117441029A (zh) 用于检测具有刺突蛋白突变的严重急性呼吸综合征冠状病毒2(sars-cov-2)变体的组合物和方法
JP2024505686A (ja) ヒトパラインフルエンザウイルス1-4(hpiv1-4)の検出のための組成物及び方法
WO2023079032A1 (en) Compositions and methods for detection of malaria
WO2024042042A1 (en) Compositions and methods for detecting monkeypox virus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant