CN108667374B - 一种高刚度、免调试的变频调速系统速度环的设计方法 - Google Patents

一种高刚度、免调试的变频调速系统速度环的设计方法 Download PDF

Info

Publication number
CN108667374B
CN108667374B CN201810278849.3A CN201810278849A CN108667374B CN 108667374 B CN108667374 B CN 108667374B CN 201810278849 A CN201810278849 A CN 201810278849A CN 108667374 B CN108667374 B CN 108667374B
Authority
CN
China
Prior art keywords
speed
observer
torque
motor
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810278849.3A
Other languages
English (en)
Other versions
CN108667374A (zh
Inventor
倪荣刚
吴新振
郑晓钦
由蕤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201810278849.3A priority Critical patent/CN108667374B/zh
Publication of CN108667374A publication Critical patent/CN108667374A/zh
Application granted granted Critical
Publication of CN108667374B publication Critical patent/CN108667374B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/13Observer control, e.g. using Luenberger observers or Kalman filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/20Estimation of torque

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本发明属于电机调速控制技术领域,具体涉及一种高刚度、免调试的变频调速系统速度环的设计方法,能够应用于电机变频调速控制的场合,该方法采用比例控制结合高鲁棒性观测器的结构替代传统的速度环结构,在无需精确惯量参数的情况下,仍能有效提高系统刚度,在转速指令变化和负载扰动下均能实现较好的转速跟踪,该方法与现有技术相比,速度环调节参数简化为一个,即刚度系数,且在通常工况下均可采用默认值而无需调节,采用本发明公开的无微分环节、无非线性环节之速度环结构,有利于系统稳定和实现,其设计原理构思巧妙,应用环境友好,市场前景广阔。

Description

一种高刚度、免调试的变频调速系统速度环的设计方法
技术领域:
本发明属于电机调速控制技术领域,具体涉及一种高刚度、免调试的变频调速系统速度环的设计方法,能够应用于电机变频调速控制的场合。
背景技术:
电机驱动系统已经在航空、航天、舰船、加工制造、家用电器等领域中发挥了重要作用,随着新能源汽车、机器人以及工业4.0等新兴产业的发展,高性能电机驱动系统势必得到更加广泛的应用。如今,高性能电机驱动系统不仅要求电机本体具有高效率、高功率密度、高可靠性等特点,其在提高系统动态品质、减少调试人员工作量等方面对控制技术也提出了更高要求。对于转速-电流双闭环变频调速控制系统,电流内环的设计方法已较为成熟,可以通过基于零极点相消的比例-积分(Proportional-Integral,PI)控制、预测控制、硬件电流环等方式取得很好的控制效果,且在已知电机阻感参数的情况下可实现参数自整定,即不需要人为调整参数。但是,对于传统的采用PI或比例-积分-微分(Proportional-Integral-Differential,PID)控制的速度环控制器,因电机驱动系统的转动惯量未知或变化,以及控制器饱和等因素,在负载大幅或快速波动的情况下,往往造成转速波动较大、恢复时间较长;而控制器参数通常需要有经验的技术人员反复调试才能在一定工况下取得较好的控制效果,当负载参数或工况变化时,相同参数的控制效果往往变差。
为了改善速度环动态品质,提高速度环刚度,现有技术中,较常见的做法是采用龙背格观测器或微分器实现负载转矩观测,并作为前馈补偿给速度环。然而,这些做法均采用了微分环节,且需要准确知道电机驱动系统的转动惯量。龙背格观测器中的微分环节造成控制系统中噪声增大,且易引起系统不稳定;而微分器在实际应用中往往要配合低通滤波器使用,同样易引起系统不稳定,降低系统的动态品质。卡尔曼观测器对系统参数变化具有一定的鲁棒性,但实现复杂,占用控制系统资源较大。因此,设计制备一种高刚度、免调试的变频调速系统速度环的设计方法,该方法制备的变频调速系统速度环具有动态品质好、通用性广、免调试的优点,具有广阔的应用前景。
发明内容:
本发明的目的在于克服现有技术中变频调速系统速度环参数调试工作量大、适应性差、动态品质不佳的缺陷,寻求设计提供一种高刚度、免调试的变频调速系统速度环的设计方法。
为了实现上述目的,本发明涉及的高刚度、免调试的变频调速系统速度环的设计方法的技术方案如下:
S1、给定参考转速
Figure BDA0001614169810000021
并通过编码器采样或无位置传感器观测等方法得到当前反馈转速
Figure BDA0001614169810000022
其中
Figure BDA0001614169810000023
为电角频率给定,
Figure BDA0001614169810000024
的获得方式如下:在速度控制系统中,参考转速是人为设定的;而在包括位置控制在内的系统中,参考转速是控制系统根据包括位置给定在内的其它人为设定的参数计算得到的;
Figure BDA0001614169810000025
为电角频率反馈,由编码器反馈的机械角角频率
Figure BDA0001614169810000026
乘以极对数p得到,或通过无位置传感器控制技术观测得到;
S2、根据参考转速
Figure BDA0001614169810000027
与当前反馈转速
Figure BDA0001614169810000028
之差乘以
Figure BDA0001614169810000029
得到加速转矩TAcc,即
Figure BDA00016141698100000210
其中
Figure BDA00016141698100000211
TMax为电机在额定转速(定义为基值转速)ωrN下的峰值转矩,即额定转矩TN和允许的过载倍数γOv的乘积,rf定义为刚度系数,无量纲;rf的取值范围为0.01≤rf≤100;通常情况下,rf=1即可满足大多数工况要求;kf定义为转矩比例系数,即转速偏差对应的加速转矩的比例;
S3、根据反馈电流,估计电磁转矩
Figure BDA00016141698100000212
对于永磁电机,
Figure BDA00016141698100000213
对于同步磁阻电机,
Figure BDA00016141698100000214
对于感应电机,
Figure BDA00016141698100000215
其中
Figure BDA00016141698100000216
为永磁电机的空载磁链,
Figure BDA0001614169810000031
为永磁电机或同步磁阻电机的空载直交轴电感,
Figure BDA0001614169810000032
为感应电机的空载互感和转子电感,p为电机极对数;id fdb和iq fdb分别为d轴电流反馈和q轴电流反馈,其通过采集电机定子电流以及转子电角度位置后,经Park变换得到;
S4、基于线性扩张状态观测器,得到观测的负载转矩
Figure BDA0001614169810000033
观测器结构如下:
Figure BDA0001614169810000034
其中ε为观测反馈转速
Figure BDA0001614169810000035
与实际反馈转速
Figure BDA0001614169810000036
之差,kp1、kp2为观测器参数;
Figure BDA0001614169810000037
为估计的系统惯量,其与实际系统惯量的偏差应在3个数量级以内,其中
Figure BDA0001614169810000038
可以通过包括惯量辨识算法在内的手段估计得到;
该观测器的闭环传递函数为
Figure BDA0001614169810000039
Figure BDA00016141698100000310
其中ζ为观测器的阻尼系数,无量纲;ω3dB为观测器的带宽(增益-3dB),s为拉普拉斯算子,wn是自振荡角频率,由此得到观测器增益系数:
kp1=2ζωn,kp2=ωn 2
观测器带宽ω3dB的取值范围为0<ω3dB≤0.126fCur,fCur为电流内环的执行频率;观测器阻尼系数ζ的取值范围为0.5≤ζ≤2,无量纲;
S5、将加速转矩TAcc和观测的负载转矩
Figure BDA00016141698100000311
相加,得到速度环输出,即参考转矩
Figure BDA00016141698100000312
S6、根据电机类型和实际工况要求,将参考转矩
Figure BDA00016141698100000313
折算成电流,并进一步分配为直交轴参考电流
Figure BDA00016141698100000314
至此,执行完成一个速度环周期。
本发明与现有技术相比,具有的有益效果是:
1、本发明涉及的一种高刚度、免调试的变频调速系统速度环的设计方法能够有效提高系统刚度,在转速指令变化和负载扰动下均能实现较好的转速跟踪;
2、能够实现参数免调试;或对于特殊的系统配置或工况要求,只需微调刚度系数rf就可实现较好的控制效果。
3、不需要准确知道系统的转动惯量,理论上可为任意正数,实际中考虑数字控制系统对数据处理精度和可靠性的要求,所采用的转动惯量与实际惯量的偏差应在3个数量级以内。
4、不含微分环节,避免引入噪声,有利于系统稳定。
5、不含非线性环节,便于数字控制系统实现。
附图说明:
图1为本发明涉及的高刚度、免调试变频调速系统速度环执行流程图。
图2为本发明涉及的高刚度、免调试变频调速系统控制系统框图。
图3为本发明涉及的负载转矩观测原理示意框图。
图4为本发明涉及的负载转矩观测器在带宽ω3dB=1rad/s,不同阻尼系数ζ下,其所对应的波特图。
图5为本发明涉及的速度环设计在额定负载转矩阶跃变化时的响应示意图,其中估计系统惯量与实际惯量相同。
图6为本发明涉及的速度环设计在额定负载转矩阶跃变化时的响应示意图,其中估计系统惯量为实际惯量相差100倍,其余控制系统参数不变。
具体实施方式:
下面结合附图和具体实施方式对本发明作进一步说明。
实施例1
本实施例涉及的高刚度、免调试的变频调速系统速度环的设计方法的技术方案如下:
S1、根据数字变频调速控制系统配置,对相应参数赋值,主要包括:电机额定电角频率ωrN,极对数p,电机在额定转速(定义为基值转速)ωrN下的峰值转矩TMax,空载磁链
Figure BDA0001614169810000051
(仅适用于永磁电机),空载电感参数
Figure BDA0001614169810000052
Figure BDA0001614169810000053
估计系统惯量
Figure BDA0001614169810000054
电流环执行频率fCur、速度环执行周期Ts,其中,估计系统惯量
Figure BDA0001614169810000055
与实际系统惯量的偏差应在3个数量级以内;
S2、设置刚度系数rf,通常情况下,rf可默认为1,若对变频调速系统动态品质有更高要求,则适当增大rf,若对变频调速动态品质要求不高或反馈转速噪声过大,则适当减小rf,rf的取值范围为0.01≤rf≤100;
S3、根据S1和S2中赋值的参数,对速度环控制中用到的常量参数初始化,主要包括:
加速转矩系数kf
Figure BDA0001614169810000056
负载转矩观测器带宽ω3dB(增益-3dB),0<ω3dB≤0.126fCur
负载转矩观测器阻尼ζ,0.5≤ζ≤2;
负载转矩观测器系数kp1、kp2,kp1=2ζωn,kp2=ωn 2,其中
Figure BDA0001614169810000057
负载转矩观测器离散化系数B0、K01、K02
Figure BDA0001614169810000058
K01=Ts·kp1
Figure BDA0001614169810000059
S4、对速度环控制中用到的变量参数初始化,初始化的变量参数包括有加速转矩TAcc、观测负载转矩
Figure BDA00016141698100000510
估计电机输出转矩
Figure BDA00016141698100000511
观测反馈转速
Figure BDA00016141698100000512
反馈转速观测误差ε,上述变量参数通常赋值均为零;
S5、给定参考转速
Figure BDA00016141698100000513
S6、通过编码器采样或无位置传感器观测的方法得到当前反馈转速
Figure BDA00016141698100000514
S7、根据参考转速
Figure BDA00016141698100000515
与当前反馈转速
Figure BDA00016141698100000516
之差,得到加速转矩
Figure BDA00016141698100000517
S8、根据反馈电流,获得电磁转矩
Figure BDA0001614169810000061
具体计算方式如下:对于永磁电机,
Figure BDA0001614169810000062
对于同步磁阻电机,
Figure BDA0001614169810000063
对于感应电机,
Figure BDA0001614169810000064
S9、基于如下离散线性扩张状态观测器,得到观测的负载转矩
Figure BDA0001614169810000065
Figure BDA0001614169810000066
S10、将加速转矩TAcc和观测的负载转矩
Figure BDA0001614169810000067
相加,得到速度环输出
Figure BDA0001614169810000068
Figure BDA0001614169810000069
S11、根据电机类型和实际工况要求,将参考转矩
Figure BDA00016141698100000610
折算成电流,并进一步分配为直交轴参考电流
Figure BDA00016141698100000611
S12、若用户停止执行速度环,则退出;否则,从S5开始重复循环。

Claims (1)

1.一种高刚度、免调试的变频调速系统速度环的设计方法,其特征在于其具体技术方案如下:
S1、给定参考转速
Figure FDA0002841880050000011
并通过编码器采样或无位置传感器观测的方法得到当前反馈转速
Figure FDA0002841880050000012
的获得方式如下:在速度控制系统中,参考转速是人为设定的;而在包括位置控制在内的系统中,参考转速是控制系统根据包括位置给定在内的其它人为设定的参数计算得到的;
Figure FDA0002841880050000013
由编码器反馈的机械角角频率
Figure FDA0002841880050000014
乘以极对数p得到,或通过无位置传感器控制技术观测得到;
S2、根据参考转速
Figure FDA0002841880050000015
与当前反馈转速
Figure FDA0002841880050000016
之差乘以
Figure FDA0002841880050000017
得到加速转矩TAcc,即
Figure FDA0002841880050000018
其中
Figure FDA0002841880050000019
TMax为电机在额定转速ωrN下的峰值转矩,即额定转矩TN和允许的过载倍数γOv的乘积,rf定义为刚度系数,无量纲;rf的取值范围为0.01≤rf≤100;kf定义为转矩比例系数,即转速偏差对应的加速转矩的比例;
S3、根据反馈电流,估计电磁转矩
Figure FDA00028418800500000110
对于永磁电机,
Figure FDA00028418800500000111
对于同步磁阻电机,
Figure FDA00028418800500000112
对于感应电机,
Figure FDA00028418800500000113
其中
Figure FDA00028418800500000114
为永磁电机的空载磁链,
Figure FDA00028418800500000115
为永磁电机或同步磁阻电机的空载直交轴电感,
Figure FDA00028418800500000116
为感应电机的空载互感和转子电感,p为电机极对数;id fdb和iq fdb分别为d轴电流反馈和q轴电流反馈,其通过采集电机定子电流以及转子电角度位置后,经Park变换得到;
S4、基于线性扩张状态观测器,得到观测的负载转矩
Figure FDA00028418800500000117
观测器结构如下:
Figure FDA00028418800500000118
其中ε为观测反馈转速
Figure FDA0002841880050000021
与实际反馈转速
Figure FDA0002841880050000022
之差,kp1、kp2为观测器参数;
Figure FDA0002841880050000023
为估计的系统惯量,其与实际系统惯量的偏差应在3个数量级以内,其中
Figure FDA0002841880050000024
可以通过包括惯量辨识算法在内的手段估计得到;
该观测器的闭环传递函数为
Figure FDA0002841880050000025
Figure FDA0002841880050000026
其中ζ为观测器的阻尼系数,无量纲;ω3dB为观测器的带宽,s为拉普拉斯算子,wn是自振荡角频率,由此得到观测器增益系数:
kp1=2ζωn,kp2=ωn 2
观测器带宽ω3dB的取值范围为0<ω3dB≤0.126fCur,fCur为电流内环的执行频率;观测器阻尼系数ζ的取值范围为0.5≤ζ≤2,无量纲;
S5、将加速转矩TAcc和观测的负载转矩
Figure FDA0002841880050000027
相加,得到速度环输出,即参考转矩
Figure FDA0002841880050000028
S6、根据电机类型和实际工况要求,将参考转矩
Figure FDA0002841880050000029
折算成电流,并进一步分配为直交轴参考电流
Figure FDA00028418800500000210
至此,执行完成一个速度环周期。
CN201810278849.3A 2018-03-30 2018-03-30 一种高刚度、免调试的变频调速系统速度环的设计方法 Active CN108667374B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810278849.3A CN108667374B (zh) 2018-03-30 2018-03-30 一种高刚度、免调试的变频调速系统速度环的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810278849.3A CN108667374B (zh) 2018-03-30 2018-03-30 一种高刚度、免调试的变频调速系统速度环的设计方法

Publications (2)

Publication Number Publication Date
CN108667374A CN108667374A (zh) 2018-10-16
CN108667374B true CN108667374B (zh) 2021-02-19

Family

ID=63782924

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810278849.3A Active CN108667374B (zh) 2018-03-30 2018-03-30 一种高刚度、免调试的变频调速系统速度环的设计方法

Country Status (1)

Country Link
CN (1) CN108667374B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110932633B (zh) * 2018-09-20 2022-03-01 杭州先途电子有限公司 一种电机控制方法、装置及变频控制器
CN109639198A (zh) * 2018-12-28 2019-04-16 珠海格力电器股份有限公司 一种电机控制方法、系统及电机
CN111585498A (zh) * 2020-06-03 2020-08-25 能科科技股份有限公司 一种带负荷观测器的变频调速控制系统和变频器
TWI718959B (zh) * 2020-06-08 2021-02-11 東元電機股份有限公司 馬達負載即時調整系統及其方法
CN113285649B (zh) * 2021-05-10 2023-10-27 青岛大学 一种永磁同步电机的控制方法、装置以及电子设备
CN113517836B (zh) * 2021-06-17 2023-12-05 北京自动化控制设备研究所 基于降维观测器的电机调速控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303142A (en) * 1989-10-06 1994-04-12 United Technologies Corporation Control system for gas turbine helicopter engines and the like
CN102403953A (zh) * 2011-12-21 2012-04-04 中国东方电气集团有限公司 一种电动车交流异步驱动电机的柔性控制系统和方法
CN106208865A (zh) * 2016-08-10 2016-12-07 天津工业大学 基于负载观测器的多永磁同步电机虚拟总轴控制方法
CN106533291A (zh) * 2016-08-31 2017-03-22 东菱技术有限公司 一种基于惯量辨识和负载转矩观测的速度环响应提升方法
CN106849797A (zh) * 2017-04-10 2017-06-13 福州大学 一种双惯性永磁同步电机的电流无源控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303142A (en) * 1989-10-06 1994-04-12 United Technologies Corporation Control system for gas turbine helicopter engines and the like
CN102403953A (zh) * 2011-12-21 2012-04-04 中国东方电气集团有限公司 一种电动车交流异步驱动电机的柔性控制系统和方法
CN106208865A (zh) * 2016-08-10 2016-12-07 天津工业大学 基于负载观测器的多永磁同步电机虚拟总轴控制方法
CN106533291A (zh) * 2016-08-31 2017-03-22 东菱技术有限公司 一种基于惯量辨识和负载转矩观测的速度环响应提升方法
CN106849797A (zh) * 2017-04-10 2017-06-13 福州大学 一种双惯性永磁同步电机的电流无源控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"基于自抗扰控制器的粗纱机张力控制系统研究与应用";纪恩庆;《中国优秀硕士学位论文全文数据库·信息科技辑》;20070310;全文 *

Also Published As

Publication number Publication date
CN108667374A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN108667374B (zh) 一种高刚度、免调试的变频调速系统速度环的设计方法
CN110429881B (zh) 一种永磁同步电机的自抗扰控制方法
Shen et al. Improved speed estimation in sensorless PM brushless AC drives
Kim et al. Sensorless control of interior permanent-magnet machine drives with zero-phase lag position estimation
Bodson et al. Nonlinear speed observer for high-performance induction motor control
CN105577058B (zh) 基于模糊自抗扰控制器的五相容错永磁电机速度控制方法
CN107482982B (zh) 一种基于铁损模型的异步电机矢量控制方法
WO2022133892A1 (zh) 永磁同步电机的mtpa控制方法、装置、系统及设备
CN108336935B (zh) 一种反步控制协同eso的直线电机控制方法
CN105262393B (zh) 一种采用新型过渡过程的容错永磁电机速度控制方法
CN109104130B (zh) 全阶磁链观测器反馈矩阵获取方法及无速度传感器
CN108649850B (zh) Ude的内置式永磁同步电机电流控制方法
CN108649851B (zh) 一种永磁同步电机最大转矩电流比控制方法
CN111510027A (zh) 一种新型的多永磁同步电机同步控制方法
CN113839589A (zh) 一种永磁同步电机的解耦线性自抗扰控制方法
Minghe et al. Proportional resonant-based active disturbance rejection control for speed fluctuation suppression of PMSM drives
CN114337426A (zh) 一种d-q轴静止坐标系下永磁同步电机偏差解耦控制方法
CN113411024A (zh) 一种永磁同步电机自抗扰复合型控制系统及其控制方法
CN107395080B (zh) 基于级联非奇异终端滑模观测器的无速度传感器转矩控制系统及方法
Jing et al. Optimization of speed loop control technology for permanent magnet synchronous motor servo system
CN115967315A (zh) 一种永磁同步电机快速积分终端滑模控制方法
Ramana et al. State Feedback Linearization of a Non-linear Permanent magnet Synchronous motor drive
Jiang et al. Reduced-order extended-state-observer-based backstepping control for brushless DC motor server system
CN113467229A (zh) 一种交流伺服驱动方法
Wang et al. A new method for PI parameter adjustment of induction motor based on MRAS

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant