CN108751975A - 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法 - Google Patents

一种聚变堆固态包层中氚增殖陶瓷小球的制备方法 Download PDF

Info

Publication number
CN108751975A
CN108751975A CN201810584374.0A CN201810584374A CN108751975A CN 108751975 A CN108751975 A CN 108751975A CN 201810584374 A CN201810584374 A CN 201810584374A CN 108751975 A CN108751975 A CN 108751975A
Authority
CN
China
Prior art keywords
ceramic
bead
preparation
tritium
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810584374.0A
Other languages
English (en)
Inventor
芦伟
汪卫华
储德林
杨锦宏
浦文婧
邓海飞
祁俊力
马书炳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201810584374.0A priority Critical patent/CN108751975A/zh
Publication of CN108751975A publication Critical patent/CN108751975A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • G21B1/15Particle injectors for producing thermonuclear fusion reactions, e.g. pellet injectors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)

Abstract

本发明公开了一种聚变堆固态包层中氚增殖陶瓷小球的制备方法,采用聚合物辅助沉降法,以微米级锂氧化物氚增殖陶瓷粉体为原料,配制陶瓷浆料时添加可聚合的有机单体。浆料液滴在热的粘性液体中下落时,其重力与所受液体浮力、粘滞阻力所平衡,从而获得高球形度的浆料液滴。同时,在下落过程中球形液滴发生聚合使固化为小球胚体。在烧结过程中小球胚体陶瓷化,得到高球形度的陶瓷小球。通过优化工艺流程和烧结制度,可以进一步提高小球的机械强度、球形度和孔隙率。本发明的小球胚体制备条件温和,沉降过程中同时完成成球和固化两个过程,简化了小球胚体的净化和转移工艺,得到的产物球形度高、粒径均匀、孔隙率和机械强度高,便于工业化生产。

Description

一种聚变堆固态包层中氚增殖陶瓷小球的制备方法
技术领域
本发明属于先进核反应堆燃料研究领域,具体涉及一种聚变堆固态包层中氚增殖陶瓷小球的制备方法。
背景技术
随着世界能源需求的不断增长,地球上化石能源的消耗速率不断加快,大约仅能供人类使用200~300年,由此还带来了日益突出的环境问题。核聚变能在能源储量和清洁环保方面具有明显的优势,是人类彻底解决能源问题最有希望的途径之一。聚变反应的原料为氢的同位素氘和氚,氘可以从海水中提取,而氚具有放射性,地球上含量微乎其微,需要由Li和高能中子通过核反应制取。根据目前海水存量和地壳中Li的蕴藏量,核聚变能可供人类使用数十亿年,同时产生的放射性废物极少,可极大减轻地球环境的负担。
目前,聚变堆固态氚增殖包层中采用的增殖材料主要有钛酸锂(Li2TiO3)、正硅酸锂(Li4SiO4)、铝酸锂(LiAlO2)和锆酸锂(Li8ZrO6)等,其中主选的是Li4SiO4和Li2TiO3。例如欧盟、中国预期进入ITER开展实验的氦冷固态包层模块(TBM)采用Li4SiO4作为增殖剂,日本预期进入ITER开展实验的水冷固态包层模块选择Li2TiO3作为增殖剂。铍酸锂(Li2Be2O3)是一种新型的氚增殖剂,因其同时包含产氚Li和中子增殖元素Be,从而具有更高的产氚效率,使包层有限空间内增殖剂利用效率得到极大地提高。
但是,基于目前固态氚增殖包层的设计和氚提取的工艺,增殖材料不能直接以粉体或块体填充于包层中,需要首先制成具有一定形状的固体氚增殖剂。球形增殖剂由于具有较大的比表面积,小球间有更多的通道,有利于氚的扩散和释放,且装卸方便及容易回收等特点,因此在目前聚变堆设计中,几乎均选用球形增殖剂。作为氚增殖体的陶瓷小球要求粒径均匀,具有较高的抗压载荷(>15N)、比表面积(>0.1m2·g-1)和球形度(>0.7),适宜的粒径(0.25~2mm)和孔隙率(15~20%),以及较小的晶粒尺寸(<5μm)和杂质含量(<0.3%)。由于增殖体小球较高的性能要求,从发表文献来看目前其制作工艺和流程还不完备,也正处于探索阶段。国内外学者采用了多种工艺进行了制备,通常分为固相法、直接湿法和间接湿法。
固相法主要包括模具压制法、挤压-滚圆法、粒化滚动法、熔化法、“行星式”滚动法等。中国原子能科学研究院反应堆工程研究设计所尹邦跃等人采用优化的挤压-滚圆、烧结工艺可制备了Li4SiO4陶瓷小球产品,并测试分析小球的密度、直径、球形度、晶粒尺寸、压碎载荷等性能。固相法简单易行,投资较少,制备出球形度较好,但小球强度较低,直径一般大于1mm,且尺寸分布不均匀。
直接湿法是将钛源、锂源及螯合剂在液相中经过溶胶、凝胶和煅烧等过程制得陶瓷小球,无需先制备锂基陶瓷粉体。Wu等以Ti(C4H9O)4、LiNO3为钛源和锂源,通过直接湿法制备了球形度为1.08、密度为68%TD的Li2TiO3小球。Laan等利用Li2CO3和TiO2的明胶粉末与羟基乙基纤维素混合,在一定条件下于甲苯浴中形成凝胶球团,再经煅烧处理得Li2TiO3小球。该法具有直接混合原料、成球均匀、操作温度低等优点,但生成物组成和性能受pH值、反应物浓度比、温度、有机物杂质等多种因素影响,制备的小球裂纹较多,机械强度较低。
间接湿法均是先制得陶瓷粉体,然后在粉体中加入粘结剂如聚乙烯醇制备浆料,混合均匀后滴入液氮或极冷的有机溶剂(甲醛、丙酮等)冷冻收缩成型,利用液滴表面张力成球,再经干燥、烧结得到陶瓷小球。这样制备的陶瓷小球,球形度高,但由于浆料固含量较低,烧结后小球孔隙率过高,机械强度较低;另外,现有的间接湿法同时使用了深冷技术和高温烧结技术,对小球胚体转移技术工艺要求较高,难以大规模生产。
发明内容
本发明公开了一种高球形度陶瓷小球的制备方法——聚合物辅助沉降法,是一种改进的间接湿法。其原料为陶瓷粉体,配制陶瓷浆料时添加有机单体,在粘性液体中采用沉降法得到球形的陶瓷浆料液滴,在沉降过程中液滴中的有机单体聚合使液滴转化为小球胚体,通过烧结得到高球形度的陶瓷小球。通过优化工艺流程和小球胚体烧结制度,可以进一步提高小球的机械强度、球形度和孔隙率。
本发明采用的技术方案为:一种聚变堆固态包层中氚增殖陶瓷小球的制备方法,该制备方法采用原料为微米级陶瓷粉体,配制陶瓷浆料时添加有机单体,在粘性液体中采用沉降法得到球形的陶瓷浆料液滴,在沉降过程中液滴中的有机单体聚合使液滴转化为小球胚体,通过烧结得到高球形度的陶瓷小球。
其中,采用的原料为粒径在100μm以下的锂氧化物氚增殖陶瓷粉体,包括Li2TiO3、Li4SiO4、Li2Be2O3、LiAlO2和Li8ZrO6。
其中,配制陶瓷浆料时添加可发生聚合反应的有机单体,包括丙烯酰胺、N,N’-亚甲基双丙烯酰胺、丙烯酸酯、聚乙烯醇、柠檬酸、乙二醇、丙三醇一种或多种,添加量为陶瓷粉体质量的5~30%。
其中,浆料液滴在下落过程中,其重力与所受液体浮力、粘滞阻力所平衡,从而获得高球形度,使用的沉降液具有较高的密度和粘度,热稳定性高,不与水互溶,包括液体石蜡、硅油、1,1,2,2-四氯乙烷一种或多种。
其中,所述的沉降液,其温度控制在50~110℃,与浆料中所加的单体聚合温度相一致;沉降液深度为30~120cm,使包含有单体的浆料液滴在沉降过程中充分聚合使液滴转化为小球胚体。
其中,小球胚体烧结制度与使用氚增殖陶瓷粉体有关,烧结温度范围为400~1500℃,烧结时间为2~24h。
其中,陶瓷小球其大小与液滴成直径成比例,根据实验优化溶液配比、滴嘴直径与振动频率参数,使制备出的陶瓷小球平均直径为0.85~1.18mm,球形度为0.95~1.05,压碎强度大于18N。
本发明原理在于:先采用聚合物辅助沉降法将陶瓷浆料制成高球形度的胚体,再通过烧结过程得到陶瓷小球,包含以下步骤:
1、原料准备。以微米级锂氧化物氚增殖陶瓷粉体(包括Li2TiO3、Li4SiO4、Li2Be2O3、LiAlO2和Li8ZrO6)为原料,原料经研磨后过筛,其粒径小于100μm。
2、浆料配制。将陶瓷粉体、去离子水及有机单体一起球磨,配制陶瓷浆料。添加的有机单体可以在水溶液体系发生聚合反应。
3、沉降聚合。浆料液滴在热的粘性液体中下落时,其重力与所受液体浮力、粘滞阻力所平衡,从而获得高球形度的浆料液滴。在下落的过程中浆料中的单体发生聚合使球形液滴固化为小球胚体。使用的沉降液具有较高的密度和粘度,热稳定性高,不与水互溶。沉降液的温度与浆料中所加的单体聚合温度相一致;沉降液具有一定的深度,使包含有单体的浆料液滴在沉降过程中充分聚合使液滴转化为小球胚体。
4、小球烧结。通过烧结过程时小球胚体陶瓷化,去掉其中的有机物和水分,提高抗压强度并保留适当的孔隙率用于释氚。小球胚体烧结制度与使用氚增殖陶瓷粉体有关,可以通过热重-示差扫描量热分析,动态力学分析和热力学分析确定烧结温度和烧结时间。
5、性能检测。取陶瓷小球样品,采用扫瞄电子显微镜(scanning electronmicroscopy,SEM)分析样品表面和破碎后内部的微结构,采用XRD分析样品晶粒成份,采用浸没法测样品密度,采用数字图像分析小球的球形度,采用扫描电镜图像分析和BET法比表面积测定获得小球的孔隙率,采用应力-应变法测试小球抗挤压载荷大小。
本发明与现有技术相比的优点在于:
聚合物辅助沉降法的主要特色在于小球胚体制备条件温和(50~110℃),在沉降过程中同时完成成球和固化两个过程,简化了小球胚体的净化和转移工艺,得到的产物球形度高、粒径均匀,同时具有较高的机械强度;陶瓷小球的孔隙率及孔径大小可以通过调整聚合物的含量以及陶瓷粉体的粒径进行控制,便于工业化生产。
附图说明
图1为聚合物辅助沉降法制备高球形度陶瓷小球的装置示意图。
图2为烧结前后陶瓷小球的照片。
图3为不同烧结温度小球的载荷(Load)-应变(Stain)曲线。
具体实施方式
下面结合附图以及具体实施方式进一步说明本发明。
1、原料准备。
以微米级锂氧化物氚增殖陶瓷粉体(包括Li2TiO3、Li4SiO4、Li2Be2O3、LiAlO2和Li8ZrO6)为原料,原料经球磨后过200目筛,使得粉体粒径小于100μm。
2、浆料配制。
将陶瓷粉体、去离子水及有机单体混合均匀,1000转/分的速率下球磨2h,配制成陶瓷浆料。添加的可发生聚合反应的有机单体,包括丙烯酰胺、N,N-亚甲基双丙烯酰胺、丙烯酸酯、聚乙烯醇、柠檬酸、乙二醇、丙三醇等一种或多种,添加量为陶瓷粉体质量的5~30%。
3、沉降聚合。
本发明所采用的聚合物辅助沉降法制备高球形度陶瓷小球的装置示意图如图1所示。包括压力控制器1、浆料罐2、振动器3、硅胶管道4、滴嘴5、恒温沉降筒6、温度控制器及循环装置7、控制计算机8。其中压力控制器1、浆料罐2、振动器3、硅胶管道4、滴嘴5组成液滴成形系统,压力控制器1、振动器3、滴嘴5和控制计算机8组成液滴控制系统,恒温沉降筒6、温度控制器及循环装置7组成小球胚体成型系统。
系统的工作过程是:
(1)浆料的驱动由浆料罐的压力控制。球磨后的陶瓷浆料放入浆料罐2内,通过控制计算机8给出信号,由压力控制器1控制浆料罐2的压力,驱动混合溶液沿硅胶管道4流动至振动器3。
(2)最终陶瓷小球的大小与原始液滴的直径成比例。液滴的形状控制是由计算机8给出控制信号,驱动振动器3振动,控制滴嘴5内的液滴按规定的体积流速流出,液滴落入恒温沉降筒6;浆料液滴在热的粘性液体中下落时,其重力与所受液体浮力、粘滞阻力所平衡,从而获得高球形度的浆料液滴。在下落的过程中浆料中的单体发生聚合使球形液滴固化为小球胚体。使用的沉降液具有较高的密度和粘度,热稳定性高,不与水互溶,包括液体石蜡、硅油、1,1,2,2-四氯乙烷等一种或多种。
(3)小球胚体固化成型在恒温沉降筒内完成。计算机8设置温度控制值,由温度控制器及循环装置7控制恒温沉降筒6内的沉降液温度,沉降液的温度控制在50~110℃,与浆料中所加的单体聚合温度相一致;沉降液深度为30~120cm,使包含有单体的浆料液滴在沉降过程中充分聚合使液滴转化为小球胚体。
4、小球烧结。
通过烧结过程时小球胚体陶瓷化,去掉其中的有机物和水分,提高抗压强度并保留适当的孔隙率用于释氚。小球胚体烧结制度与使用氚增殖陶瓷粉体有关,烧结温度范围为400~1500℃,烧结时间为2~24h。根据优化的胚体制备和烧结工艺,制备出的陶瓷小球平均直径为0.85~1.18mm,球形度为0.95~1.05。如图2所示为制备的小球胚体和Li2TiO3小球的照片,两者都呈现较高的球型度:小球胚体由单体聚合成型,为有光泽的白色半透明凝胶球。经过高温烧结,小球胚体中的有机物被氧化除去,陶瓷粉体烧结成为由孔隙的白色陶瓷小球。状图3为不同烧结温度下Li2TiO3小球的载荷-应变曲线,800和1000℃烧结的样品抗压载荷较低,同时具有明显的屈服过程和塑性形变,说明陶瓷粉体尚未完全烧结;1200℃烧结10h后,Li2TiO3小球为脆性形变,压碎强度大于18N,该烧结制度较优。
以上虽然描述了本发明的具体实施方法,但是本领域的技术人员应当理解,这些仅是举例说明,在不背离本发明原理和实现的前提下,可以对这些实施方案做出多种变更或修改,因此,本发明的保护范围由所附权利要求书限定。

Claims (7)

1.一种聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于:该制备方法采用原料为微米级陶瓷粉体,配制陶瓷浆料时添加有机单体,在粘性液体中采用沉降法得到球形的陶瓷浆料液滴,在沉降过程中液滴中的有机单体聚合使液滴转化为小球胚体,通过烧结得到高球形度的陶瓷小球。
2.根据权利要求1所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于:采用的原料为粒径在100μm以下的锂氧化物氚增殖陶瓷粉体,包括Li2TiO3、Li4SiO4、Li2Be2O3、LiAlO2和Li8ZrO6
3.根据权利要求1所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于:配制陶瓷浆料时添加可发生聚合反应的有机单体,包括丙烯酰胺、N,N’-亚甲基双丙烯酰胺、丙烯酸酯、聚乙烯醇、柠檬酸、乙二醇、丙三醇一种或多种,添加量为陶瓷粉体质量的5~30%。
4.根据权利要求1所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于:浆料液滴在下落过程中,其重力与所受液体浮力、粘滞阻力所平衡,从而获得高球形度,使用的沉降液具有较高的密度和粘度,热稳定性高,不与水互溶,包括液体石蜡、硅油、1,1,2,2-四氯乙烷一种或多种。
5.根据权利要求4所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于:所述的沉降液,其温度控制在50~110℃,与浆料中所加的单体聚合温度相一致;沉降液深度为30~120cm,使包含有单体的浆料液滴在沉降过程中充分聚合使液滴转化为小球胚体。
6.根据权利要求1中所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于,小球胚体烧结制度与使用氚增殖陶瓷粉体有关,烧结温度范围为400~1500℃,烧结时间为2~24h。
7.根据权利要求1中所述的聚变堆固态包层中氚增殖陶瓷小球的制备方法,其特征在于,陶瓷小球其大小与液滴成直径成比例,根据实验优化溶液配比、滴嘴直径与振动频率参数,使制备出的陶瓷小球平均直径为0.85~1.18mm,球形度为0.95~1.05,压碎强度大于18N。
CN201810584374.0A 2018-06-08 2018-06-08 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法 Pending CN108751975A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810584374.0A CN108751975A (zh) 2018-06-08 2018-06-08 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810584374.0A CN108751975A (zh) 2018-06-08 2018-06-08 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法

Publications (1)

Publication Number Publication Date
CN108751975A true CN108751975A (zh) 2018-11-06

Family

ID=64000482

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810584374.0A Pending CN108751975A (zh) 2018-06-08 2018-06-08 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法

Country Status (1)

Country Link
CN (1) CN108751975A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018557A (zh) * 2019-12-26 2020-04-17 广州赛隆增材制造有限责任公司 一种氚增殖用正硅酸锂球壳的制备方法
CN112174195A (zh) * 2020-09-28 2021-01-05 中科院过程工程研究所南京绿色制造产业创新研究院 一种碳包覆钛酸锂氚增殖剂及其制备方法与制备装置系统
CN113929488A (zh) * 2021-09-30 2022-01-14 华中科技大学 一种曲面孔道结构的锂陶瓷氚增殖剂及其制备方法
CN113927702A (zh) * 2021-11-30 2022-01-14 中国工程物理研究院核物理与化学研究所 一种锂陶瓷微球的制备装置及方法
CN114292088A (zh) * 2021-12-30 2022-04-08 安徽大学 一种氚-中子复合增殖剂铅酸锂共晶陶瓷球粒及制备方法
CN115414922A (zh) * 2022-08-16 2022-12-02 华中农业大学 一种球形Li4SiO4基CO2吸附剂的制备方法
CN118356884A (zh) * 2024-06-20 2024-07-19 北京科技大学 一种基于原位过烧和离心造粒的锂基氚增殖微球的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228130A (ja) * 1998-02-04 1999-08-24 Nuclear Fuel Ind Ltd リチウムセラミックス粒及びその製造方法
CN1468826A (zh) * 2002-07-17 2004-01-21 杨金龙 制备陶瓷小球的方法和装置
CN101510450A (zh) * 2009-03-31 2009-08-19 北京科技大学 一种制备聚变堆包层中陶瓷氚增殖剂的方法
CN103854706A (zh) * 2014-03-25 2014-06-11 中国人民解放军陆军军官学院 聚变堆包层中子与氚增殖剂铍酸锂小球的制备方法
US20160304355A1 (en) * 2015-04-14 2016-10-20 Korea Basic Science Institute Synthesis method of lithium-titanium oxide using solid-state method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228130A (ja) * 1998-02-04 1999-08-24 Nuclear Fuel Ind Ltd リチウムセラミックス粒及びその製造方法
CN1468826A (zh) * 2002-07-17 2004-01-21 杨金龙 制备陶瓷小球的方法和装置
CN101510450A (zh) * 2009-03-31 2009-08-19 北京科技大学 一种制备聚变堆包层中陶瓷氚增殖剂的方法
CN103854706A (zh) * 2014-03-25 2014-06-11 中国人民解放军陆军军官学院 聚变堆包层中子与氚增殖剂铍酸锂小球的制备方法
US20160304355A1 (en) * 2015-04-14 2016-10-20 Korea Basic Science Institute Synthesis method of lithium-titanium oxide using solid-state method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LU W.等: "fabrication and characteristics of lithium metatitabate tritium breeder via polymer-assissted sedimentation method under different sintering conditions", 《JOURNAL OF NUCLEAR MATERIALS》 *
向茂乔 等: "固态氚增殖剂陶瓷微球制备工艺研究进展", 《现代技术陶瓷》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111018557A (zh) * 2019-12-26 2020-04-17 广州赛隆增材制造有限责任公司 一种氚增殖用正硅酸锂球壳的制备方法
CN111018557B (zh) * 2019-12-26 2022-04-29 广州赛隆增材制造有限责任公司 一种氚增殖用正硅酸锂球壳的制备方法
CN112174195A (zh) * 2020-09-28 2021-01-05 中科院过程工程研究所南京绿色制造产业创新研究院 一种碳包覆钛酸锂氚增殖剂及其制备方法与制备装置系统
CN113929488A (zh) * 2021-09-30 2022-01-14 华中科技大学 一种曲面孔道结构的锂陶瓷氚增殖剂及其制备方法
CN113927702A (zh) * 2021-11-30 2022-01-14 中国工程物理研究院核物理与化学研究所 一种锂陶瓷微球的制备装置及方法
CN114292088A (zh) * 2021-12-30 2022-04-08 安徽大学 一种氚-中子复合增殖剂铅酸锂共晶陶瓷球粒及制备方法
CN114292088B (zh) * 2021-12-30 2022-10-11 安徽大学 一种氚-中子复合增殖剂铅酸锂共晶陶瓷球粒及制备方法
CN115414922A (zh) * 2022-08-16 2022-12-02 华中农业大学 一种球形Li4SiO4基CO2吸附剂的制备方法
CN118356884A (zh) * 2024-06-20 2024-07-19 北京科技大学 一种基于原位过烧和离心造粒的锂基氚增殖微球的制备方法

Similar Documents

Publication Publication Date Title
CN108751975A (zh) 一种聚变堆固态包层中氚增殖陶瓷小球的制备方法
Gao et al. Fabrication and characterization of Li4SiO4 ceramic pebbles by wet method
CN101510450B (zh) 一种制备聚变堆包层中陶瓷氚增殖剂的方法
Yang et al. Fabrication of Li4SiO4 ceramic pebbles with uniform grain size and high mechanical strength by gel-casting
Cologna et al. Sub-micrometre grained UO2 pellets consolidated from sol gel beads using spark plasma sintering (SPS)
Wang et al. A comparative study of small-size ceria–zirconia microspheres fabricated by external and internal gelation
CN102503538A (zh) 连续造孔碳化硅陶瓷材料及其制备方法
Xu et al. Increasing Porosity of Molded Calcium‐Based Sorbents by Glucose Templating for Cyclic CO2 Capture
Tan et al. Efficient fabrication of high strength Li2TiO3 ceramic pebbles via improved rolling ball method assisted by sesbania gum binder
CN111508628B (zh) 弥散分布有二氧化铀芯球的钨或钼基燃料芯块的制备方法
CN105185424B (zh) 一种核反应堆堆芯中子吸收材料钛酸铽芯块及其的制备方法
CN105110377A (zh) 一种固相反应烧结法制备负膨胀材料钨酸锆的方法
CN110416497A (zh) 一种高容量快充型微晶石墨负极材料及其制备方法
CN108070375A (zh) 上转换荧光纳米材料的制备方法
Wang et al. Preparation of ceria-stabilized zirconia microspheres by external gelation: size control
CN110092650B (zh) 轻质高强针状莫来石多孔陶瓷及其制备方法以及过滤器
CN105801108A (zh) 一种三维孔道结构锂基块体氚增值剂材料的制备方法
Hu et al. A novel process for fully automatic mass-production of Li2TiO3 ceramic pebbles with uniform structure and size
US20140183765A1 (en) Ceramic-ceramic composites and process therefor, nuclear fuels formed thereby, and nuclear reactor systems and processes operated therewith
CN105177383A (zh) 一种含铁镁基复合材料及其制备方法和应用
CN105155039A (zh) Ti4O7纳米纤维制备方法
CN112694330A (zh) 一种二氧化铀-石墨烯复合燃料芯块的制备方法
CN108503360B (zh) Lsm块体材料的制备方法
CN103482981A (zh) 一种多孔氮化硅陶瓷材料的制备方法
Chen et al. Low-temperature fabrication of Li2O porous ceramic pebbles by two-stage support decomposition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181106

RJ01 Rejection of invention patent application after publication