CN108700612B - 传感器装置、电子设备以及移动体 - Google Patents

传感器装置、电子设备以及移动体 Download PDF

Info

Publication number
CN108700612B
CN108700612B CN201780014063.4A CN201780014063A CN108700612B CN 108700612 B CN108700612 B CN 108700612B CN 201780014063 A CN201780014063 A CN 201780014063A CN 108700612 B CN108700612 B CN 108700612B
Authority
CN
China
Prior art keywords
movable body
region
electrode
fixed electrode
electrode portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780014063.4A
Other languages
English (en)
Other versions
CN108700612A (zh
Inventor
松浦由幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Publication of CN108700612A publication Critical patent/CN108700612A/zh
Application granted granted Critical
Publication of CN108700612B publication Critical patent/CN108700612B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明可减少露出了基底基板(基体)的绝缘部与传感器部(可动体)之间的静电引力,并抑制传感器部(可动体)的向基底基板的吸附。加速度传感器(100)(传感器装置)具有:基体(10),其具备凹部(第二凹部)、固定电极、以及隔着绝缘部而并排设置的虚拟电极;可动体(20),其以可摆动的方式被支承在基体上,可动体具有与固定电极对置的第一区域、与虚拟电极的一部分对置的第二区域、以及对第一区域和第二区域进行连接的连接部,固定电极设置有被延伸设置至与连接部对置的位置为止的延设电极部,在可动体的俯视观察时,延设电极部的至少一部分与连接部对置,并且,在延设电极部与虚拟电极之间所具有的绝缘部在凹部内与连接部对置。

Description

传感器装置、电子设备以及移动体
技术领域
本发明涉及一种传感器装置、具备该传感器装置的电子设备以及移动体。
背景技术
以往,作为传感器装置的一个示例,已知有如下的静电电容型传感器,所述静电电容型传感器形成经由扭转弹簧等弹性元件而使可动电极被支承在固定部上的结构,并通过根据被作用的外力等而使可动电极与固定电极接近或远离,从而能够通过对这些电极间的静电电容的变化进行检测而对加速度或角速度等的各种物理量进行检测。
作为这种静电电容型传感器,公开了一种具备基底基板(基体)和传感器部(可动体)的加速度传感器(例如,参照专利文献1),其中,所述基底基板由玻璃等构成并设置有第一凹部,所述传感器部被配置于第一凹部的上方,并通过一对支承部而以在第一凹部的深度方向上能够摆动的方式被支承在基底基板上。
在该加速度传感器中,传感器部以一对支承部为界而被划分为第一部分和与第一部分相比质量较大的第二部分,并在第一部分以及第二部分上具有可动电极部。此外,在基底基板中,在第一凹部中的与可动电极部对置的位置处具有固定电极部,并且,在与该固定电极部相比靠传感器部的顶端且与传感器部的顶端侧对置的部分处,具有与第一凹部相比较深的第二凹部。在第二凹部中,在与传感器部的顶端侧对置的位置处设置有同电位电极部。而且,在固定电极部与同电位电极部之间,设置有使基底基板露出的绝缘部。
在先技术文献
专利文献
专利文献1:日本特开2013-40856号公报
发明内容
发明所要解决的课题
然而,在专利文献1所记载的加速度传感器(传感器装置)中,在固定电极部与同电位电极部之间具有使基底基板露出的绝缘部。由玻璃等构成的基底基板(基体)容易带电,从而在被露出的基底基板面的绝缘部中也容易带电。而且,在绝缘部带电的情况下,在传感器部(可动体)与基底基板被露出的绝缘部之间处会产生较大的静电引力,从而有可能妨碍传感器部(可动体)的摆动,或使传感器部(可动体)被吸附在基底基板(基体)上。
用于解决课题的方法
本发明是为了解决上述的课题的至少一部分而完成的发明,且能够作为以下的方式或应用例而实现。
[应用例1]
本应用例所涉及的传感器装置,其特征在于,具备:基体,其具有第一面;可动体,其具有支承部,且所述支承部在所述第一面侧相对于所述基体而被固定,所述可动体以所述支承部为支点而可动,并且以与所述第一面分离且对置的方式而延伸,所述基体具有:凹部,其被设置在所述第一面上;固定电极,其被设置在所述第一面上;虚拟电极,其与所述固定电极并排设置,并且在所述凹部内具有至少一部分,且被设置在所述第一面上;绝缘部,其被设置在所述固定电极与所述虚拟电极之间,所述可动体具有:第一区域,其与所述固定电极对置;第二区域,其与所述虚拟电极的一部分对置;连接部,其对所述第一区域与所述第二区域进行连接,所述固定电极设置有被延伸设置至所述凹部的至少一部分为止的延设电极部,在所述可动体的俯视观察时,所述延设电极部的至少一部分与所述连接部对置,并且,在所述延设电极部与所述虚拟电极之间所具有的所述绝缘部在所述凹部内与所述连接部对置。
根据本应用例,由于位于延设电极部与虚拟电极之间的绝缘部被设置在基体的第一面上所设置的凹部内,且在俯视观察时在凹部内横穿了所对置的连接部,因此能够增大绝缘部与所对置的可动体(连接部)之间的距离(间隔)。由此,能够降低在绝缘部与所对置的可动体(连接部)之间产生的静电引力,从而能够对妨碍可动体的摆动、或可动体被吸附在基体上的情况进行抑制。因此,使可动体的摆动变得适当(准确),从而能够提高传感检测精度。
[应用例2]
在上述应用例所述的传感器装置中,优选为,所述连接部的与所述第一区域和所述第二区域所排列第一方向正交的第二方向的宽度窄于所述第一区域以及所述第二区域的所述第二方向的宽度。
根据本应用例,由于能够通过使连接部的宽度窄于第一区域以及第二区域的宽度而减少可动体与绝缘部所对置的对置面积,因此能够降低在绝缘部与所对置的可动体之间产生的静电引力。
[应用例3]
在上述应用例所述的传感器装置中,优选为,所述连接部被设置有多个。
根据本应用例,能够稳定地实施第一区域以及第二区域的连接,从而能够提高可动体的刚性。由此,能够抑制可动体的变形,从而能够实施更准确的传感检测。
[应用例4]
在上述应用例所述的传感器装置中,优选为,所述连接部分别被设置在所述第二方向上的所述可动体的两端部处。
根据本应用例,能够稳定地实施第二方向上的第一区域以及第二区域的连接,从而能够对可动体的第二方向上的变形进行抑制,进而能够实施更准确的传感检测。
[应用例5]
在上述应用例所述的传感器装置中,优选为,在所述第一区域与所述第二区域之间以及所述连接部与所述第二区域之间设置有槽部,在俯视观察时,所述槽部与所述绝缘部重叠。
根据本应用例,由于能够通过在俯视观察时使槽部与绝缘部重叠而减少绝缘部与可动体相对置的对置面积,因此能够降低在绝缘部与所对置的可动体之间产生的静电引力。
[应用例6]
在上述应用例所述的传感器装置中,优选为,所述槽部由贯穿所述可动体的表背的贯穿孔、或者从所述可动体的与所述基体对置的一侧的面挖掘出有底槽构成。
根据本应用例,由于在设置有贯穿孔的情况下,能够通过贯穿孔而减小绝缘部与可动体相对置的面积,因此能够降低在绝缘部与所对置的可动体之间产生的静电引力。此外,由于在设置有从可动体的与基体对置的一侧的面挖掘出的有底槽的情况下,能够通过有底凹槽而增大绝缘部与可动体之间的距离,因此能够降低在绝缘部与所对置的可动体之间产生的静电引力。
[应用例7]
本应用例所涉及的电子设备,其特征在于,具备上述应用例中的任意一个示例所述的传感器装置。
根据本应用例的电子设备,由于包括上述应用例中的任意一个所涉及的传感器装置,因此能够具有较高的可靠性。
[应用例8]
本应用例所涉及的移动体,其特征在于,具备上述应用例中的任意一个示例所述的传感器装置。
根据本应用例的移动体,由于包括上述应用例中的任意一个所涉及的传感器装置,因此能够具有较高的可靠性。
附图说明
图1A为示意性地表示传感器装置的第一实施方式所涉及的加速度传感器的俯视图。
图1B为表示图1A的Q部的局部放大图。
图1C为可动体的俯视图。
图2为图1A的A-A剖视图。
图3为图1A的B-B剖视图。
图4为示意性地表示传感器装置的第二实施方式所涉及的加速度传感器的俯视图。
图5为图4的C-C剖视图。
图6为图4的D-D剖视图。
图7为表示可动体的改变例的主剖视图。
图8为示意性地表示作为具备传感器装置的电子设备的移动型(或笔记本型)的个人计算机的结构的立体图。
图9为示意性地表示作为具备传感器装置的电子设备的便携式电话机(也包括PHS)的结构的立体图。
图10为示意性地表示作为具备传感器装置的电子设备的数码照相机的结构的立体图。
图11为示意性地表示作为具备传感器装置的移动体的一个示例的汽车的立体图。
具体实施方式
以下,使用附图来对本发明的优选的实施方式进行详细说明。另外,下文所说明的实施方式,并非对权利要求书中所记载的本发明的内容进行不当地限定。此外,在下文中所说明的结构并不一定全部都是本发明的必要构成要件。
(第一实施方式)
首先,在参照附图的同时,对本发明的传感器装置的第一实施方式所涉及的加速度传感器进行说明。图1A为示意性地表示第一实施方式所涉及的加速度传感器的俯视图。图1B为表示可动体的连接部与绝缘部的位置关系的图,且为表示图1A的Q部的局部放大图。图1C为表示可动体的俯视图。图2示意性地表示第一实施方式所涉及的加速度传感器,且为图1A的A-A剖视图。图3示意性地表示第一实施方式所涉及的加速度传感器,且为图1A的B-B剖视图。另外,为了便于说明,在图1A中,以假想线(双点划线)来表示可动体20,并省略了盖体70的图示。此外,在各个附图中,作为根据需要而相互正交的三个轴,而图示了X轴、Y轴以及Z轴。
如图1A、图1B、图1C、图2以及图3所示,传感器装置的第一实施方式所涉及的加速度传感器100包括基体10、可动体20和盖体70。在本方式中,对加速度传感器100为对铅直方向(Z轴方向)上的加速度进行检测的加速度传感器(静电电容型MEMS加速度传感器)的示例进行说明。
基体10的材质例如能够使用玻璃等的绝缘材料。例如,通过将基体10设为硼硅酸玻璃等的绝缘材料、将可动体20设为硅等的半导体材料,从而能够很容易地使两者电绝缘,并且能够简化传感器结构。
基体10具有:第一凹部12、作为凹部的第二凹部15、支柱部16、作为固定电极的第一固定电极部50以及第二固定电极部52、和同电位电极(虚拟电极)62。另外,将第一固定电极部50以及第二固定电极部52与同电位电极(虚拟电极)62所排列的方向设为第一方向(图中X轴方向)。
第一凹部12被设置在基体10的一个面11侧。第一凹部12具有作为底面(对第一凹部12进行规定的基体10的面)的第一面14。在第一凹部12的上方处,隔着间隙而配置有可动体20。在图1所示的示例中,第一凹部12的平面形状(从Z轴方向观察到的形状)为长方形。
作为凹部的第二凹部15为,从第一面14挖掘出的有底的槽。因此,对于距基体10的一个面11的深度而言,第二凹部15与第一凹部12相比被形成得较深。第二凹部15以在俯视观察时横穿了对后述的可动体20的第一区域41和第二区域42进行连接的连接部27的方式而被设置。另外,虽然本方式中的第二凹部15以跨及第一面14的整个宽度(与第一方向正交的第二方向的宽度)的方式被设置,但是只要横穿了连接部27即可,也可以是以被分割为多个的方式而设置的结构。
支柱部16被设置在第一面14上。支柱部16与第一面14相比向上方(+Z轴方向)突出。优选为,支柱部16的高度和第一凹部12的深度例如相等。在支柱部16上,设置有用于赋予可动体20预定的电位的配线(未图示)。在支柱部16的上表面上固定有可动体20的支承部28、29(图1C),由此,以与基体10的第一面14对置的方式而使可动体20被支承。
被设置在第一面14上的作为固定电极的第一固定电极部50以及第二固定电极部52和同电位电极(虚拟电极)62以在第一方向(图中X轴方向)上并排的方式而被设置。第一固定电极部50和同电位电极(虚拟电极)62隔着绝缘部17而并排,并通过绝缘部17而电绝缘。换言之,绝缘部17被配置在第一固定电极部50与同电位电极(虚拟电极)62之间。另外,第一固定电极部50在第二方向(图中Y轴方向)的两端处,设置有向同电位电极(虚拟电极)62侧突出的带状的延设电极部50a。而且,延设电极部50a的顶端部位于第二凹部15内。此外,同电位电极(虚拟电极)62的一部分被设置在第二凹部15内,且被设置在与第一固定电极部50的延设电极部50a的顶端部对置的位置处的对置端部62a也被设置在第二凹部15内。
作为固定电极的第一固定电极部50以与后述的第一可动电极部21(参照图2及图1C)对置的方式而被配置。第一可动电极部21隔着间隙而位于第一固定电极部50的上方。在以支承轴30、32为界而将可动体20划分为后述的第一杠杆片20a以及第二杠杆片20b(参照图1C)的情况下,第一固定电极部50以与第一杠杆片20a对置的方式而被配置在基体10上。另外,如前文所述,第一固定电极部50在第二方向(图中Y轴方向)的两端处设置有向同电位电极(虚拟电极)62侧突出的带状的延设电极部50a。而且,延设电极部50a的顶端部位于第二凹部15内。此外,第一固定电极部50在第二方向(图中Y轴方向)的两端处设置有向第二固定电极部52侧突出的带状的延设电极部51a。
作为固定电极的第二固定电极部52以与后述的第二可动电极部22(参照图2及图1C)对置的方式而被配置。第二可动电极部22隔着间隙而位于第二固定电极部52的上方。在以支承轴30、32为界而将可动体20划分为后述的第一杠杆片20a以及第二杠杆片20b(参照图1C)的情况下,第二固定电极部52以与第二杠杆片20b对置的方式而被配置在基体10上。此外,第二固定电极部52在第二方向(图中Y轴方向)的两端处设置有向第一固定电极部50侧突出的带状的延设电极部52a。
第一固定电极部50的与可动体20相对置的部分的面积和第二固定电极部52的与可动体20相对置的部分的面积大致相等。此外,优选为,第一固定电极部50的平面形状和第二固定电极部52的平面形状例如关于支承轴30、32而相互对称。
另外,虽然未进行图示,但是也可以在盖体70的与第一可动电极部21相对置的位置处设置第一固定电极部50,在盖体70的与第二可动电极部22相对置的位置处设置第二固定电极部52。
同电位电极(虚拟电极)60、62被设置于,设置在基体10上的作为第一凹部12的底面的第一面14上。同电位电极(虚拟电极)60、62是为了抑制作用于可动体20与基体10之间的静电引力(静电力)以及作用于支承轴30、32与基体10之间的静电引力而被设置的。同电位电极(虚拟电极)60被设置在与支承轴30、32对置的位置处。同电位电极(虚拟电极)62被设置在与后述的可动体20的第二区域42对置的位置处。本结构中的同电位电极(虚拟电极)60、62为,与可动体20电连接的电极的、即与可动体20成为相同电位的电极。
同电位电极(虚拟电极)60、62例如经由被设置在支柱部16的表面的配线(未图示)、固定部40以及支承部28、29而与可动体20电连接。另外,也有可以通过接合引线(未图示)等而对可动体20和同电位电极(虚拟电极)60、62进行电连接。在加速度传感器100中,由于同电位电极(虚拟电极)60、62与可动体20电连接,因此能够将同电位电极(虚拟电极)60、62与可动体20设为等电位。由此,能够对作用于可动体20与基体10之间的静电引力(静电力)进行抑制。
第一固定电极部50、第二固定电极部52以及同电位电极(虚拟电极)60、62例如能够由铝、金、铂、ITO(Indium Tin Oxide:氧化铟锡)等构成。当第一固定电极部50、第二固定电极部52以及同电位电极(虚拟电极)60、62的材质为ITO等的透明电极材料时,在基体10为透明基板(玻璃基板)的情况下,能够很容易地目视观察到存在于第一固定电极部50、第二固定电极部52以及同电位电极(虚拟电极)60、62上的异物等。此外,在选择了铂等电稳定的材料的情况下,能够减小加速度传感器的噪声。
绝缘部17并未设置有各种电极,而是以使基体10露出的方式被构成。绝缘部17的至少一部分被配置在第二凹部15内。具体而言,在第二凹部15内,也配置有在作为第一固定电极部50的一部分的带状的延设电极部50a和与延设电极部50a对置的同电位电极(虚拟电极)62的对置端部62a之间的绝缘部17。以这种方式配置的绝缘部17,在俯视观察时,在第二凹部15内横穿了与后述的第一固定电极部50的延设电极部50a对置的可动体20的连接部27(参照图1B)。
以此方式,由于绝缘部17在第二凹部15内横穿了与后述的第一固定电极部50的延设电极部50a对置的可动体20的连接部27,因此能够增大绝缘部17和所对置的连接部27(可动体20)的距离(间隔)。由此,能够减小在绝缘部17和所对置的连接部27之间产生的静电引力,从而能够抑制妨碍可动体20的摆动、或可动体20被吸附在基体10上的情况。
如图1C所示,可动体20具有:固定部40、从固定部40延伸出的支承部28、29、具备例如扭转弹簧等的弹性元件的支承轴30、32、第一杠杆片20a、第二杠杆片20b、对第一杠杆片20a及第二杠杆片20b进行连接的连接框部25、第一可动电极部21、和第二可动电极部22。在可动体20中,支承部28、29被固定在设置于基体10上的支柱部16的上表面上,通过从支承部28、29延伸出的支承轴30、32而使支承部28、29与连接框部25被连接在一起。以此方式,可动体20与基体10对置,并经由支承轴30、32而以可摆动的方式被支承。
可动体20能够围绕支承轴30、32进行位移。具体而言,当被施加有铅直方向(Z轴方向)的加速度时,可动体20以支承轴30、32为转动轴(摆动轴)而进行杠杆式摆动。支承轴30、32例如与Y轴平行。可动体20的平面形状例如为长方形。可动体20的厚度(Z轴方向的大小)例如为固定的。
可动体20具有第一杠杆片20a和第二杠杆片20b。第一杠杆片20a为,在俯视观察时通过支承轴30、32而被划分的可动体20的两个部分中的一部分(在图1C中为位于左侧的部分)。第二杠杆片20b为,在俯视观察时通过支承轴30、32而被划分的可动体20的两个部分中的另一部分(在图1C中为位于右侧的部分)。即,可动体20以支承轴30、32为界而被划分为第一杠杆片20a以及第二杠杆片20b。
例如,在对可动体20施加了铅直方向(Z轴方向)的加速度(例如重力加速度)的情况下,将在第一杠杆片20a和第二杠杆片20b上分别产生转矩(力的力矩)。在此,在第一杠杆片20a的转矩(例如逆时针的转矩)和第二杠杆片20b的转矩(例如顺时针的转矩)均衡的情况下,可动体20的倾斜度不会产生变化,从而无法对加速度进行检测。因此,以如下方式来设计可动体20,即,在施加有铅直方向的加速度时,第一杠杆片20a的转矩和第二杠杆片20b的转矩不均衡,而是在可动体20上产生预定的倾斜度。
在加速度传感器100中,通过将支承轴30、32配置在偏离可动体20的中心(重心)的位置处,换言之,通过使从支承轴30、32到第一杠杆片20a以及第二杠杆片20b的顶端的距离不同,从而使第一杠杆片20a以及第二杠杆片20b具有互不相同的质量。即,可动体20以支承轴30、32为界,从而在一侧(第一杠杆片20a)和另一侧(第二杠杆片20b)处质量不同。在图示的示例中,从支承轴30、32到第一杠杆片20a的端面24a为止的距离大于从支承轴30、32到第二杠杆片20b的端面22a为止的距离。此外,第一杠杆片20a的厚度与第二杠杆片20b的厚度相等。因此,第一杠杆片20a的质量大于第二杠杆片20b的质量。以此方式,通过使第一杠杆片20a以及第二杠杆片20b具有互不相同的质量,从而能够在被施加了铅直方向的加速度时,使第一杠杆片20a的转矩和第二杠杆片20b的转矩不均衡。因此,能够在施加了铅直方向的加速度时,使可动体20产生预定的倾斜度。
另外,虽然未进行图示,但也可以通过将支承轴30、32配置在可动体20的中心处且使第一杠杆片20a以及第二杠杆片20b的厚度互不相同,从而使第一杠杆片20a以及第二杠杆片20b具有互不相同的质量。即使在这种情况下,也能够在施加有铅直方向的加速度时,使可动体20产生预定的倾斜度。
可动体20也能够划分为第一区域41和第二区域42,其中,所述第一区域41为至少与被设置在基体10上的固定电极(第一固定电极部50以及第二固定电极部52)对置的区域,所述第二区域42为与同电位电极(虚拟电极)62的至少一部分对置的区域。
第一区域41至少具有以支承轴30、32为界而被设置的第一可动电极部21以及第二可动电极部22。在第二区域42与第一区域41之间,设置有槽部(贯穿长孔)43。第二区域42具有延设部24,所述延设部24通过夹着槽部(贯穿长孔)43并被设置在第二方向(图中Y轴方向)的各个端部(两端)处的带状的连接部27而与第一区域41连接。另外,在带状的连接部27中,第二方向的上长度即宽度尺寸小于第一区域41的宽度尺寸以及第二区域42的宽度尺寸。此外,虽然对于带状的连接部27而言,以分别设置在第二区域42的两端(两处)的示例进行了说明,但是也可以设置三处以上。
以此方式,通过设置有第二区域42(延设部24),从而能够使可动体20以支承轴30、32为界而使第一杠杆片20a侧的质量大于第二杠杆片20b侧的质量。
此外,通过被设置在第二方向(图中Y轴方向)的各个端部(两端)处的多个带状的连接部27而使第一区域41(包括第一可动电极部21以及第二可动电极部22)和第二区域42(延设部24)连接在一起,从而能够稳定地实施第二方向上的第一区域41以及第二区域42的连接,进而能够对可动体20的第二方向上的变形进行抑制,由此能够实施更准确的传感检测。
此外,由于能够通过使连接部27的宽度尺寸窄于第一区域41以及第二区域42的宽度尺寸而减少可动体20与基体10的绝缘部17(参照图1A、图1B)相对置的对置面积,因此能够减小在绝缘部17与所对置的可动体20之间产生的静电引力。
优选为,被设置在第一区域41与第二区域42之间的槽部43在俯视观察时,以与被设置在基体10上的绝缘部17(参照图1A)重叠的方式被配置。以此方式,由于能够通过使槽部43在俯视观察时与绝缘部17重叠而减少容易产生静电引力的绝缘部17与可动体20相对置的对置面积,因此能够减小在绝缘部17与所对置的可动体20之间产生的静电引力。
可动体20以与除了支柱部16以外的基体10分离的方式而被设置。可动体20被设置在第一凹部12的上侧。在图示的示例中,在可动体20与基体10之间设置有间隙。此外,可动体20通过被支承在支柱部16上的支承部28、29以及从支承部28、29延伸出的支承轴30、32而以与固定部40分离的方式被连接。由此,可动体20能够进行杠杆式摆动。
可动体20具备以支承轴30、32为界而被设置的第一可动电极部21以及第二可动电极部22。第一可动电极部21被设置在第一杠杆片20a上。第二可动电极部22被设置在第二杠杆片20b上。
第一可动电极部21为,可动体20中的、在俯视观察时与作为固定电极部的第一固定电极部50重叠的部分。第一可动电极部21在与第一固定电极部50之间形成了静电电容C1。即,通过第一可动电极部21和第一固定电极部50而形成了静电电容C1。
第二可动电极部22为,可动体20中的、在俯视观察时与作为固定电极部的第二固定电极部52重叠的部分。第二可动电极部22在与第二固定电极部52之间形成了静电电容C2。即,通过第二可动电极部22和第二固定电极部52而形成了静电电容C2。在加速度传感器100中,通过由导电性材料(掺杂了杂质的硅)来构成可动体20,从而设置有第一可动电极部21以及第二可动电极部22。即,第一杠杆片20a作为第一可动电极部21而发挥功能,第二杠杆片20b作为第二可动电极部22而发挥功能。
静电电容C1以及静电电容C2以例如在图2所示的可动体20处于水平的状态下彼此相等的方式而被构成。第一可动电极部21以及第二可动电极部22的位置根据可动体20的运动而发生变化。静电电容C1、C2根据该第一可动电极部21以及第二可动电极部22的位置而发生变化。在可动体20上,经由支承部28、29而被施加有预定的电位。
在可动体20上设置有贯穿可动体20的贯穿孔26。由此,能够降低可动体20进行摆动时的空气的影响(空气的阻力)。在图示的示例中,贯穿孔26被排列设置有多列。另外,关于贯穿孔26的形状、大小、配置(排列)方式、配置数量等并未进行限定。
支承部28、29以能够围绕支承轴30、32进行位移的方式对可动体20进行支承。支承轴30、32作为扭转弹簧(扭簧)而发挥功能。由此,能够相对于因可动体20进行杠杆式摆动而在支承轴30、32上产生的扭转变形而具有较强的复原力。
支承部28、29在俯视观察时被配置于支柱部16上。支承部28、29从固定部40延伸出来,并经由支承轴30、32而对支柱部16和可动体20(连接框部25)进行连接。支承部28、29在支承轴30、32的X轴方向的两侧处各设置一个,且沿着支承轴30、32而延伸。支承部28从固定部40起向+Y轴方向延伸。支承部29从固定部40起向-Y轴方向延伸。
固定部40被设置在第一杠杆片20a与第二杠杆片20b之间。从固定部40起延伸有支承部28、29以及支承轴30、32。可动体20经由支承轴30、32以及固定部40而在支承部28、29的位置处被连接或固定在基体10的支柱部16上。在本方式中,支承部28以及支承部29的各自的中央部被连接或固定在支柱部16上。
由固定部40、支承部28、29、支承轴30、32、第一杠杆片20a、第二杠杆片20b以及连接框部25等构成的可动体20被一体地设置。可动体20例如通过对一个基板(硅基板)进行图案形成,从而被一体地设置。在图示的示例中,可动体20构成了一个结构体(硅结构体)。可动体20的材质为,例如通过掺杂有磷、硼等杂质而被赋予导电性的硅。在基体10的材质为玻璃、可动体20的材质为硅的情况下,基体10和支承部28、29例如能够通过阳极接合而被接合。
盖体70被配置在基体10上,并与基体10接合。盖体70以及基体10形成了对可动体20进行收纳的空腔72。空腔72例如为惰性气体(例如氮气)环境。盖体70的材质例如为硅。在盖体70的材质为硅、基体10的材质为玻璃的情况下,基体10和固定部40例如能够通过阳极接合而被接合。
接下来,对加速度传感器100的动作进行说明。
在加速度传感器100中,根据加速度、角速度等的物理量而使可动体20围绕支承轴30、32进行摆动。随着该可动体20的运动,第一可动电极部21与第一固定电极部50之间的距离、以及第二可动电极部22与第二固定电极部52之间的距离发生变化。
具体而言,例如当加速度传感器100被施加了铅直向上(+Z轴方向)的加速度时,可动体20进行逆时针旋转,从而使第一可动电极部21与第一固定电极部50之间的距离变小,并使第二可动电极部22与第二固定电极部52之间的距离变大。其结果为,静电电容C1变大,静电电容C2变小。
此外,例如在加速度传感器100被施加了铅直向下(-Z轴方向)的加速度时,可动体20顺时针旋转,从而使第一可动电极部21与第一固定电极部50之间的距离变大,并使第二可动电极部22与第二固定电极部52之间的距离变小。其结果为,静电电容C1变小,静电电容C2变大。因此,能够基于静电电容C1与静电电容C2之差(通过所谓的差动检测方式),而对加速度或角速度等的方向或大小等的物理量进行检测。
如上文所述,加速度传感器100能够作为加速度传感器或陀螺传感器等惯性传感器来使用,具体而言,例如能够作为用于对铅直方向(Z轴方向)的加速度进行测定的静电电容型加速度传感器来使用。
根据上述的加速度传感器100,被设置在第一区域41与第二区域42之间的槽部43在俯视观察时以与被设置在基体10上的绝缘部17重叠的方式而被配置。以此方式,由于能够通过在俯视观察时槽部43与绝缘部17重叠而减少容易产生静电引力的绝缘部17与可动体20相对置的对置面积,因此能够减小在绝缘部17与所对置的可动体20之间产生的静电引力。
除此之外,由于绝缘部17在第二凹部15内横穿了与后述的第一固定电极部50的延设电极部50a对置的可动体20的连接部27,因此能够增大绝缘部17与连接部27(可动体20)重叠的部分中的、绝缘部17和所对置的连接部27(可动体20)之间的距离(间隔)。由此,能够减小在绝缘部17与所对置的连接部27之间产生的静电引力,从而能够对妨碍可动体20的摆动、或可动体20被吸附在基体10上的情况进行抑制。
此外,由于能够通过将连接部27的宽度尺寸设为窄于第一区域41以及第二区域42的宽度尺寸而减小可动体20与基体10的绝缘部17(参照图1A)相对置的对置面积,因此能够减小在绝缘部17与所对置的可动体20之间产生的静电引力。
据此,能够对妨碍可动体20的摆动、或可动体20被吸附在基体10上的情况进行抑制。因此,上述的加速度传感器100的可动体20的摆动变得适当(准确),从而能够提高传感检测精度。
(第二实施方式)
接下来,在参照附图的同时,对本发明的传感器装置的第二实施方式所涉及的加速度传感器进行说明。图4为示意性地表示第二实施方式所涉及的加速度传感器的俯视图。图5为示意性地表示第二实施方式所涉及的加速度传感器的图4的C-C剖视图,图6为示意性地表示第二实施方式所涉及的加速度传感器的图4的D-D剖视图。另外,为了便于说明,在图4中,以假想线(双点划线)来表示可动体20,并省略了盖体70的图示。此外,在各个附图中,作为根据需要而相互正交的三个轴,而图示了X轴、Y轴以及Z轴。
以下,在传感器装置的第二实施方式所涉及的加速度传感器101的说明中,对具有与第一实施方式所涉及的加速度传感器100的结构部件同样的功能的部件标注相同的符号,并省略其说明。
第二实施方式所涉及的加速度传感器101在基体10上具有第一凹部12、作为凹部的第二凹部15a、支柱部16、作为固定电极的第一固定电极部50以及第二固定电极部52、和同电位电极(虚拟电极)62。与前述的第一实施方式所涉及的加速度传感器100相比,第二实施方式所涉及的加速度传感器101的第二凹部15a的结构有所不同。因此,在本说明中,以第二凹部15a为中心进行说明,而省略其他的结构部件的说明。
作为凹部的第二凹部15a为,从第一凹部12的第一面14挖掘出的有底的槽部。因此,对于距基体10的一个面11的深度而言,第二凹部15a与第一凹部12相比被形成得较深。第二凹部15a在俯视观察时,在横穿了对在前述的第一实施方式中叙述的可动体20的第一区域41和第二区域42进行连接连接部27的位置处具有一个开口端,并且在与第一凹部12重叠的位置处具有另一端。换言之,第二凹部15a作为在俯视观察时包括连接部27的一部分和延设部24的端面24a侧的区域而被设置。
由于第二凹部15a以上述这种结构被配置,因此被设置在与可动体20的第二区域42对置的位置处的同电位电极(虚拟电极)62几乎全部被设置在第二凹部15a的底面上,仅一部分被设置在第一凹部12的第一面14上。
此外,绝缘部17的一部分被配置在第二凹部15a内,且在该第二凹部15a内也被配置在作为第一固定电极部50的一部分的带状的延设电极部50a和与延设电极部50a对置的同电位电极(虚拟电极)62的对置端部62a之间。以此方式被配置的绝缘部17在俯视观察时,在第二凹部15a内横穿了与第一固定电极部50的延设电极部50a对置的可动体20的连接部27。
即使在第二实施方式所涉及的加速度传感器101中,由于如上文所述,绝缘部17也在第二凹部15a内横穿了与第一固定电极部50的延设电极部50a对置的可动体20的连接部27,因此也能够增大绝缘部17与所对置的连接部27(可动体20)之间的距离(间隔)。由此,能够减小在绝缘部17与所对置的连接部27之间所产生的静电引力,从而能够对妨碍可动体20的摆动、或可动体20被吸附在基体10上的情况进行抑制。
(可动体的改变例)
在此,在参照图7的同时,对上述的可动体20的改变例进行说明。图7是表示可动体20的改变例的主剖视图。本改变例表示在第一实施方式的加速度传感器100中被设置在可动体20上的槽部(贯穿长孔)43的改变例。因此,对相当于槽部(贯穿长孔)43的部件以外的结构部件标注相同的符号,并省略其说明。
与第一实施方式的可动体20同样地,改变例所涉及的可动体20c也能够被划分为第一区域41和第二区域42,其中,所述第一区域41至少与被设置在基体10上的固定电极(第一固定电极部50以及第二固定电极部52)相对置,所述第二区域42与同电位电极(虚拟电极)62的至少一部分相对置。在第一区域41与第二区域42之间,设置有底槽43a。有底槽43a为,从可动体20c的与基体10(第一面14)对置的一侧的面挖掘出的具有底部的凹状的槽。
根据本改变例所涉及的可动体20c,如上文所述,由于能够通过设置从可动体20c的与基体10对置的一侧的面挖掘出的有底槽43a而增大绝缘部17(参照图1A)与可动体20c之间的距离,因此能够减小在绝缘部17与所对置的可动体20c之间产生的静电引力。
(电子设备)
接下来,在参照附图的同时,对本发明所涉及的电子设备进行说明。本发明所涉及的电子设备包括作为上述的传感器装置的加速度传感器100。在下文中,以使用了作为本发明所涉及的传感器装置的加速度传感器100的电子设备为例示来进行说明。
首先,作为本发明所涉及的电子设备的一个示例而示出了移动型(或笔记本型)的个人计算机,并参照图8来进行说明。图8是作为电子设备的一个示例而示意性地示出了移动型(或笔记本型)的个人计算机的立体图。
如图8所示,个人计算机1100由具备键盘1102的主体部1104和具有显示部1108的显示单元1106构成,显示单元1106经由铰链结构部而以能够相对于主体部1104而转动的方式被支承。在这种个人计算机1100中,内置有加速度传感器100。
接下来,作为本发明所涉及的电子设备的一个示例而示出了便携式电话机(也包括PHS),并参照图9来进行说明。图9为作为电子设备的一个示例而示意性地表示便携式电话机(也包括PHS)的立体图。
如图9所示,便携式电话机1200具备多个操作按钮1202、听筒1204以及话筒1206,在操作按钮1202与听筒1204之间配置有显示部1208。在这种便携式电话机1200中,内置有加速度传感器100。
接下来,作为本发明所涉及的电子设备的一个示例而示出了数码照相机,并参照图10来进行说明。图10为示意性地表示作为电子设备的一个示例的数码照相机的立体图。另外,在图10中,还简单地示出了与外部设备的连接。
在此,现有的照相机通过被摄体的光学图像而对银盐照相胶片进行感光,与此相对,数码照相机1300则通过CCD(Charge Coupled Device:电荷耦合元件)等的摄像元件来对被摄体的光学图像进行光电转换,从而生成成像信号(图像信号)。
在数码照相机1300的壳体(机身)1302的背面,设置有显示部1310,从而成为基于由CCD所产生的成像信号实施显示的结构,显示部1310作为将被摄体作为电子图像进行显示的取景器而发挥功能。
此外,在壳体1302的主视侧(图中背面侧),设置有包括光学透镜(成像光学系统)或CCD等在内的受光单元1304。
当摄影者对在显示部1310上显示的被拍摄体图像进行确认并按下快门按钮1306时,该时间点下的CCD的成像信号被转送或储存在存储器1308中。
此外,在该数码照相机1300中,在壳体1302的侧面上设置有录像信号输出端子1312和数据通信用的输入输出端子1314。而且,分别根据需要而在影像信号输出端子1312上连接电视监视器1430,在数据通信用的输入输出端子1314上连接个人计算机1440。并且,成为如下的结构,即,通过预定的操作而使存储器1308中所储存的成像信号被输出至电视监视器1430或个人计算机1440中。在这种数码照相机1300中,内置有加速度传感器100。
由于以上文所述的方式而例示的电子设备包括能够防止可动体20粘贴在基体10上的加速度传感器100,因此能够具有较高的可靠性。
另外,具备加速度传感器100的电子设备除了能够应用在图8所示的个人计算机(移动型个人计算机)、图9所示的便携式电话机、图10所示的数码照相机中之外,例如还能够应用于喷墨式喷出装置(例如喷墨打印机)、膝上型个人计算机、电视机、摄像机、录像机、各种导航装置、寻呼器、电子笔记本(也包括带有通信功能的产品)、电子词典、台式计算机、电子游戏机、头戴式显示器、文字处理器、工作站、可视电话、防盗用视频监视器、电子双筒望远镜、POS终端、医疗设备(例如电子体温计、血压计、血糖仪、心电图测量装置、超声波诊断装置、电子内窥镜)、鱼群探测器、各种测量仪器、仪表类(例如,车辆、飞机、火箭、船舶的仪表类)、机器人或人体等的姿态控制、飞行模拟器等中。
(移动体)
接下来,在参照附图的同时,对本发明所涉及的移动体进行说明。本发明所涉及的移动体包括作为上述的传感器装置的加速度传感器100。在下文中,对使用了作为本发明所涉及的传感器装置的加速度传感器100的移动体的一个示例的汽车进行例示并说明。
首先,作为本发明所涉及的移动体的一个示例而示出了汽车,并参照图11来进行说明。图11为示意性表示作为移动体的一个示例而进行例示的汽车1500的立体图。
在汽车1500中,内置有加速度传感器100。具体而言,如图11所示,在汽车1500的车身1502上搭载有电子控制单元(ECU:Electronic Control Unit)1504,所述电子控制单元1504内置有对汽车1500的加速度进行检测的加速度传感器100并对发动机的输出进行控制。此外,除此之外,加速度传感器100还可以广泛地应用于车身姿态控制单元、防抱死制动系统(ABS)、安全气囊、轮胎压力监测系统(TPMS:Tire Pressure Monitoring System)中。
由于汽车1500包括能够防止可动体20粘贴在基体10上的加速度传感器100,因此能够具有较高的可靠性。
上述的实施方式以及改变例仅为一个示例,本发明并不限定于此。例如,也能够对各个实施方式以及各个改变例进行适当组合。
本发明包括与实施方式中所说明的结构实质上相同的结构(例如,功能、方法以及结果相同的结构,或者目的以及效果相同的结构)。此外,本发明包括替换了实施方式中所说明的结构的非本质部分的结构。此外,本发明包括能够起到与实施方式中所说明的结构相同的作用效果的结构或者能够达到同一目的的结构。此外,本发明包括在实施方式中所说明的结构中附加了公知技术的结构。
符号说明
10…基体;11…一个面;12…第一凹部;14…第一面;15…作为凹部的第二凹部;16…支柱部;17…绝缘部;20…可动体;20a…第一杠杆片;20b…第二杠杆片;21…第一可动电极部;22…第二可动电极部;22a…第二杠杆片的端面;24…延设部;24a…第一杠杆片的端面;25…连接框部;26…贯穿孔;28、29…支承部;30、32…支承轴;40…固定部;41…第一区域;42…第二区域;43…槽部(贯穿长孔);50…作为固定电极的第一固定电极部;50a、51a、52a…延设电极部;52…作为固定电极的第二固定电极部;60、62…同电位电极(虚拟电极);62a…对置端部;70…盖体;72…空腔;100…作为传感器装置的加速度传感器;1100…作为电子设备的个人计算机;1200…作为电子设备的便携式电话机;1300…作为电子设备的数码照相机;1500…作为移动体的汽车。

Claims (7)

1.一种传感器装置,其特征在于,具备:
基体,其具有第一面;
可动体,其具有支承部,且所述支承部在所述第一面侧相对于所述基体而被固定,所述可动体以所述支承部为支点而可动,并且以与所述第一面分离且对置的方式而延伸,
所述基体具有:
凹部,其被设置在所述第一面上;
固定电极,其被设置在所述第一面上;
虚拟电极,其与所述固定电极并排设置,并且在所述凹部内具有至少一部分,且被设置在所述第一面上;
绝缘部,其被设置在所述固定电极与所述虚拟电极之间,
所述可动体具有:
第一区域,其与所述固定电极对置;
第二区域,其与所述虚拟电极的一部分对置;
连接部,其对所述第一区域与所述第二区域进行连接,
所述固定电极设置有被延伸设置至所述凹部的至少一部分为止的延设电极部,
在所述可动体的俯视观察时,所述延设电极部的至少一部分与所述连接部对置,并且,在所述延设电极部与所述虚拟电极之间所具有的所述绝缘部在所述凹部内与所述连接部对置,
在所述第一区域与所述第二区域之间以及所述连接部与所述第二区域之间设置有槽部,
在俯视观察时,所述槽部与所述绝缘部重叠。
2.如权利要求1所述的传感器装置,其特征在于,
所述连接部的与所述第一区域和所述第二区域所排列的第一方向正交的第二方向的宽度窄于所述第一区域以及所述第二区域的所述第二方向的宽度。
3.如权利要求2所述的传感器装置,其特征在于,
所述连接部被设置有多个。
4.如权利要求3所述的传感器装置,其特征在于,
所述连接部分别被设置在所述第二方向上的所述可动体的两端部处。
5.如权利要求1至权利要求4中的任一项所述的传感器装置,其特征在于,
所述槽部由贯穿所述可动体的表背的贯穿孔或者从所述可动体的与所述基体对置的一侧的面挖掘出的有底槽构成。
6.一种电子设备,其特征在于,
具备权利要求1至权利要求5中的任一项所述的传感器装置。
7.一种移动体,其特征在于,
具备权利要求1至权利要求5中的任一项所述的传感器装置。
CN201780014063.4A 2016-03-03 2017-02-16 传感器装置、电子设备以及移动体 Active CN108700612B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016-040772 2016-03-03
JP2016040772 2016-03-03
PCT/JP2017/005734 WO2017150201A1 (ja) 2016-03-03 2017-02-16 センサーデバイス、電子機器、および移動体

Publications (2)

Publication Number Publication Date
CN108700612A CN108700612A (zh) 2018-10-23
CN108700612B true CN108700612B (zh) 2020-11-17

Family

ID=59743874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780014063.4A Active CN108700612B (zh) 2016-03-03 2017-02-16 传感器装置、电子设备以及移动体

Country Status (4)

Country Link
US (1) US10830788B2 (zh)
JP (1) JP6897663B2 (zh)
CN (1) CN108700612B (zh)
WO (1) WO2017150201A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192664B2 (en) * 2018-12-10 2021-12-07 Hamilton Sundstrand Corporation Smart application for aircraft performance data collection
JP7225817B2 (ja) * 2019-01-17 2023-02-21 セイコーエプソン株式会社 角速度センサー、慣性計測装置、電子機器および移動体
JP2020159917A (ja) * 2019-03-27 2020-10-01 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP2021001853A (ja) 2019-06-24 2021-01-07 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP2021004791A (ja) * 2019-06-26 2021-01-14 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP7331498B2 (ja) * 2019-06-27 2023-08-23 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP2021021676A (ja) * 2019-07-30 2021-02-18 セイコーエプソン株式会社 慣性センサー、電子機器および移動体
JP7134931B2 (ja) * 2019-08-28 2022-09-12 株式会社東芝 センサ
JP7383978B2 (ja) * 2019-10-23 2023-11-21 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP2021173700A (ja) * 2020-04-28 2021-11-01 セイコーエプソン株式会社 物理量センサー、電子機器および移動体
JP2022079809A (ja) * 2020-11-17 2022-05-27 セイコーエプソン株式会社 物理量センサー、物理量センサーデバイス及び慣性計測装置
JP2022175616A (ja) * 2021-05-14 2022-11-25 セイコーエプソン株式会社 慣性センサー及び慣性計測装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345174A (zh) * 2013-08-06 2015-02-11 精工爱普生株式会社 物理量传感器、电子设备、以及移动体
CN105372451A (zh) * 2014-08-15 2016-03-02 精工爱普生株式会社 物理量传感器、物理量传感器装置、电子设备以及移动体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6935175B2 (en) 2003-11-20 2005-08-30 Honeywell International, Inc. Capacitive pick-off and electrostatic rebalance accelerometer having equalized gas damping
DE102008043788A1 (de) * 2008-11-17 2010-05-20 Robert Bosch Gmbh Mikromechanisches Bauelement
JP5790296B2 (ja) * 2011-08-17 2015-10-07 セイコーエプソン株式会社 物理量センサー及び電子機器
US8940570B2 (en) * 2012-01-03 2015-01-27 International Business Machines Corporation Micro-electro-mechanical system (MEMS) structures and design structures
JP5979344B2 (ja) 2012-01-30 2016-08-24 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP2013181855A (ja) 2012-03-02 2013-09-12 Seiko Epson Corp 物理量センサーおよび電子機器
JP5935986B2 (ja) 2012-04-06 2016-06-15 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP5930183B2 (ja) 2012-04-09 2016-06-08 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP2014134482A (ja) 2013-01-11 2014-07-24 Seiko Epson Corp 物理量センサー、電子機器、及び移動体
JP6137451B2 (ja) 2013-01-28 2017-05-31 セイコーエプソン株式会社 物理量センサー、電子機器、及び移動体
WO2014122910A1 (ja) * 2013-02-06 2014-08-14 パナソニック株式会社 Memsデバイス
JP6155832B2 (ja) * 2013-05-16 2017-07-05 セイコーエプソン株式会社 センサー素子、電子機器、および移動体
JP6146565B2 (ja) * 2013-08-06 2017-06-14 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
JP6274413B2 (ja) 2014-02-25 2018-02-07 セイコーエプソン株式会社 機能素子、電子機器、および移動体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345174A (zh) * 2013-08-06 2015-02-11 精工爱普生株式会社 物理量传感器、电子设备、以及移动体
CN105372451A (zh) * 2014-08-15 2016-03-02 精工爱普生株式会社 物理量传感器、物理量传感器装置、电子设备以及移动体

Also Published As

Publication number Publication date
WO2017150201A1 (ja) 2017-09-08
JP6897663B2 (ja) 2021-07-07
US10830788B2 (en) 2020-11-10
JPWO2017150201A1 (ja) 2018-12-20
US20190025338A1 (en) 2019-01-24
CN108700612A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
CN108700612B (zh) 传感器装置、电子设备以及移动体
US10197591B2 (en) Physical quantity sensor, electronic device, and moving object
CN104166013B (zh) 传感器元件、电子设备、以及移动体
US9383383B2 (en) Physical quantity sensor, manufacturing method thereof, and electronic apparatus
US9470703B2 (en) Physical quantity sensor and electronic apparatus
US10317425B2 (en) Functional element, electronic apparatus, and moving object
US9429589B2 (en) Physical quantity sensor and electronic apparatus
JP6206650B2 (ja) 機能素子、電子機器、および移動体
JP6146566B2 (ja) 物理量センサー、電子機器、および移動体
TWI659212B (zh) 電子裝置、電子機器及移動體
JP6655281B2 (ja) 物理量センサー、電子機器および移動体
JP6327384B2 (ja) 物理量センサー、電子機器、および移動体
JP6766861B2 (ja) 物理量センサー、電子機器および移動体
JP6464608B2 (ja) 物理量センサー、電子機器および移動体
JP6137451B2 (ja) 物理量センサー、電子機器、及び移動体
JP6544058B2 (ja) 物理量センサー、電子機器および移動体
JP6665950B2 (ja) 物理量センサー、電子機器および移動体
JP6450983B2 (ja) センサー素子、電子機器、および移動体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant