CN1087561C - 利用色同步信号的调节电路 - Google Patents

利用色同步信号的调节电路 Download PDF

Info

Publication number
CN1087561C
CN1087561C CN94104821A CN94104821A CN1087561C CN 1087561 C CN1087561 C CN 1087561C CN 94104821 A CN94104821 A CN 94104821A CN 94104821 A CN94104821 A CN 94104821A CN 1087561 C CN1087561 C CN 1087561C
Authority
CN
China
Prior art keywords
signal
unit
mentioned
equalization
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN94104821A
Other languages
English (en)
Other versions
CN1101479A (zh
Inventor
本多文明
细矢信和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of CN1101479A publication Critical patent/CN1101479A/zh
Application granted granted Critical
Publication of CN1087561C publication Critical patent/CN1087561C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N11/00Colour television systems
    • H04N11/06Transmission systems characterised by the manner in which the individual colour picture signal components are combined
    • H04N11/12Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only
    • H04N11/14Transmission systems characterised by the manner in which the individual colour picture signal components are combined using simultaneous signals only in which one signal, modulated in phase and amplitude, conveys colour information and a second signal conveys brightness information, e.g. NTSC-system
    • H04N11/146Decoding means therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/68Circuits for processing colour signals for controlling the amplitude of colour signals, e.g. automatic chroma control circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/64Circuits for processing colour signals
    • H04N9/70Circuits for processing colour signals for colour killing

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)

Abstract

本发明的电路含有一乘法器,对应于有无被输入到乘法器的色同步信号由LPP输出电压信号。根据电压信号,通过峰值保持电路和采样保持电路得到矩形波信号。该信号和经1H延时电路所得的矩形波信号在加法器和二分电路中作平均化。根据得到的平均化矩形波信号在时间常数较小的LPF中生成电压信号,在比较器中将电压信号与基极电压相比较后输出信号。这一信号被用作消色电路的消色信号、ACC电路的增益调节信号和APC电路的相位调节信号。

Description

利用色同步信号的调节电路
本发明是关于应用色同步信号的调节电路。更具体地说,本发明是一种被应用于消色电路、ACC电路和APC电路以及包含有这些电路的色再生电路和TV接收机等等中的利用色同步信号的调节电路。
参看图20,在现有的消色电路1中,色同步信号与副载波被输入到乘法器2,并将其与是否存在有色同步信号相对应的输出送到LPF3,由LPF3每次输出图21(A)中所示那样的1H的电压信号V1。虽然电压信号V1在时间上具有一定的宽度,但在图中为了简化,图21(A)只将它们作线状表示。在图6(A)及图14(A)中也如此。该电压信号V1被加给峰值保持电路4,由此电路输出图21(B)中所示那样的峰值保持信号V2,由LPF5输出图21(C)所示那样的电压信号V3,再由比较器6输出图21(D)所示那样的消色信号。即就是,接收彩色广播时输出“高电平”抑制信号而不进行彩色抑制(消色)处理,而在接收黑白广播时输出“低电平”抑制信号进行彩色抑制(消色)处理。
在这种现有的消色电路1中,如将其中的LPF5的时间常数设置得很小,则在如图21(A)所示那样在X期间里电压信号V1受噪声强烈的影响时,电压信号V3也要很强地受到噪声的影响,尽管为彩色广播,也会产生电压信号V3小于基准电压Vre5的期间a(图21(c))。因此,由于噪声的影响,就会如图21(D)所示,虽不是黑白播送也会输出“低电平”的抑止信号,从而出现进行消色处理的误动作。
另一方面,如将LPF5的时间常数设置得很大,由于峰值保持信号V2变得更为平坦,电压信号V3没有小到低于基准电压Vre5的电平,例如说正接收中的播送由彩色播送急剧地切换到黑白播送、或者进行相反切换的情况,达不到切换抑制信号的时间,因而存在有不能迅速响应播送转换的问题。
鉴于这种原因,本发明的主要目的就是提供一种误动少的应用色同步信号的调节电路。
本发明的另一目的是提供一种误动作少,并且能适应快速的播送转换的消色电路。
本发明的再一目的是提供一种能恰当地调整增益的ACC电路。
本发明的又一目的是提供一种能恰当地调整相位的APC电路。
本发明的另一目的是提供一种新型的色再生电路。
本发明的再一目的是提供一种新型的TV接收机。
根据本发明的应用色同步信号的调节电路设置有下列部件:输出基于色同步信号的第一电压信号的第一信号输出单元;对第一电压信号作平均化处理的平均化单元;以及根据由平均化单元输出的平均化输出取得调节信号的信号检出单元。
第一电压信号输出单元,将基于色同步信号的第一电压信号输出到平均化单元。第一电压信号在平均化单元中作简单平均或加重平均处理以取得平均化输出,在信号检出单元中根据平均化输出以取得调节信号。
在用作消色电路的情况下,按照是否存在色同步信号所得的第一电压信号在平均化单元中进行平均化处理,由信号检出单元的判断单元输出抑制信号。在用作ACC电路的情况下,根据色同步信号的振幅所得的第一电压信号在平均化单元作平均化处理,由信号检出手段输出增益调节信号。在用作APC电路的情况下,根据色同步信号的相位所得的第一电压信号在平均化单元作平均化处理,由信号检出单元输出相位调节信号。
而采用这些消色电路、ACC电路和APC电路即可组成色再生电路、TV接收机等。
利用本发明,因为对第一电压信号进行了平均化处理,就不太受噪声的影响,因而能得到有效抗噪声的调节电路。例如在作为消色电路时,抗噪音强且误动作少,而且能快速响应播送转换。另外,即使存在有噪声,作为ACC电路也能适当地调节增益,而作为APC电路也可适当地调节相位。
而且,采用这些电路所组成的色再生电路和TV接收机的性能也能得到改善。
本发明的上述目的、特点、前景和优点由对照附图对下面的实施例所作的详细说明将会更加清楚。
下面对附图作简短说明:
图1为表示本发明一实施例消色电路的示例方框图;
图2为用于图1实施例中的乘法器示例电路图;
图3为说明图2乘法器的操作的波形图;
图4为峰值保持电路的示例电路图;
图5为二分电路的示例电路图;
图6为说明图1实施例的操作的波形图;
图7为说明本发明另一实施例消色电路的方框图;
图8为图7实施例中所采用的作加重平均处理的电路的示例电路图;
图9为1H延时电路的示例方框图;
图10为说明1H延时电路的操作的波形图;
图11为本发明另一实施例ACC电路的示例方框图;
图12为图11实施例的全波整流电路的示例电路图;
图13为说明全波整流电路和LPF的操作的波形图;
图14为说明图11的ACC电路中混入有噪声时的操作的波形图;
图15为说明现有的ACC电路中混入有噪声时的操作的波形图;
图16为本发明另一实施例APC电路的示例方框图;
图17为图16实施例的90°移相器的示例电路图;
图18为本发明另一实施例TV接收机的示例方框图;
图19为说明图18实施例的色度分离变压器的操作的波形图;
图20为说明现有技术的方框图;和
图21为说明现有技术的操作的波形图。
参看图1,本实施例消色电路10包含有一被输入以色同步信号和副载波fsc的乘法器12。在接收彩色播送时,色同步信号被加到乘法器12上,而在接收黑白播送时则没有色同步信号加给乘法器12。色同步信号与副载波fsc可以同相或者反相地被加到乘法器12的两个输入端,乘法器12的输出在二输入为反相的情况下输出(+)信号,而在同相的情况下则输出(-)信号(见图3)。在此实施例中,接收彩色播送时被输入到乘法器12的色同步信号和副载波为反相时即被锁住。亦即,接收彩色播送时,乘法器12的输出为(+)输出。
乘法器12和LPF22按照例如图2中所示那样的电路组成,如图3中所示那样操作。乘法器12在脉冲串选通期间因晶体管Q1被加以脉冲串选通脉冲(BGD)而被激活,在脉冲串选通期间,图2中所示的输入端14和16被输入以图3(A)中所示的副载波fsc,而在输入端18和20输入以图3(B)所示的色同步信号。
如图3中①所示,在二信号同相时,副载波fsc的正周期内晶体管Q2和Q6导通,而在负周期内晶体管Q4和Q7导通。因此,输出端A上的电压如图3(C)中所示作每半周的负方向脉动,输出端B上的电压则如图3(D)所示成为零电平。从而使流过晶体管Q5的电流I1(亦即I4)如图3(E)所示作正向脉动,而流过晶体管Q9的电流I2则如图3(F)所示成为零。因此,由乘法器12流入LPF22的电流I3(I2-I4)就如图3(G)所示作负方向脉动。这一电流I3依靠例如含有电阻R和电容C的LPF22进行平滑(积分)处理,从而LPF22即如图3(H)所示,在二信号同相对输出负电压信号V1
图3中②所示,在二信号反相的情况下,副载波fsc正周期时晶体管Q5和Q7导通,而在副载波的负周期时晶体管Q3和Q6导通。因此,输出端A的电压如图3(C)所示为零电平,输出端B的电压则如图3(D)所示作每半周期的负方向脉动。从而使流过晶体管Q3的电流I1(亦即I4)如图3(E)所示成为零,而流过晶体管Q9的电流I2则如图3(F)所示作正向脉动。因而由乘法器流入LPF22的电流I3即如图3(G)所示作正向脉动。此电流I3经由LPF22进行平滑(积分)处理,从而使LPF22如图3(H)所示在二信号反相时输出正电压信号V1
如图3中③所示,在副载波fsc比色同步信号滞后90°相位的情况下,在副载波fsc的前半周期的前半段时晶体管Q2和Q6导通,后半段时晶体管Q5和Q7导通。而在副载波fsc的后半周期的前半段时晶体管Q4和Q7导通,后半段时Q3和Q6导通。因此输出端A的电压如图3(C)所示只有在各个半周期的前半段时成为负向电压,而输出端B的电压则如图3(D)所示仅在各个半周期的后半段出现负向电压。从而使流过晶体管Q3的电流I1(亦即I4)如图3(E)所示仅在各个半周期的前半段正向流通,而流过晶体管Q9的电流I2则如图3(F)所示只在各半周期的后半段作正向流通。由此,自乘法器12流入LPF22的电流I3即如图3(G)中所示基本上成为正弦波。从而,LPF22如图3(H)所示在副载波滞后色同步信号90°相位时输出大致上为V5(V)的电压信号V1
在图3中④的情况下,输入端14和16如图3(A)所示输入副载波信号,但因为输入端18和20输入的是图3(B)中所示的零电压信号、亦即无色同步信号输入,所以分别如图3(C)和(D)所示那样,输出端A和B的电压均为零,图3(E)、(F)和(G)中所示的各电流I1(I4)、I2和I3亦均成为零。因而LPF22即如图3(H)所示输出V5(V)的电压信号V1
这里,图3中②所示的二信号反相的情况相当于接收彩色播送时的情况,图3中④所示的情况则相当于接收黑白播送的情况,因此,LPF22在接收彩色播送时即输出正电压信号V1,而在接收黑白播送时输出零电压信号V1。这样就使得接收彩色播送与接收黑白播送时,由LPF22输出的电压信号V1不相同。
接着,电压信号V1被送到峰值保持电路24。从峰值保持电路24的结构如为图4中所示。
图4中所示的峰值保持电路24包含有由晶体管Q11和Q12所组成的差分级26。晶体管Q11和Q12各自的发射极相连接,并通过流有电流2I的恒流源28接地。晶体管Q11的基极由输入端30输入电压信号V1,晶体管Q12的基极经串连连接有二极管32和流有电流I的恒流源34后再接地。晶体管Q17的集电极与晶体管Q13的集电极相连,晶体管Q13的基极与晶体管Q14的基极相连,晶体管Q13的集电极与基极相连。就是说,晶体管Q13和Q14组成一电流镜象电路36。晶体管Q14的集电极与晶体管Q12的基极之间接有二极管38,而晶体管Q14的集电极与晶体管Q15的基极相接,晶体管Q15的发射极经过串联连接的电阻R1和R2接到晶体管Q16的发射极,晶体管Q16的集电极接地。晶体管Q16的基极连接到二极管32的负极,电阻R1和R2的连接点上连接有一端接地的电容C1,此电容C1的另一端的电位由输出端40作为峰值保持信号V2输出。晶体管Q15的发射极、Q12的集电极、Q14的发射极和Q15的集电极分别连接到电源电压Vcc。
在这样组成的峰值保持电路24中,当由输入端30输入电压信号V1,即会经由晶体管13、14和15,以及电阻R1取出差分级26的输出,促使充电电流i1流通,对电容C1进行充电。而在输入端30没有输入电压信号V1时,电容C1就放电,放电电流i2流通。如果充电时间常τ1=R1·C1很小,而放电时间常数τε=R2·C1大于τ1很多的话,就由输出端40输出电容C1的电位差作为峰值保持信号V2,成为工作中的峰值保持电路。
由峰值保持电路24输出的峰值保持信号V2被送至采样保持电路42,采样保持电路42在每输入1H的脉冲串选通脉冲的(例如)下降沿时刻对该峰值保持信号V2进行采样保持,并将此值保持1H的时间而形成矩形波信号Va,此矩形波信号Va被送至1H延时电路44和加法器46。矩形波信号Va经1H延时电路44作1H延时后成为矩形波信号Vb,再送到加法器46。加法器46将矩形波信号Va和Vb相加得到矩形波信号(Va+Vb),然后送给二分电路48。二分电路48例如如图5所示那样包含有电阻R3和R4,此电阻R3和R4将由输入端50所取得的矩形波信号(Va+Vb)进行分压,得到二分矩形波信号Vc。这里R3=R4。矩形波信号Vc由下式(1)表示:
Vc=(1/2)·(Va+Vb)          (1)
为此,取相邻1H间的矩形波信号Va和Vb的平均值而得到矩形波信号Vc,并送至LPF52。将LPF52的时间常数设置得较小。由LPF52将矩形波信号Vc加以平滑化所得的电压信号V3被送至比较器54的(+)输入端,与被加在比较器4(-)输入端的基极电压Vref相比较,根据比较结果输出“高电平”或“低电平”的抑制信号。
这样,就以乘法器12是否输入有色同步信号来判断新接收的播送信号(彩色还是黑白),在乘法器12被加有色同步信号的接收彩色播送信号时,由于V3>Vref,由比较器54输出“高电平”的抑制信号,因而不进行消色处理。另一方面,在乘法器12没有被加以色同步信号的接收黑白播送信号时,V3>Vref,由比较器54输出“低电平”抑制信号,进行消色操作。亦就是说,为此而要控制带通放大电路(图18的144)的操作。
现参照图6对这样构成的消色电路10的操作进行说明。图6中所示的是接收彩色播送时混入有噪声的情况。为了便于与现有技术进行比较,使图6(A)中所示的电压信号V1与图21(A)所示的现有技术电压信号V1相同。
首先,当乘法器12输入色同步信号和副载波fsc时,根据乘法器12的输出,由LPF22输出图6(A)中所示的电压信号V1
这样,即由峰值保持电路24输出图6(B)中所示的峰值保持信号V2。然后,采样保持电路42在每输入1H的脉冲串通脉冲的(例如)下降沿瞬间对峰值保持信号V2作采样保持,将延时的采样保持信号V2保持1H时间,生成图6(C)中所示的矩形波信号Va。矩形波信号Va经1H延时电路44作1H延时并生成矩形波信号Vb,矩形波信号Va与Vb在加法器46中相加后,在二分电路48中生成图6(E)所示的矩形波信号Vc。此矩形波信号Vc由LPF52加以平滑化得到图6(F)所示电压信号V3,送至比较器54。
由于矩形波信号Vc是由对矩形波信号Va和Vb进行平均化处理所得,因噪声而引起的矩形波号Va的急剧变化也被吸收,所以电压信号V3即不会怎么受噪声的影响。虽然在比较器54中电压信号V3与基极电压Vref进行比较,但由图6(F)可看到,因为正常时V3>Vref,所以在正常状态下是输出“高电平”的抑制信号,而不作消色处理。亦即,虽然在现有技术中,因存在有噪声影响而在很大的X期间使比较器54输出“低电平”的抑制信号,产生误操作的消色操作,而采用本实施例的消色电路,就像图6(F)中所示那样,即使存在噪声影响大的期间X(图6(A)中所示),由于V3>Vref,比较器54继续输出“高电平”的抑制信号,因而就不会产生误操作。
而且由于LPF52的时间常数可以比较小,接收信号时即使播送由彩色播送向黑白播送或者相反地作急剧转换的情况下,也能迅速地切换由消色电路10所发出的抑制信号,因而能迅速地响应信号接收过程中的播送转换。
利用本实施例,因为将经过作采样保持的峰值保持信号V2作平均化处理,即使用作平滑措施的LPF52的时间常数较小,LPF52输出的电压信号V3也不会怎么受噪声的影响,从而得到噪声强而误动作少的消色电路10。这时因LPF52的时间常数可以比较小,因而能迅速响应播送转换。
上述实施例中,虽然只是说明接收信号时的播送为彩色播送而错误检测为黑白播送的情况,但同样能适应用于相反地将黑白播送误检测为彩色播送的情况也是不言而喻的。
现在参看图7,另一实施例消色电路10采取对由采样保持电路42所得的矩形波信号作加重平均,再送至LPF52的作法,采用1H延时电路44,(1-K)倍电路56、加法电路58和K倍电路60来替代图1中所示消色电路10的1H延时电路44、加法器46和二分电路48。
由(1-K)倍电路56、加法电路58和K倍电路60所组成的电路,例如如图8中所示那样构成。
图8所示电路包含有由晶体管Q21和Q22组成的差分级62和由晶体管Q23和Q24组成的差分级64。晶体管Q22和Q23的基极相连,其连接点被加以直流电压66。采样保持电路lec输出的矩形波信号Va被送到连接到晶体管Q21的基极的输入端68,连接到晶体管24的基极的输入端70被加以1H延时电路44输出的矩形波信号Vb。晶体管Q21和Q22各自的发射极被通过电阻R6相连接,晶体管Q21、Q22、Q23和Q24分别经由恒流源72、74、76和78接地。晶体管Q22和Q23的集电极相连接,得出经过加重平均化的矩形波信号Vc。而晶体管Q21的集电极、Q24的集电极与电压Vcc相连,并且Q22和Q23的集电极分别通过电阻R7连接到电压Vcc。
在上述这样组成的电路中,如果取R7/R5=1-K,R7/R6=K,矩形波信号Vc即以式(2)表示。
Vc=(R7/R5)Va+(R7/R6)Vb
  =(1-K)Va+KVb                                (2)
由式(2)可看到,利用图8中所示的电路即可得到经过加权平均化的矩形波信号Vc。
由此,依靠加重平均化并且对多个矩形波信号作平均化处理,就能进一步减轻噪声的影响,并能组成误动作少且能迅速判断接收信号的播送的消色电路10。
而且,上述各实施例中所采用的1H延时电路44,虽可以用CCD元件来构成,但较理想的是按图9中所示那样来组成。图9中所示的1H延时电路包括有二个采样保持电路80,82以及由此二采样保持电路80和82中择一的多路器84。此多路器84被加以分频器86对脉冲串选通信号加以分频所得的矩形波状的控制脉冲CNT3,以控制多路器84的转换换作。而在采样保持电路80和82上则被分别相互每隔一行地被加以与脉冲串选通脉冲同步的控制脉冲CNT1和CNT2。
现对照图10说明1H延时电路44的操作。
由输入端88输入给采样保持电路80和82各自的矩形波信号e1。给采样保持电路80和82分别加入图10(F)和(G)中所示的控制脉冲CNT1和CNT2;响应这些控制脉冲CNT1和CNT2,采样保持电路80和82分别输出图10(B)和(C)所示的矩形波信号e2和e3。而后,多路器84输入图10(H)所示的控制脉冲CNT3,根据这一控制脉冲CNT3,使多路器84作开关转换,每行分别选择矩形波信号e3和e2,由输出端90输出图10(D)所示的矩形波形号e4
将图10(A)和(D)各自所示的矩形波信号e1和e4加以比较就可看出,图10(D)所示矩形波信号e4之图10(A)所示矩形波信号e1延时1H。
下面说明图11中本发明另一实施例的ACC电路100。ACC电路100为对应于带通放大电路(图18的144)中所包含的AGC放大器102的输出的色同步信号的振幅,来调整AGC放大器102中的增益。其中,AGC放大器102的控制极性应使得在增益调节信号V9提高时增益也要增大。并且将含有载波色信号和色同步信号的彩色信号传递给AGC放大器102。
ACC电路100含有对色同步信号作全波整流的全波整流电路104。
此全波整流电路104例如可如图12所示那样构成,它包含有由晶体管Q31和Q32组成的差分级106。晶体管Q31和Q32各自的发射极通过电阻R13和R14相连,再经过恒流源108接地。晶体管Q31的基极被加以由输入端110进入的色同步信号,晶体管Q32的基极则被加以直流电源V6。晶体管Q31和Q32各自的集电极被连接有电阻R11和R12,再接到偏置电压Vcc。而晶体管Q31和Q32的集电极输出被连接到晶体管Q33和Q34的基极。晶体管Q33和Q34各自的集电极被接以直流电压Vcc、连接在一起的晶体管Q33和Q34各自的发射极输出作为整流电压信号V4送到例如由电阻R和电容C所组成的LPF23。从而得到电压信号V5。而晶体管Q35和Q34各自的发射极还通过恒流源112接地。
全波整流电路104在色同步信号期间如图13中所示那样动作。为由输入端110图13(A)所示的色同步信号送至晶体管Q31时,对应于其与直流电压V6的电位差的输出即由输出端C和B如图3(B)和(C)所示地输出。亦即,输出端C在色同步信号为正的期间输出正电压,而输出端D则在色同步信号的负的期间输出正电压。然后,由输出端C的输出经过晶体管Q34输出至LPF23,由输出端D的输出通过晶体管Q33输出至LPF23。结果就是,将图13(D)所示的整流电压信号V4被输入到LPF23。整流电压信号V4按照色同步信号的电平或振幅变化。然后,整流电压信号V4由LPF23加以平滑(积分),并将与图13(E)所示的色同步信号电平相对应的电压信号V5输出给采样保持电路42。
采样保持电路42与消色电路10的情况一样,在每1H输入的脉冲串选通脉冲的例如下降沿时刻,对图14(A)中所示的电压信号V5作采样保持,将所得值保持1H时间,生成图14(B)中所示的矩形波信号V6。此矩形波信号V6被送至1H延时电路44和加法器46。矩形波信号V6在1H延时电路44中经延时1H成为矩形波信号V7,送至加法器46。加法器46将矩形波信号V6和V7相加得到矩形波信号(V6+V7),再送至二分电路48。此二分电路例如按图5中所示构成,取得经过二分频的矩形波信号V6。矩形波信号V6被送至比较器54的(一)输入端,与加在比较器54的(+)输入端的基极电压Vref(决定ACC电平)相比较,根据比较结果输出“高电平”或者“低电平”的信号。亦即,如果矩形波信号V6大于基极信号Vref,比较器54即输出“低电平”信号,使得由LPF114输出的增益调节电压信号Ve变小,AGC放大器102中的增益就减小。另一方面,如果矩形波信号V8低于基极信号Vref,比较器54即输出“高电平”信号,由LPF114输出的增益调节信号V9增大,AGC放大器102中的增益也就升高。
在如此组成的ACC电路100中,借助将由矩形波信号V6和V7作平均化处理所得的矩形波信号V6送至比较器54,就使得由LPF114输出的增益调节信号V9成为图14(E)中所示那样。由图14(E)可看出,即使存在有噪声(见图14(A)),增益调节信号V9亦不会由本来应该有的AGC放大器102的控制电压电平产生太大的变化。另一方面,原先的ACC电路是由图11所示的ACC电路100中除掉1H延时电路44,加法器46和二分电路48构成的。在此原有的ACC电路中,由于如图15(A)所示,采样保持电路46所产生的矩形波信号V6被直接送至比较器54的(一)输入,所以就像图15(B)中所示,由LPF114输出的增益调节信号V9,受噪声的影响会很大。
因此,将图14(E)为图15(B)相比较就可看到,在图11所示的ACC电路100中,即使有很大的噪声时,电压信号V9的摇摆亦比原有的小,即受噪声的影响小,亦即,采用ACC电路100,即使在电场强度很弱或者对色同步信号判断噪声的恶劣接收信号条件下,也能稳定地调节AGC放大器102中的增益,从而能防止误动作。
下面图16示出了本发明另一实施例的APC电路120。APC电路120为一用于对例如VXO(压控晶体振荡器)等的振荡电路122所输出的振荡信号频率的相位进行调节的电路。APC电路120含有一90°移相器124。90°移相器124将振荡电路122送出的振荡信号作90°延时后送给乘法器12。 90°移相器124例如为图17所示的结构。
图17所示的90°移相器124中,输入端126a通过电阻R21连接到作差分连接的晶体管Q41和Q42的晶体管Q42的基极。输入端126b与负极接地的恒压源128的正极相连,并通过电阻22连接到作差分连接的晶体管Q43和Q44的晶体管Q44的基极,还通过电阻R23连接到晶体管Q41的基极。晶体管Q41和Q42的发射极共同通过晶体管Q46电阻R24的串联电路接地。晶体管Q41的集电极直接接电源电压Vcc,晶体管Q42的集电极则通过晶体管46和电阻R25的串联电路连接到电源电压Vcc。晶体管Q42和Q46的集电极的连接点连接到晶体管Q45的基极和晶体管Q43的集电极。
晶体管Q46的基极连接到晶体管Q47的基极和集电极,晶体管Q47的发射极通过电阻R26接到电源电压Vcc。这些晶体管Q46和Q47构成一电流镜象电路。晶体管Q47的集电极通过晶体管Q50和电阻R27的串联电路接地。晶体管Q45的集电极直接接电源电压Vcc,其发射极通过晶体管Q49和电阻R28的串联电路接地。
晶体管Q42的基极通过电容C3和电阻R29组成的串联电路与晶体管Q43的基极相连。电容C3和电阻R29的连接点被接到输出端126c。输出端126d接地。晶体管Q43的基极与晶体管Q44的基极之间插有电容C4,它们的发射极共同通过晶体管Q51和电阻R30的串联电路接地。晶体管Q46、Q49、Q50和Q51的基极一齐连接到负极接地的恒流130的正极。亦就是说,此90°移相器124是由设置在图17中以一点划线包围着的交流负反馈放大电路132和以二点划线包围着的用以向负反馈放大电路反馈直流电压的直流负反馈电路134组成的。其中,交流负反馈放大器电路132由晶体管Q41、Q42、Q45、Q46、Q47、Q48、Q49和Q50、以及构成高通滤波器的电阻R21和电容C3等组成的,而直流负反馈电路134则是由构成低通滤波器的电阻R29、R22和电容C4以及晶体管Q45和Q44等组成的。
晶体管Q46、Q49、Q50和Q51还组成一恒流源,并将电阻R24、R27和R30的阻值设置得相等。因此,晶体管Q48、Q50和Q51的集电极电流相等,在各自的电流值为2Io时,由于晶体管Q46和Q47组成镜象电路,如电阻R25和R26的阻值相等,晶体管Q46的集电极电流即成为2Io。
下面说明90°移相器124的交流操作。晶体管Q41的基极交流接地。晶体管Q46成为取得差分连接的晶体管Q41和Q42的电流输出的负载,因而交流负载值很大,所以开环增加A就非常大。晶体管Q42的集电极电流改变,晶体管Q45的基极电流就变化,从而由晶体管Q45的射极跟随器得到电压输出。由晶体管Q45的射极跟随器输出的输出电压e。被提供给电容C3和电阻21的高通滤波器。因此,晶体管Q42的基极电位由式(3)给出。 ei = 1 jw C 3 · R 21 + 1 + e 0 jw C 3 · R 21 jw C 3 · R 21 + 1 - - - ( 3 )
而且由于晶体管Q41的基极电位为交流接地的,输入电压ei和输出电压e0的关系即如式(4)所示: e 0 = { 0 - [ ei 1 jw C 3 · R 21 + 1 + e 0 jw C 3 · R 21 jw C 3 · R 21 + 1 ] } A - - - ( 4 )
这里,如果考虑到开环增益A非常大,式(4)就被变形为下列式(5),可以被理解为相移量达90°。
-ei=e0{(1/A)+jwC3·R21}
-ei=e0jwC3·R21    (5)
下面说明直流的操作。负反馈放大电路132中虽有交流负反馈,但由于电容C3而不能进行直流负反馈。因此晶体管Q45的发射极电压不稳定,负反馈放大电路132不能就这样工作。不过,只有晶体管45的射极跟随器的输出电压的直流成向;电阻R29和R22以及电容C4的低通滤波器提供,并被送至作差分连接的晶体管Q43的Q44的晶体管Q43的基极。晶体管Q44的基极被加以恒压源128输出的恒定电压,如不计晶体管Q43和Q44的基极电流和电阻R29和R22所带来的电压降后,因二基极电压的差而使晶体管Q51的集电极电流2I0的分流比改变,就可改变晶体管Q43的集电极电流。
晶体管Q41和Q42的基极直流电压保持为恒压源128的电压,所以如果不计晶体管Q41和Q42的基极电流及由电阻R21和R23产生的压降,晶体管Q41和Q42中各自流通的集电极电流就成为将晶体管Q46集电极电流2I0等分的电流I0
而且因为晶体管Q46的集电极电流成为2I0,如果可以不计足够小的晶体管Q45的基极电流的话,晶体管Q43的集电极电流就成为由晶体管Q46集电极电流减去晶体管Q42集电极电流所得的I0。而由于在差分连接的晶体管Q43和Q44中的晶体管Q43的集电极电流成为I0时,因晶体管Q51的集电极电流为2I0,所以晶体和Q43和Q44的基极电压必定相等,晶体管Q45的发射极直流电压被固定为恒压源128的电压,从而使负反馈放大电路132就以这一电压作为工作点而正常地运行。
依靠这种90°移相器124将振荡电路122所产生的振荡信号作90°延时后送至进行相位比较的乘法器12,以与色同步信号作相位比较。乘法器12和LPF22例如按图2中所示构成,由其输出对应于此二输入信号的相位差的电压信号V1。亦即,输入到输入端14和16的由90°移相器124出来的振荡信号较之输入到输入端18和20的色同步信号延时90°的情况如图3中③所示,此二信号相位相同的情况如图3中①所示,而此二信号反相的情况则如图3中②所示。与图1的实施例相同,将采样保持电路42所输出的矩形波信号Va与由1H延时电路44出来的矩形波信号Vb在加法器46中进行相加后,经二分电路48作二分频处理,得到平均化的矩形波信号Vc。此矩形波信号Vc经LPF136作平滑化处理,再作为相位调节信号V10被送给振荡电路122,用来控制振荡电路122所发出的振荡信号的频率相位。
在这样组成的APC120电路中,为使通过90°移相器所送入的振荡信号具有相对向乘法器12输入的色同步信号滞后90°的相位,APC电路120被闭锁。此时,由振荡电路122产生的振荡信号与色同步信号的相位关系成为同相。在APC电路120解锁时乘法器12的二个输入信号的相位关系在APC电路120闭锁时的相位系中心作±90°的变化。就这样由APC电路120输出与色同步信号同步的振荡信号。
采用这种APC电路120,即使在接收信号条件恶劣时亦能对振荡电路122所产生的振荡信号的相位作稳定调整。
另外,图18中还作出了包含有本发明另一实施例的色再生回路的TV接收机140。这里虽然是针对NTSC制式的TV接收机所作的说明,也能适用于PAL制式和SECAM制式等其他任何TV制式也是不言而喻的。
含有这种再生电路的TV接收机140,包括有一色度分离变压器142。此色度分离变压器142是3.58MHZ±0.5MHZ的带通变压器,由其次级输出图19(A)所示的含电视信号中的3-4MHZ带宽的信号,即载波彩色信号和色同步信号。此信号因经过电容C5而失去直流分量,成为图19(B)中所示的波形。包含有这的色同步信号和载波彩色信号的信号在带通放大电路144中被分离为载波彩色信号和色同步信号,色同步信号在脉冲串放大电路146中被放大,并将其传送给消色电路10、ACC电路100和APC电路120。消色电路10按照有无色同步信号来控制带通放大电路144的操作。亦即,因为没有色同步信号的情况为接收黑白播送信号,带通放大电路144停止工作。另一方面,由于存在色同步信号时为接收彩色播送信号,带通放大电路144动作。而ACC电路100按照色同步信号的振幅调节带通放大电路144中的增益。亦即,如果色同步信号的振幅大就减小带通放大电路144的增益,如果色同步信号的振幅小就增大其增益。
载波彩色信号由带通放大电路144被送至色解调电路148,由载波彩色信号中取出原色色差(R-Y、B-Y、G-Y)。此时,必须要有在播送发射方产生载波彩色信号时使用的3.58MHZ的副载波和相位相同的载波。为此在振动电路150输出3.58MHZ的振荡信号,但在APC电路120中要对3.58MHZ的色同步信号与振荡电路150输出的振荡信号进行鉴相。在将振荡电路150产生的振荡信号直接送至色解调电路148的同时,还将其通过移相器152传送到色解调电路148,由此来从该色解调电路148取出各色差信号(R-Y、B-Y、G-Y)。
这里值得注意的是,图1、图11和图16各自所示的电路分别适用于消色电路10、ACC电路100和APC电路120。依靠采用这样的电路,就可由消色电路10、ACC电路100和APC电路120得到噪声很强时的恰当的调节信号。
而且,图7所示的包含(1-K)倍电路56、加法器58、K倍电路60和1H延时电路44的平均化电路也可以用于图11所示的ACC电路100和图16中所示的APC电路120中。作ACC电路100和APC电路120的1H延时电路44也可以采用图9国所示的电路。自然不用说,这些ACC电路100、APC电路120以及图7所示的消色电路10均可以被用于图18中所示的TV接收机140中。
本发明虽然按附图所示作了详细说明,但这仅仅是用作为图解和示例,不能认为就限于这些,而应由所列的权利要求中的所述来限定本发明的精神和范围。

Claims (22)

1.一种应用色同步信号的电视电路,其特征在于,包括有:
第一电压信号输出单元,用以通过检出色同步信号而输出第一电压信号;
采样保持电路,用以接收第一电压信号和输出采样保持信号;
平均化单元,在操作上和所述采样保持电路连接,用以对所述采样保持信号和所述采样保持信号的延时信号作平均化处理,所述平均化单元包括一个延时单元,用以将所述这采样保持信号作1H延时并输出所述延时信号;和
信号检测单元,在操作上和所述平均化单元连结,用以根据来自所述平均化单元的平均化输出而输出一个信号。
2.按权利要求1的电路,其特征在于,所述平均化单元含有将所述采样保持信号和来自所述延时单元的所述延时信号作简单平均处理的简单平均化单元。
3.按权利要求1的电路,其中所述平均化单元包含有将所述采样保持信号和来自所述延时单元的所述延时信号作加权平均处理的加权平均化单元。
4.一种消色电路,其特征在于,包括有:
第一电压信号输出单元,用以通过检出色同步信号而输出第一电压信号;
采样保持电路,用以接收第一电压信号和输出采样保持信号;
平均化单元,在操作上和上述采样保持电路连结,用以对上述采样保持信号和所述采样保持信号的延时信号作平均化处理,所述平均化单元包括一个延时单元,用以将所述采样保持信号作1H延时并输出所述延时信号;和
信号检测单元,在操作上和所述平均化单元连结,用以根据来自所述平均化单元的平均化输出而输出一个消色信号。
5.按权利要求4中的消色电路,其特征在于,所述平均化单元,包含有将所述采样保持信号和来自所述延时单元的所述延时信号作简单平均处理的简单平均化单元。
6.按权利要求4中的消色电路,其特征在于,所述平均化单元包含有将所述采样保持信号和来自所述延时单元的所述延时信号作加权平均的加权平均化单元。
7.按权利要求4的消色电路,其特征在于,所述第一电压信号输出单元,包含有根据所述色同步信号的有无输出第二电压信号的第二电压信号输出单元,和用以保持所述第二电压信号的峰值以输出峰值保持信号到所述采样保持单元的峰值保持单元。
8.按权利要求7的消色电路,其特征在于,所述这第二电压信号输出单元,包含有对所述色同步信号和副载波信号作位相比较的位相比较器,和将所述位相比较器的输出加以平滑化再送至所述峰值保持单元的第一平滑单元。
9.按权利要求4,5,6,7和8中任一项的消色电路,其特征在于,所述信号检测单元包含有对所述平均化输出作平滑处理的第二平滑单元,和基于所述第二平滑单元的输出而输出消色信号的判断单元。
10.一种ACC电路,其特征在于,包括有:
第一电压信号输出单元,用以通过检出色同步信号而输出第一电压信号;
采样保持电路,用以接收第一电压信号和输出采样保持信号;
平均化单元,在操作上和上述采样保持电路连结,用以对上述采样保持信号和上述采样保持信号的延时信号作平均化处理,上述平均化单元包括一个延时单元,用以将上述采样保持信号作1H延时并输出所述延时信号;和
信号检测单元,在操作上和上述平均化单元连结,用以根据来自上述平均化单元的平均化输出而输出一个增益调节信号。
11.按权利要求10的ACC电路,其特征在于,所述平均化单元包含有,将所述第一电压信号延时1H的延时单元,和对所述采样保持信号和来自所述延时单元的延时信号作简单平均的简单平均化单元。
12.按权利要求10的ACC电路,其特征在于,所述平均化单元包含,将所述第一电压信号延时1H的延时单元,和对所述采样保持信号和来自所述延时的单元的延时信号作加权平均的加权平均化单元。
13.按权利要求10的ACC电路,其特征在于,所述第一电压信号输出单元包含有将所述色同步信号作全波整流后送入所述采样保持电路的全波整流单元。
14.按照权利要求10的ACC电路,其特征在于,所述信号检测单元包含有根据所述平均化单元的平均化输出设定表示增益的信号的设定单元,和将所述设定单元所输出的信号加以平滑化处理和输出增益调节信号的第三平滑单元。
15.一种APC电路,其特征在于,包括有:
第一电压信号输出单元,用以由检出色同步信号而输出第一电压信号;
采样保持电路,用以接收第一电压信号和输出采样保持信号;
平均化单元,在操作上和所述采样保持电路连结,用以对上述采样保持信号和所述采样保持信号的延时信号作平均化处理,所述平均化单元包括一个延时单元,用以将所述采样保持信号作1H延时并输出所述延时信号;和
信号检测单元,在操作上和所述平均化单元连结,用以根据来自所述平均化单元的平均化输出而输出一个位相调整信号。
16.按照权利要求15的APC电路,其特征在于,所述平均化单元包含有将所述采样保持信号及所述延时单元输出的所述延时信号作简单平均处理的简单平均化单元。
17.按照权利要求15的APC电路,其特征在于,所述平均化单元包含有将所述采样保持信号与来自所述延时单元的延时信号作加权平均处理的加权平均化单元。
18.按照权利要求15的APC电路,其特征在于,所述第一电压信号输出单元包含有将所述色同步信号作全波整流后送入所述采样保持电路的全波整流单元。
19.按权利要求15的APC电路,其特征在于,所述信号检测单元包含有将所述平均化单元的平均化输出加以平滑处理和输出相位调节信号的第四平滑单元。
20.一种色再生电路,其特征在于,设置有:
将彩色信号和色同步信号加以分离的第一放大电路;
按照有无所述色同步信号来控制所述第一放大电路的操作的消色电路;
对应于所述色同步信号的振幅来调节所述第一放大电路中的增益的ACC电路;
由所述彩色信号输出原色色差信号的色解调电路;
发送与副载波相位相同的振荡信号的振荡电路;和
对所述色同步信号和所述振荡信号进行鉴相的APC电路,其中:
上述消色电路包括有:第一电压信号输出单元,用以由检出色同步信号而输出第一电压信号;第一采样保持电路,用以接收第一电压信号和输出第一采样保持信号;第一平均化单元,在操作上和上述第一采样保持电路连结,用以对上述第一采样保持信号和上述第一采样保持信号的第一延时信号作平均化处理,上述第一平均化单元包括一个第一延时单元,用以将上述第一采样保持信号作1H延时并输出所述第一延时信号;和第一信号检测单元,在操作上和上述第一平均化单元连结,用以根据来自上述第一平均化单元的平均化输出而输出一个消色信号;
上述ACC电路包括有:第二电压信号输出单元,用以通过检出色同步信号而输出第二电压信号;第二采样保持电路,用以接收第二电压信号和输出第二采样保持信号;第二平均化单元,在操作上和上述第二采样保持电路连结,用以对上述第二采样保持信号和上述第二采样保持信号的第二延时信号作平均化处理,上述平均化单元包括一个第二延时单元,用以将上述第二采样保持信号作1H延时并输出所述第二延时信号;和第二信号检测单元,在操作上和上述第二平均化单元连结,用以根据来自上述第二平均化单元的平均化输出而输出一个增益调节信号;和
上述APC电路包括有:第三电压信号输出单元,用以通过检出色同步信号而输出第三电压信号;第三采样保持电路,用以接收第三电压信号和输出第三采样保持信号;第三平均化单元,在操作上和上述第三采样保持电路连结,用以对上述第三采样保持信号和上述第三采样保持信号的第三延时信号作平均化处理,上述第三平均化单元包括一个第三延时单元,用以将上述第三采样保持信号作1H延时并输出所述第三延时信号;和第三信号检测单元,在操作上和上述第三平均化单元连结,用以根据来自上述第三平均化单元的平均化输出而输出一个位相调整信号。
21.一种电视接收机,其特征在于,设置有:
将彩色信号和色同步信号分离的第一放大电路;
根据有无所述色同步信号来控制所述第一放大电路的操作的消色电路;
对应所述色同步信号的振幅调整所述第一放大电路中的增益的ACC电路;
由所述彩色信号输出原色色差的色解调电路;
发送与副载波同相位的振荡信号的振荡电路;和
对所述色同步信号和所述振荡信号进行鉴相的APC电路,其中:
上述消色电路包括有:第一电压信号输出单元,用以通过检出色同步信号而输出第一电压信号;第一采样保持电路,用以接收第一电压信号和输出第一采样保持信号;第一平均化单元,在操作上和上述第一采样保持电路连结,用以对上述第一采样保持信号和上述第一采样保持信号的第一延时信号作平均化处理,上述第一平均化单元包括一个第一延时单元,用以将上述第一采样保持信号作1H延时并输出所述第一延时信号;和第一信号检测单元,在操作上和上述第一平均化单元连结,用以根据来自上述第一平均化单元的平均化输出而输出一个消色信号;
上述ACC电路包括有:第二电压信号输出单元,用以通过检出色同步信号而输出第二电压信号;第二采样保持电路,用以接收第二电压信号和输出第二采样保持信号;第二平均化单元,在操作上和上述第二采样保持电路连结,用以对上述第二采样保持信号和上述第二采样保持信号的第二延时信号作平均化处理,上述第二平均化单元包括一个第二延时单元,用以将上述第二采样保持信号作1H延时并输出所述第二延时信号;和第二信号检测单元,在操作上和上述第二平均化单元连结,用以根据来自上述第二平均化单元的平均化输出而输出一个增益调节信号;和
上述APC电路包括有:第三电压信号输出单元,用以由检出色同步信号而输出第三电压信号;第三采样保持电路,用以接收第三电压信号和输出第三采样保持信号;第三平均化单元,在操作上和上述第三采样保持电路连结,用以对上述第三采样保持信号和上述第三采样保持信号的第三延时信号作平均化处理,上述第三平均化单元包括一个第三延时单元,用以将上述第三采样保持信号作1H延时并输出所述第三延时信号;和第三信号检测单元,在操作上和上述第三平均化单元连结,用以根据来自上述第三平均化单元的平均化输出而输出一个位相调整信号。
22.一种电视信号接收系统,其特征在于,设置有:
将彩色信号和色同步信号分离的第一放大电路;
根据有无所述色同步信号来控制所述第一放大电路的操作的消色电路;
对应所述色同步信号的振幅调整所述第一放大电路中的增益的ACC电路;
由所述彩色信号输出原色色差信号的色解调电路;
发送与副载波同相位的振荡信号的振荡电路;和
对所述色同步信号和所述振荡信号进行鉴相的APC电路,其中:
上述消色电路包括有:第一电压信号输出单元,用以通过检出色同步信号而输出第一电压信号;第一采样保持电路,用以接收第一电压信号和输出第一采样保持信号;第一平均化单元,在操作上和上述第一采样保持电路连结,用以对上述第一采样保持信号和上述第一采样保持信号的第一延时信号作平均化处理,上述第一平均化单元包括一个第一延时单元,用以将上述第一采样保持信号作1H延时并输出所述第一延时信号;和第一信号检测单元,在操作上和上述第一平均化单元连结,用以根据来自上述第一平均化单元的平均化输出而输出一个消色信号;
上述ACC电路包括有:第二电压信号输出单元,用以通过检出色同步信号而输出第二电压信号;第二采样保持电路,用以接收第二电压信号和输出第二采样保持信号;第二平均化单元,在操作上和上述第二采样保持电路连结,用以对上述第二采样保持信号和上述第二采样保持信号的第二延时信号作平均化处理,上述第二平均化单元包括一个第二延时单元,用以将上述第二采样保持信号作1H延时并输出所述第二延时信号;和第二信号检测单元,在操作上和上述第二平均化单元连结,用以根据来自上述第二平均化单元的平均化输出而输出一个增益调节信号;和
上述APC电路包括有:第三电压信号输出单元,用以由检出色同步信号而输出第三电压信号;第三采样保持电路,用以接收第三电压信号和输出第三采样保持信号;第三平均化单元,在操作上和上述第三采样保持电路连结,用以对上述第三采样保持信号和上述第三采样保持信号的第三延时信号作平均化处理,上述第三平均化单元包括一个第三延时单元,用以将上述第三采样保持信号作1H延时并输出所述第三延时信号;和第三信号检测单元,在操作上和上述第三平均化单元连结,用以根据来自上述第三平均化单元的平均化输出而输出一个位相调整信号。
CN94104821A 1993-03-17 1994-03-17 利用色同步信号的调节电路 Expired - Fee Related CN1087561C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP5667093 1993-03-17
JP56670/93 1993-03-17
JP8161/94 1994-01-28
JP6008161A JPH06327028A (ja) 1993-03-17 1994-01-28 カラーバースト信号を利用する調整回路

Publications (2)

Publication Number Publication Date
CN1101479A CN1101479A (zh) 1995-04-12
CN1087561C true CN1087561C (zh) 2002-07-10

Family

ID=26342626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94104821A Expired - Fee Related CN1087561C (zh) 1993-03-17 1994-03-17 利用色同步信号的调节电路

Country Status (6)

Country Link
US (1) US5661530A (zh)
EP (1) EP0616474B1 (zh)
JP (1) JPH06327028A (zh)
KR (1) KR100354627B1 (zh)
CN (1) CN1087561C (zh)
DE (1) DE69424588T2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201837B1 (ko) * 1996-11-28 1999-06-15 전주범 직류 제어 차동 베이스 전압 발생 회로
JP2000333197A (ja) * 1999-05-21 2000-11-30 Matsushita Electric Ind Co Ltd セカムacc回路
DE10201064B4 (de) * 2002-01-14 2004-07-22 Siemens Ag System zur Bereitstellung von Informationen in Form eines Informationsmodells
US6857185B2 (en) * 2002-05-24 2005-02-22 Iap Research, Inc. Method for electromagnetically joining tubes to sheets in a tubular heat transfer system
CN1305318C (zh) * 2003-09-17 2007-03-14 松下电器产业株式会社 彩色解调电路
JP2008294629A (ja) * 2007-05-23 2008-12-04 Funai Electric Co Ltd テレビ受信機
CN101808249B (zh) * 2009-02-12 2012-06-27 晨星软件研发(深圳)有限公司 影像处理电路及影像处理方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797703A (en) * 1987-12-21 1989-01-10 Eastman Kodak Company Mechanism for locating a flexible photoconductor relative to a plurality of development stations

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128014A (en) * 1976-04-20 1977-10-27 Sony Corp Color signal transmission circuit
DE3123038A1 (de) * 1981-06-10 1982-12-30 Siemens AG, 1000 Berlin und 8000 München Verfahren und anordnung zur regelung des digitalen chrominanzssignales eines farbfernsehempfaengers
US4554596A (en) * 1981-11-04 1985-11-19 Hitachi, Ltd. Color video signal recording apparatus
JPS6030294A (ja) * 1983-07-28 1985-02-15 Sony Corp デジタルカラ−キラ−回路
DE3539416A1 (de) * 1985-11-07 1987-05-14 Bosch Gmbh Robert Anordnung zur decodierung eines digitalen pal-farbfernseh-signals
JPS63139492A (ja) * 1986-12-02 1988-06-11 Mitsubishi Electric Corp Acc回路
US4797730A (en) * 1987-04-10 1989-01-10 Ampex Corporation Method and apparatus for controlling the sampling phase of an analog color television signal
JPS6429082A (en) * 1987-07-23 1989-01-31 Sharp Kk Color saturation control circuit
KR100201244B1 (ko) * 1989-10-03 1999-06-15 다카노 야스아키 크로마 신호의 지터 제거 회로 및 이를 이용한 텔레비젼 수상기
JP2574515B2 (ja) * 1990-05-16 1997-01-22 松下電器産業株式会社 Yc分離回路
JP2529455B2 (ja) * 1990-09-18 1996-08-28 松下電器産業株式会社 磁気記録再生装置
JP3038077B2 (ja) * 1992-03-11 2000-05-08 日本ビクター株式会社 デジタルacc回路及びデジタルクロマキラー回路
JPH05336534A (ja) * 1992-06-04 1993-12-17 Sony Corp レベル検出回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797703A (en) * 1987-12-21 1989-01-10 Eastman Kodak Company Mechanism for locating a flexible photoconductor relative to a plurality of development stations

Also Published As

Publication number Publication date
EP0616474B1 (en) 2000-05-24
EP0616474A2 (en) 1994-09-21
DE69424588T2 (de) 2001-01-18
DE69424588D1 (de) 2000-06-29
EP0616474A3 (en) 1995-04-19
KR940023270A (ko) 1994-10-22
KR100354627B1 (ko) 2002-12-26
US5661530A (en) 1997-08-26
CN1101479A (zh) 1995-04-12
JPH06327028A (ja) 1994-11-25

Similar Documents

Publication Publication Date Title
CN1058589C (zh) 一种双超外差接收机及其检测电路
CN1087561C (zh) 利用色同步信号的调节电路
CN1230836A (zh) 频移键控接收机的自动频率控制
US7782397B2 (en) Alternative video sync director
CN85107257A (zh) 彩色信号处理装置
CN1292202A (zh) 亮度信号和色度信号分离电路
CN1096915A (zh) 从电视第一检波器经各输入滤波器馈送信号的并联非调谐视频中频放大器
US5627555A (en) Line flicker suppression by adaptive de-interlacing
CN1049081C (zh) 限幅电路
CN87107031A (zh) 亮度信号形成电路
CN1189041C (zh) 数字彩色信号再现电路
US3959689A (en) Twisting distortion correcting circuitry
CN1045705C (zh) 产生电子束电流指示信号的设备
EP0272900B1 (en) Sawtooth generator
US4511849A (en) FM Pulse counting demodulator with multiplier for input and delayed input signals
JPS6250032B2 (zh)
JP2758126B2 (ja) テレビジョン受像機
CN1153443A (zh) 电视广播制式的自动模式检测器
CN1192314A (zh) 自动图象质量控制装置
CN1076936C (zh) 电视接收机及电视信号判别电路
US4590513A (en) Odd harmonic signal generator
NL8401047A (nl) Ruisreductieketen voor kleurenvideosignaal.
JPS62227291A (ja) 自動色飽和度制御装置
CN1086365A (zh) 色同步脉冲检波系统
CN1164126C (zh) 避免彩色通道中过大信号电平的电视接收机、其电路及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20020710