WO2022133892A1 - 永磁同步电机的mtpa控制方法、装置、系统及设备 - Google Patents

永磁同步电机的mtpa控制方法、装置、系统及设备 Download PDF

Info

Publication number
WO2022133892A1
WO2022133892A1 PCT/CN2020/138982 CN2020138982W WO2022133892A1 WO 2022133892 A1 WO2022133892 A1 WO 2022133892A1 CN 2020138982 W CN2020138982 W CN 2020138982W WO 2022133892 A1 WO2022133892 A1 WO 2022133892A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
current
synchronous motor
magnet synchronous
value
Prior art date
Application number
PCT/CN2020/138982
Other languages
English (en)
French (fr)
Inventor
王宇
沈文
王二峰
吴轩钦
Original Assignee
深圳市英威腾电气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市英威腾电气股份有限公司 filed Critical 深圳市英威腾电气股份有限公司
Priority to CN202080003723.0A priority Critical patent/CN112740537B/zh
Priority to PCT/CN2020/138982 priority patent/WO2022133892A1/zh
Publication of WO2022133892A1 publication Critical patent/WO2022133892A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present application relates to the technical field of synchronous motor control, and in particular, to an MTPA control method, device, system and electronic equipment of a permanent magnet synchronous motor.
  • the rotor magnetic field of the permanent magnet synchronous motor is provided by the permanent magnet, and the loss during the operation of the motor mainly includes the stator copper loss and the stator and rotor iron loss. Since the iron loss is difficult to estimate accurately and is affected by many other factors, the optimal control of the motor energy consumption is usually achieved by minimizing the stator copper loss.
  • the minimization of the stator copper loss is the maximum output torque of the motor under the same current amplitude, so this optimal control of energy consumption is called the maximum torque to current ratio (Maximum Torque Per Ampere, MTPA) control.
  • the offline method is mainly a calibration method based on torque measurement. This method is mostly used for motor drive in electric vehicles, and its accuracy is very high, but the calibration process is very cumbersome and is not suitable for industrial variable frequency drives.
  • the online implementation methods of MTPA control include search method, analytical calculation method and so on.
  • search method can search the MTPA operating point online, and the search accuracy is high, but the amount of calculation is large and time-consuming, and the dynamic response characteristics of the motor are easily affected.
  • analytical calculation method has a relatively fast convergence speed, it is easily affected by parameter perturbation, especially the self-saturation and cross-magnetic saturation of the inductance, which leads to a large gap between the calculated trajectory and the real trajectory, and the accuracy is not high.
  • the purpose of the present application is to provide a MTPA control method, device, system and electronic equipment for a permanent magnet synchronous motor, so as to realize MTPA trajectory planning with lower algorithm complexity, to ensure that the energy-saving operation of the motor is not affected by parameter perturbation, and Does not affect the dynamic response rate of the motor.
  • an MTPA control method of a permanent magnet synchronous motor comprising:
  • the d-axis current given value and the q-axis current given value are calculated in real time according to the preset trajectory planning formula; wherein, the preset trajectory planning formula is based on the d-axis current given value under the condition of MTPA
  • the quadratic function relationship between the fixed value and the given value of the q-axis current is generated by identifying the rotation parameters of the permanent magnet synchronous motor in advance;
  • the preset trajectory planning formula defines that the d-axis current given value is negatively proportional to the square term of the q-axis current given value.
  • the selection of several current state points with the same current amplitude includes:
  • the controlling the permanent magnet synchronous motor to accelerate from zero speed to a preset rotational speed threshold with the torque at the initial state point includes:
  • obtaining the torque current given value output by the speed regulator in real time includes:
  • a proportional and integral adjustment is performed on the difference between the speed reference value and the actual speed value to obtain the torque current reference value.
  • obtaining the actual rotational speed value of the permanent magnet synchronous motor in real time includes:
  • the rotor magnetic field position angle of the permanent magnet synchronous motor is detected in real time based on an encoder; or, based on a speed-less observer algorithm, the rotor magnetic field position angle is calculated in real time according to the voltage value and the current value;
  • an MTPA control device for a permanent magnet synchronous motor comprising:
  • the speed adjustment module is used to determine the torque current given value according to the speed given and feedback value
  • the MTPA trajectory planning module is used to calculate the d-axis current given value and the q-axis current given value in real time according to the preset trajectory planning formula based on the torque current given value; wherein, the preset trajectory planning formula is based on the The quadratic function relationship between the d-axis current given value and the q-axis current given value under the condition of MTPA, the parameters of the quadratic function are generated by identifying the rotation parameters of the permanent magnet synchronous motor in advance;
  • the current regulation module is used to calculate and output a given d-axis voltage and a given q-axis voltage based on the current regulator according to the given d-axis current and the given q-axis current, so as to control the permanent The magnetic synchronous motor realizes MTPA operation.
  • an MTPA control system for a permanent magnet synchronous motor comprising:
  • a control unit for speed and current regulation including: based on a speed regulator, calculating a given torque current according to a given speed and a feedback value; based on the given torque current value, calculating d in real time according to a preset trajectory planning formula Shaft current given value and q-axis current given value; based on the current regulator, according to the d-axis current given and feedback value and the q-axis current given and feedback value, calculate and output the d-axis voltage given value and q-axis voltage given value;
  • the preset trajectory planning formula is based on the quadratic function relationship between the d-axis current given value and the q-axis current given value under the condition of MTPA, and the parameters of the quadratic function are determined by pre-determining the permanent magnet synchronous motor. Generated by rotating parameter identification;
  • a modulation unit for generating switch drive pulses through SVPWM modulation according to a given voltage output by the control unit
  • the power converter unit is used for driving the permanent magnet synchronous motor according to the output pulse of the modulation unit.
  • the present application also discloses an electronic device, comprising:
  • the processor is configured to execute the computer program to implement the steps of any of the above-mentioned MTPA control methods for permanent magnet synchronous motors.
  • the present application constructs a trajectory planning formula that is closer to the actual operating condition of the motor based on the operation test and parameter identification, When performing online MTPA trajectory planning for permanent magnet synchronous motors, it not only avoids the influence of inductance self-saturation and cross-magnetic saturation, but also improves the accuracy of the planned trajectory, but also has low algorithm complexity and less computational time, and will not reduce the motor speed adjustment. dynamic response rate.
  • FIG. 1 is a flowchart of an MTPA control method of a permanent magnet synchronous motor disclosed in an embodiment of the application;
  • FIG. 2 is a control block diagram of another MTPA control method of a permanent magnet synchronous motor disclosed by an embodiment of the application;
  • FIG. 3 is a schematic diagram of the offset between the real MTPA trajectory and the theoretically calculated trajectory of a permanent magnet synchronous motor disclosed in an embodiment of the application;
  • FIG. 4 is a schematic diagram of a calculation process of a MTPA trajectory planning formula disclosed in an embodiment of the application;
  • FIG. 5 is a flowchart of a method for constructing a preset trajectory planning formula disclosed in an embodiment of the present application
  • FIG. 6 is a schematic diagram of four preset current state points disclosed in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of acceleration time distribution corresponding to FIG. 6 disclosed in an embodiment of the present application.
  • FIG. 8 is a schematic diagram of an acceleration torque distribution corresponding to FIG. 6 disclosed in an embodiment of the application.
  • FIG. 9 is a schematic diagram of selection of two operation modes in a motor rotation parameter identification process disclosed in an embodiment of the present application.
  • FIG. 10 is a block diagram of a system for identifying motor rotation parameters disclosed in an embodiment of the application.
  • FIG. 11 is a structural block diagram of an MTPA control device for a permanent magnet synchronous motor disclosed in an embodiment of the application;
  • FIG. 12 is a structural block diagram of an MTPA control system of a permanent magnet synchronous motor disclosed in an embodiment of the application;
  • FIG. 13 is a structural block diagram of an electronic device disclosed in an embodiment of this application.
  • the core of the present application is to provide an MTPA control method, device, system and electronic equipment for a permanent magnet synchronous motor, so as to realize MTPA trajectory planning with low algorithm complexity, to ensure that the energy-saving operation of the motor is not affected by parameter perturbation, and Does not affect the dynamic response rate of the motor.
  • Permanent magnet synchronous motor (Permanent Magnetic Synchronous Machine, PMSM) is a synchronous motor that uses permanent magnets to establish an excitation magnetic field. Benefiting from the characteristics of high electromechanical energy conversion efficiency, high dynamic response rate, and high steady-state speed accuracy, permanent magnet synchronous motors have gradually widened the application range in the field of industrial transmission, including cranes, scrapers, paper machines and other occasions.
  • Permanent magnet synchronous motor consists of stator, rotor and end cover and other components.
  • the stator generates a rotating magnetic field
  • the rotor is made of permanent magnet material.
  • the stator is laminated by laminations to reduce iron loss when the motor is running, and is equipped with three-phase AC windings, called the armature.
  • the rotor can be made in solid form or it can be extruded from laminations with permanent magnet material on it.
  • the magnetomotive force generated by the current synthesizes a rotating magnetomotive force with a constant amplitude. Because of its constant amplitude, the trajectory of this rotating magnetomotive force forms a circle, which is called a circular rotating magnetomotive force.
  • the main magnetic field of the rotor and the rotating magnetic field generated by the circular rotating magnetomotive force of the stator remain relatively static.
  • the interaction of the two magnetic fields forms a composite magnetic field in the air gap between the stator and the rotor, which interacts with the main magnetic field of the rotor to generate an electromagnetic torque that pushes or hinders the rotation of the motor. Due to the difference in the positional relationship between the air-gap synthetic magnetic field and the rotor main magnetic field, the permanent magnet synchronous motor can run in either the motor state or the generator state.
  • the generated electromagnetic torque is opposite to the rotor rotation direction, and the motor is in the state of generating electricity; on the contrary, when the air gap composite magnetic field leads the rotor main magnetic field, the generated electromagnetic torque is the same as that of the rotor main magnetic field.
  • the rotor rotates in the same direction, and the motor is in an electric state at this time.
  • the angle between the rotor main magnetic field and the air gap composite magnetic field is called the power factor angle.
  • Vector control technology is a control method of permanent magnet synchronous motor that was born in the early 1970s.
  • the vector control system of the permanent magnet synchronous motor refers to the control strategy of the DC motor, and uses the coordinate transformation to decompose the collected three-phase stator current, flux and other vectors of the motor into two components according to the direction of the rotation vector of the rotor flux.
  • the excitation current and torque current are adjusted according to different control objectives, so as to achieve precise control of speed and torque, so that the control system can obtain good steady-state and dynamic response characteristics.
  • the maximum torque-to-current ratio or MTPA control method is a common operating state optimization control method in the vector control of permanent magnet synchronous motors.
  • the control method can achieve a significant energy-saving operation.
  • the present application provides an MTPA control scheme for a permanent magnet synchronous motor, which can effectively solve the above technical problems .
  • an embodiment of the present application discloses an MTPA control method for a permanent magnet synchronous motor, which mainly includes:
  • the preset trajectory planning formula is based on the quadratic function relationship between the d-axis current given value and the q-axis current given value under the condition of MTPA, and is generated by identifying the rotation parameters of the permanent magnet synchronous motor in advance.
  • S103 Output the d-axis current given value and the q-axis current given value to the current loop in real time, so as to control the permanent magnet synchronous motor to realize MTPA operation based on the d-axis voltage given value and the q-axis voltage given value output by the current loop.
  • the control system of the permanent magnet synchronous motor generally adopts a conventional double closed-loop control structure.
  • the inner loop is the current loop
  • the outer loop is the speed loop.
  • the speed loop forms a closed loop by comparing the difference between the speed reference value and the actual motor speed value obtained by the detection feedback, and calculates the output according to the difference value, so as to realize the tracking of the speed reference value.
  • the calculation result of the speed loop is sent to the current loop, and the current loop controls and calculates according to the calculation result and the adopted vector control algorithm, and outputs the corresponding calculation result to the drive circuit of the motor.
  • FIG. 2 is a control block diagram of an MTPA control method of a permanent magnet synchronous motor disclosed in an embodiment of the present application.
  • ⁇ r * is the speed given value; ⁇ r is the actual speed value; i q_t * is the torque current given value; Including d-axis current setpoint and q-axis current given value id ,q includes d -axis feedback current id and q-axis feedback current i q ; ud ,q * includes d-axis voltage given value ud * and q-axis voltage given value u q * ; u s * is SVPWM u dc is the bus voltage of the power converter unit; i v, w include the v-phase current i v and the w-phase current i w output by the power converter unit; i ⁇ , ⁇ include the ⁇ -axis feedback current id and ⁇ -axis feedback current i q ; ⁇ r is the rotor magnetic field position angle of the motor.
  • the present application uses the preset trajectory planning formula to plan the current given value online: according to the torque current given value output by the speed loop, the corresponding d-axis current given value and q-axis current given value are planned. , as the current given output to the current loop, so that the current loop calculates and outputs the corresponding voltage given to the motor drive circuit based on the current given calculation, so as to control the motor to realize MTPA operation.
  • the voltage setting includes the d-axis voltage setting and the q-axis voltage setting. Based on the voltage setting, the two-phase synchronous rotating coordinate system (dq coordinate system) is transformed into the two-phase stationary coordinate system ( ⁇ coordinate system). , SVPWM modulation can be performed to generate and output the SVPWM modulated pulse signal to the power conversion unit, and then drive the permanent magnet synchronous motor to run.
  • dq coordinate system two-phase synchronous rotating coordinate system
  • ⁇ coordinate system two-phase stationary coordinate system
  • the MTPA trajectory planning performed in this application is specifically implemented based on a preset trajectory planning formula with a small amount of calculation. This method is simple to implement and will not reduce the dynamic response rate of motor control.
  • i d_mtpa is the d-axis current
  • i q_mtpa is the q-axis current
  • ⁇ PM is the permanent magnet flux linkage
  • L d is the d-axis inductance
  • Lq is the q-axis inductance
  • the present application does not adopt the above formula based on model inference.
  • the applicant further found that the offset MTPA trajectory curve can be approximately fitted as a quadratic function of the d-axis current and the q-axis current. Therefore, the present application performs parameter self-learning of the approximate quadratic function by performing the actual operation test of the motor, thereby obtaining a preset trajectory planning formula that is closer to the actual MTPA trajectory of the motor.
  • the MTPA control method of the permanent magnet synchronous motor builds a trajectory planning formula that is closer to the actual operating state of the motor based on the operation test and parameter identification.
  • trajectory planning For performing online MTPA trajectory planning for the permanent magnet synchronous motor, It not only avoids the influence of inductor self-saturation and cross magnetic saturation, but also improves the accuracy of the planning trajectory, but also has low algorithm complexity and less computational time, and does not reduce the dynamic response rate of motor speed regulation.
  • the MTPA control method of the permanent magnet synchronous motor obtained by the embodiment of the present application, on the basis of the above content, obtains the torque current given value output by the speed loop in real time, including:
  • Proportional and integral calculation is performed on the difference between the speed reference value and the actual speed value to obtain the torque current reference value.
  • PI adjustment is a common control method in industrial control, and in this embodiment, by setting corresponding adjustment parameters, a steady-state, error-free control of the motor speed can be achieved.
  • the MTPA control method of the permanent magnet synchronous motor obtained by the embodiment of the present application obtains the actual rotational speed value of the permanent magnet synchronous motor in real time on the basis of the above content, including:
  • the rotor magnetic field position angle of the permanent magnet synchronous motor is detected in real time based on the encoder; or, based on the speedless observer algorithm, the rotor magnetic field position angle is calculated in real time according to the voltage value and the current value;
  • the rotor magnetic field position angle is differentiated and low-pass filtered to obtain the actual rotational speed value.
  • the MTPA control method of the permanent magnet synchronous motor provided by the present application is not only suitable for the closed-loop vector control method with position sensor, but also suitable for the open-loop vector control method without position sensor based on the speed observer algorithm. Those skilled in the art can choose according to the actual situation.
  • the differential result may be further subjected to low-pass filtering processing, so as to perform rotational speed feedback adjustment based on the filtered actual rotational speed value.
  • the MTPA control method of the permanent magnet synchronous motor provided by the embodiment of the present application is based on the above content, and the preset trajectory planning formula defines the d-axis current given value and the q-axis current given value
  • the squared term of the value is negatively proportional.
  • the preset trajectory planning formula can be specifically:
  • this embodiment provides a specific expression of the preset trajectory planning formula, that is, a quadratic function that does not contain a linear term and a constant term.
  • the MTPA trajectory planning shown in FIG. 2 can be used as shown in FIG. 4 . calculation structure.
  • the present application also discloses a specific process for identifying the rotation parameters of the motor, so as to realize self-learning of the trajectory planning parameter k, thereby constructing a preset trajectory planning formula.
  • the MTPA control method of the permanent magnet synchronous motor provided by the embodiment of the present application is based on the above content, and the generation process of the preset trajectory planning formula includes the following steps:
  • the four points are all randomly selected points on the circle where the same current amplitude is located, and under the condition of the same current amplitude, the point where the maximum torque is obtained is not necessarily a point among the four points. .
  • the point at which the maximum torque is obtained is another point P opt other than the four points.
  • the extreme point of the function is the optimal current state point under the same current amplitude condition, that is, the MTPA state point P opt , and the extreme point is the value x of the id * /(i q * ) 2 coordinate axis That is, the reciprocal of the trajectory planning parameter k - 1/k.
  • the present application selects a plurality of current state points to test the motor acceleration process, and records the acceleration time t acc required for each point, as id * /(i q * ) 2
  • the size is the abscissa axis, and the coordinate system is established with t acc as the ordinate axis.
  • the discrete distribution of the acceleration time at each current state point is curve-fitted according to the concave function, and the extremum is further obtained by analyzing the fitting function. method or use the approximate estimation method of the symmetry of the fitting function to solve the abscissa x of the extreme value point of the concave function, and then obtain the trajectory planning parameter k.
  • the magnitude of the torque T e corresponding to different current state points has a convex function relationship with id * /(i q * ) 2 .
  • the acceleration duration is easier to measure in practical applications, and those skilled in the art can choose by themselves.
  • the MTPA control method of the permanent magnet synchronous motor provided by the embodiment of the present application, on the basis of the above content, selects several current state points with the same current amplitude, including: selecting the current amplitude equal to the rated value Several current state points for the current magnitude.
  • the value of the trajectory planning parameter k under different current amplitudes can be identified through the above self-learning process.
  • this embodiment only performs the automatic control of the MTPA trajectory parameter k under the rated current amplitude. study.
  • the MTPA control method of the permanent magnet synchronous motor provided by the embodiment of the present application is based on the above content, for each current state point as the starting state point, the permanent magnet synchronous motor is controlled to start The torque at the state point accelerates from zero speed to a preset speed threshold, including:
  • the present application sets two running modes, please refer to FIG. 9 for comparison.
  • mode 1 is adopted, that is, the acceleration operation mode
  • mode 0 is adopted, that is, the constant speed operation mode. After running at a constant speed for a period of time, it can gradually decelerate to zero for the motor acceleration running test at the next current state point.
  • FIG. 10 is a system block diagram of a motor rotation identification operation disclosed in an embodiment of the present application.
  • the acceleration operation mode the speed loop is not enabled, the current loop is given as the current state point as the initial state point, and the motor accelerates with the torque generated by the initial state point;
  • the constant speed operation mode the speed loop is enabled so that the motor runs steadily at the preset speed threshold, and the current loop is given as the current reference output by the speed regulator.
  • the preset rotational speed threshold may specifically be the rated rotational speed of the motor.
  • an embodiment of the present application discloses an MTPA control device for a permanent magnet synchronous motor, which mainly includes:
  • the speed adjustment module 301 is used to determine the torque current given value according to the given speed and the feedback value;
  • the MTPA trajectory planning module 302 is configured to calculate the d-axis current given value and the q-axis current given value in real time according to the preset trajectory planning formula based on the torque current given value; wherein the preset trajectory planning formula is based on the MTPA condition
  • the quadratic function relationship between the d-axis current given value and the q-axis current given value, the parameters of the quadratic function are generated by identifying the rotation parameters of the permanent magnet synchronous motor in advance;
  • the current regulating module 303 is used for calculating and outputting a given d-axis voltage and a given q-axis voltage according to the given value of d-axis current and given value of q-axis current based on the current regulator, so as to control the permanent magnet synchronous motor Implement MTPA operation.
  • the MTPA control device of the permanent magnet synchronous motor disclosed in the embodiment of the present application builds a trajectory planning formula that is closer to the actual operating state of the motor based on the operation test and parameter identification, and performs online MTPA trajectory planning for the permanent magnet synchronous motor. It not only avoids the influence of inductor self-saturation and cross-magnetic saturation, but also improves the accuracy of the planned trajectory, and the algorithm has low complexity and less computational time, and does not reduce the dynamic response rate of motor speed adjustment.
  • an embodiment of the present application discloses an MTPA control system for a permanent magnet synchronous motor, which mainly includes:
  • the modulation unit 401 is used for generating switch drive pulses through SVPWM modulation according to the given voltage output by the control unit 403;
  • the power converter unit 402 is used to drive the permanent magnet synchronous motor according to the output pulse of the modulation unit 401;
  • the control unit 403 is used to calculate the torque current given value according to the speed given and the feedback value based on the speed regulator; based on the torque current given value, calculate the d-axis current given value and q in real time according to the preset trajectory planning formula Shaft current given value; based on current regulator, according to d-axis current given and feedback value and q-axis current given and feedback value, calculate and output d-axis voltage given value and q-axis voltage given value;
  • the preset trajectory planning formula is based on the quadratic function relationship between the d-axis current given value and the q-axis current given value under the condition of MTPA, and the parameters of the quadratic function are determined by identifying the rotation parameters of the permanent magnet synchronous motor in advance. generate.
  • the MTPA control system of the permanent magnet synchronous motor disclosed in the embodiment of the present application builds a trajectory planning formula that is closer to the actual operating state of the motor based on the operation test and parameter identification, and performs online MTPA trajectory planning for the permanent magnet synchronous motor. It not only avoids the influence of inductor self-saturation and cross-magnetic saturation, but also improves the accuracy of the planned trajectory, and the algorithm has low complexity and less computational time, and does not reduce the dynamic response rate of motor speed adjustment.
  • an embodiment of the present application discloses an electronic device, including:
  • the processor 502 is configured to execute the computer program to implement the steps of any of the above-mentioned MTPA control methods for permanent magnet synchronous motors.

Abstract

一种永磁同步电机的MTPA控制方法、装置、系统及电子设备,该方法包括:实时获取转速调节器输出的转矩电流给定值(S101);按照预设轨迹规划公式实时计算d轴和q轴电流给定值;预设轨迹规划公式基于在MTPA条件下d轴与q轴电流给定值间的二次函数关系,通过预先对永磁同步电机进行旋转参数辨识而生成(S102);将d轴和q轴电流给定值实时输出至电流环,以便基于电流环输出的d轴和q轴电压给定值控制永磁同步电机实现MTPA运行(S103)。基于与电机实际运行状况更接近的轨迹规划公式进行MTPA轨迹规划,能实现对电机电感的自饱和与交叉饱和不敏感的节能运行,且算法复杂度低,计算耗时少,不会降低电机的动态响应速率。

Description

永磁同步电机的MTPA控制方法、装置、系统及设备 技术领域
本申请涉及同步电机控制技术领域,特别涉及一种永磁同步电机的MTPA控制方法、装置、系统及电子设备。
背景技术
永磁同步电机的转子磁场由永磁体提供,电机运行过程中的损耗主要包括定子铜耗和定、转子铁耗。由于铁耗的大小难以准确估计且受诸多其他因素影响,因此通常通过定子铜耗最小化以近似实现电机的能耗最优控制。定子铜耗的最小化即相同电流幅值大小下电机的输出转矩最大,所以这种能耗最优控制被称作最大转矩电流比(Maximum Torque Per Ampere,MTPA)控制。
MTPA控制实现方法包括有在线方法和离线方法两类。其中,离线方法主要为基于转矩测量的标定法,该方法多用于电动汽车中的电机驱动,其准确度很高,但标定过程十分繁琐,不适用于工业变频驱动。
MTPA控制的在线实现方法有搜索法、解析计算法等。一般地,搜索法可对MTPA运行点进行在线搜索,搜索精度高,但是计算量较大、耗时长,电机的动态响应特性易受到影响。解析计算法虽然收敛速度相对较快,但在电机运行中易受参数摄动尤其是电感的自饱和与交叉磁饱和的影响,导致计算轨迹与真实轨迹有较大差距,精确度不高。
鉴于此,提供一种解决上述技术问题的方案,已经是本领域技术人员所亟需关注的。
发明内容
本申请的目的在于提供一种永磁同步电机的MTPA控制方法、装置、系统及电子设备,以便以较低的算法复杂度实现MTPA轨迹规划,保证电机的节能运行不受参数摄动影响,且不影响电机的动态响应速率。
为解决上述技术问题,一方面,本申请公开了一种永磁同步电机的MTPA控制方法,包括:
实时获取转速调节器输出的转矩电流给定值;
基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对所述永磁同步电机进行旋转参数辨识而生成;
将所述d轴电流给定值和所述q轴电流给定值实时输出至电流环,以便基于所述电流环输出的d轴电压给定值和q轴电压给定值控制所述永磁同步电机实现MTPA运行。
可选地,所述预设轨迹规划公式限定了所述d轴电流给定值与所述q轴电流给定值的平方项呈负比例相关。
可选地,所述负比例的系数为-k;所述预设轨迹规划公式的生成过程包括如下步骤:
选取电流幅值相同的若干个电流状态点(i d *,i q *);
逐次以各所述电流状态点为起始状态点,控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长t acc
将各所述起始状态点在i d */(i q *) 2-t acc二维平面坐标系中的离散分布拟合为连续凹函数;
确定所述凹函数极值点处i d */(i q *) 2的取值x;
对极值点x取倒数得到轨迹规划参数k。
可选地,所述选取电流幅值相同的若干个电流状态点,包括:
选取电流幅值均等于额定电流幅值的若干个电流状态点。
可选地,对于作为起始状态点的每个所述电流状态点,所述控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,包括:
实时获取所述永磁同步电机的实际转速值;
判断所述实际转速值是否大于所述预设转速阈值;
若否,则将所述起始状态点设定的d轴电流给定值和q轴电流给定值 输出至电流环,以控制所述永磁同步电机恒转矩加速运行;
若是,则将所述转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机稳速运行在预设转速阈值。
可选地,所述实时获取转速调节器输出的转矩电流给定值,包括:
实时获取所述永磁同步电机的实际转速值;
对转速给定值与所述实际转速值的差值进行比例积分调节以获取所述转矩电流给定值。
可选地,所述实时获取所述永磁同步电机的实际转速值,包括:
基于编码器实时检测所述永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算所述转子磁场位置角;
对所述转子磁场位置角进行微分和低通滤波以获取所述实际转速值。
又一方面,本申请公开了一种永磁同步电机的MTPA控制装置,包括:
转速调节模块,用于根据转速给定和反馈值确定转矩电流给定值;
MTPA轨迹规划模块,用于基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
电流调节模块,用于根据所述d轴电流给定值和所述q轴电流给定值,基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制所述永磁同步电机实现MTPA运行。
又一方面,本申请公开了一种永磁同步电机的MTPA控制系统,包括:
控制单元,用于转速和电流调节,包括:基于转速调节器,根据转速给定和反馈值计算转矩电流给定;基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据所述d轴电流给定与反馈值和所述q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述 永磁同步电机进行旋转参数辨识而生成;
调制单元,用于根据所述控制单元输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
功率变换器单元,用于根据所述调制单元的输出脉冲驱动所述永磁同步电机。
又一方面,本申请还公开了一种电子设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序以实现如上所述的任一种永磁同步电机的MTPA控制方法的步骤。
本申请所提供的永磁同步电机的MTPA控制方法、装置、系统及电子设备所具有的有益效果是:本申请基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
附图说明
为了更清楚地说明现有技术和本申请实施例中的技术方案,下面将对现有技术和本申请实施例描述中需要使用的附图作简要的介绍。当然,下面有关本申请实施例的附图描述的仅仅是本申请中的一部分实施例,对于本领域普通技术人员来说,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图,所获得的其他附图也属于本申请的保护范围。
图1为本申请实施例公开的一种永磁同步电机的MTPA控制方法的流程图;
图2为本申请实施例公开的又一种永磁同步电机的MTPA控制方法的控制框图;
图3为本申请实施例公开的一种永磁同步电机的MTPA真实轨迹与理论计算轨迹的偏移示意图;
图4为本申请实施例公开的一种MTPA轨迹规划公式的计算过程示意 图图;
图5为本申请实施例公开的一种构建预设轨迹规划公式的方法流程图;
图6为本申请实施例公开的四个预设电流状态点的示意图;
图7为本申请实施例公开的一种对应于图6的加速时间分布示意图;
图8为本申请实施例公开的一种对应于图6的加速转矩分布示意图;
图9为本申请实施例公开的一种电机旋转参数辨识过程中的两种运行模式的选择示意图;
图10为本申请实施例公开的一种进行电机旋转参数辨识的系统框图;
图11为本申请实施例公开的一种永磁同步电机的MTPA控制装置的结构框图;
图12为本申请实施例公开的一种永磁同步电机的MTPA控制系统的结构框图;
图13为本申请实施例公开的一种电子设备的结构框图。
具体实施方式
本申请的核心在于提供一种永磁同步电机的MTPA控制方法、装置、系统及电子设备,以便以较低的算法复杂度实现MTPA轨迹规划,保证电机的节能运行不受参数摄动影响,且不影响电机的动态响应速率。
为了对本申请实施例中的技术方案进行更加清楚、完整地描述,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行介绍。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。永磁同步电机(Permanent Magnetic Synchronous Machine,PMSM)是利用永磁体建立励磁磁场的同步电机。得益于高机电能量转换效率、高动态响应速率、及高稳态转速精度等特点,永磁同步电机在工业传动领域的应用范围逐渐拓宽,包括起重机,刮板机,造纸机等场合。
永磁同步电机由定子、转子和端盖等部件构成。其定子产生旋转磁场,转子用永磁材料制成。定子由叠片叠压而成以减少电动机运行时产生的铁 耗,其中装有三相交流绕组,称作电枢。转子可以制成实心的形式,也可以由叠片压制而成,其上装有永磁体材料。
当三相电流通入永磁同步电机定子的三相对称绕组中时,电流产生的磁动势合成一个幅值大小不变的旋转磁动势。由于其幅值大小不变,这个旋转磁动势的轨迹便形成一个圆,称为圆形旋转磁动势。
由于永磁同步电机的转速恒为同步转速,因此转子主磁场和定子圆形旋转磁动势产生的旋转磁场保持相对静止。两个磁场相互作用,在定子与转子之间的气隙中形成一个合成磁场,它与转子主磁场发生相互作用,产生了一个推动或者阻碍电机旋转的电磁转矩。因气隙合成磁场与转子主磁场位置关系的不同,永磁同步电机既可以运行于电动机状态也可以运行于发电机状态。
当气隙合成磁场滞后于转子主磁场时,产生的电磁转矩与转子旋转方向相反,这时电机处于发电状态;相反,当气隙合成磁场超前于转子主磁场时,产生的电磁转矩与转子旋转方向相同,这时电机处于电动状态。转子主磁场与气隙合成磁场之间的夹角称为功率因数角。
矢量控制技术是诞生于上世纪70年代初的一种永磁同步电机的控制方式。永磁同步电机的矢量控制系统参照了直流电机的控制策略,利用坐标变换将采集到的电机三相定子电流、磁链等矢量按照转子磁链这一旋转矢量的方向分解成两个分量,一个沿着转子磁链方向,称为直轴(d轴)励磁电流;另一个正交于转子磁链方向,称为交轴(q轴)转矩电流。根据不同的控制目标调节励磁电流和转矩电流,进而实现对速度和转矩的精确控制,使控制系统获得良好的稳态和动态响应特性。
最大转矩电流比即MTPA控制方式是永磁同步电机矢量控制中常见的一种运行状态优化控制方法。当永磁同步电机长期处于重载运行状态时,该控制方法可实现效果显著的节能运行。而针对于现有技术中的MTPA控制方法所存在的计算量大、耗时长、受参数摄动影响等缺陷,本申请提供了一种永磁同步电机的MTPA控制方案,可有效解决上述技术问题。
参见图1所示,本申请实施例公开了一种永磁同步电机的MTPA控制 方法,主要包括:
S101:实时获取转速调节器输出的转矩电流给定值。
S102:基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值。
其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对永磁同步电机进行旋转参数辨识而生成。
S103:将d轴电流给定值和q轴电流给定值实时输出至电流环,以便基于电流环输出的d轴电压给定值和q轴电压给定值控制永磁同步电机实现MTPA运行。
首先需要说明的是,永磁同步电机的控制系统一般采用常规的双闭环控制结构。其中,内环为电流环,外环为转速环。转速环通过对转速给定值与检测反馈得到的电机实际转速值进行作差比较而构成闭环,依据差值大小来计算输出,以此来实现对转速给定值的跟踪。转速环的计算结果传入电流环,电流环依据该计算结果,按照所采用的矢量控制算法进行控制和计算,将相应的计算结果输出至电机的驱动电路。
在此双闭环控制结构的基础上,本申请在转速环输出结果至电流环之前,进行了MTPA轨迹在线规划。对照参见图2,图2为本申请实施例公开的一种永磁同步电机的MTPA控制方法的控制框图。
其中,ω r *为转速给定值;ω r为实际转速值;i q_t *为转矩电流给定值;
Figure PCTCN2020138982-appb-000001
包括d轴电流给定值
Figure PCTCN2020138982-appb-000002
和q轴电流给定值
Figure PCTCN2020138982-appb-000003
i d,q包括d轴反馈电流i d和q轴反馈电流i q;u d,q *包括d轴电压给定值u d *和q轴电压给定值u q *;u s *为SVPWM的调控电压;u dc为功率变换器单元的母线电压;i v,w包括功率变换器单元输出的v相电流i v和w相电流i w;i α,β包括α轴反馈电流i d和β轴反馈电流i q;θ r为电机的转子磁场位置角。
具体地,本申请利用预设轨迹规划公式对电流给定值进行了在线规划:根据转速环输出的转矩电流给定值,规划出对应的d轴电流给定值和q轴电流给定值,作为电流给定输出至电流环,以便电流环基于电流给定计算输出对应的电压给定至电机驱动电路,从而控制电机实现MTPA运行。
电压给定包括d轴电压给定值和q轴电压给定值,基于电压给定值进行两相同步旋转坐标系(dq坐标系)下到两相静止坐标系(αβ坐标系)的变换后,可进行SVPWM调制,以生成输出SVPWM调制脉冲信号至功率变换单元,进而驱动永磁同步电机运行。
其中,需要强调的是,本申请中所进行的MTPA轨迹规划,具体是基于一个计算量小的预设轨迹规划公式而实现的,由此方法实现简单,不会降低电机控制的动态响应速率。
具体地,根据永磁同步电机的线性化电磁模型,可推得理想情况下MTPA运行下电流轨迹(i d_mtpa,i q_mtpa)满足条件:
Figure PCTCN2020138982-appb-000004
其中,i d_mtpa为d轴电流;i q_mtpa为q轴电流;ψ PM为永磁体磁链,L d为d轴电感,Lq为q轴电感。
但是,申请人发现在电机的实际运行过程中,由于电感自饱和、交叉磁饱和的影响,实际条件下的MTPA轨迹曲线相比上式会发生偏移,具体可对照参见图3。
由此本申请并未采用上述基于模型推理得到的公式。相反,申请人进一步发现,偏移后的MTPA轨迹曲线可近似拟合为d轴电流与q轴电流的二次函数。由此,本申请通过进行电机的实际运行测试,对该近似二次函数进行参数自学习,从而获得了与电机实际MTPA轨迹更为接近的预设轨迹规划公式。
可见,本申请所提供的永磁同步电机的MTPA控制方法,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,实时获取转速环输出的转矩电流给定值, 包括:
实时获取永磁同步电机的实际转速值;
对转速给定值与实际转速值的差值进行比例积分计算以获取转矩电流给定值。
具体地,PI调节是工业控制中的一种常用控制方法,本实施例通过设置相应的调节参数可实现对电机转速的稳态无差控制。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,实时获取永磁同步电机的实际转速值,包括:
基于编码器实时检测永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算转子磁场位置角;
对转子磁场位置角进行微分和低通滤波以获取实际转速值。
具体地,本申请所提供的永磁同步电机的MTPA控制方法不仅适用于有位置传感器的闭环矢量控制方式,还可以基于无速度观测器算法,适用于无位置传感器的开环矢量控制方式。本领域技术人员可根据实际情况自行选择。并且,如图2所示,为了提高数据精确度,可将微分结果进一步进行低通滤波处理,以便基于滤波后的实际转速值进行转速反馈调节。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,所述预设轨迹规划公式限定了d轴电流给定值与q轴电流给定值的平方项呈负比例相关。当然容易理解的是,还需要对d轴电流给定值给出合理的限幅。
例如,预设轨迹规划公式可具体为:
Figure PCTCN2020138982-appb-000005
其中,
Figure PCTCN2020138982-appb-000006
为d轴电流给定值;
Figure PCTCN2020138982-appb-000007
为q轴电流给定值;k为轨迹规划参数;I max为电机的最大允许运行电流幅值。则,-k即为
Figure PCTCN2020138982-appb-000008
Figure PCTCN2020138982-appb-000009
的负比例系数。
具体地,本实施例给出了预设轨迹规划公式的具体表达式,即不含一次项和常数项的二次函数,对应地,图2中进行MTPA轨迹规划时可采用 如图4所示的计算结构。
其中需要说明的是,如图4所示还可进一步对
Figure PCTCN2020138982-appb-000010
项进行滤波处理。此外,如图4所示还需要对
Figure PCTCN2020138982-appb-000011
进行限幅处理:为了避免负向磁阻转矩输出,
Figure PCTCN2020138982-appb-000012
的上限设为0;为了避免电机过流,依据电机的最大允许运行电流幅值I max
Figure PCTCN2020138982-appb-000013
的下限设为
Figure PCTCN2020138982-appb-000014
由此,当依据公式的计算值大于0时,便将
Figure PCTCN2020138982-appb-000015
取值为0;当依据公式的计算值小于
Figure PCTCN2020138982-appb-000016
时,便将
Figure PCTCN2020138982-appb-000017
取值为
Figure PCTCN2020138982-appb-000018
参见图5,本申请还公开了进行电机的旋转参数辨识的具体过程,以实现对轨迹规划参数k的自学习,从而构建预设轨迹规划公式。
如图5所示,作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,预设轨迹规划公式的生成过程包括如下步骤:
S201:选取电流幅值相同的若干个电流状态点(i d *,i q *)。
以选四个电流状态点P 1、P 2、P 3、P 4为例,对照参见图6。图6中这四个电流状态点均分布在同一电流幅值所在的圆周上。而在P 1~P 4中,因不同的d轴电流、q轴电流组合情况,其各自对应的电机输出的转矩T e的大小各不相同,图6给出了一种可能的转矩大小差异情况:
T 2>T 3>T 1>T 4
容易理解的是,该四点均为在同一电流幅值所在的圆周上随意选取的点,而在电流幅值相同条件下,取得转矩最大值的点未必是该四点中的某个点。例如,图6中,取得转矩最大的点为该四点之外的另一个点P opt
S202:逐次以各电流状态点为起始状态点,控制永磁同步电机以起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长t acc
容易理解的是,起始状态点对应的转矩越大,电机加速至预设转速阈值所需花费的加速时长越短。因此,图6中四点的加速时长t acc大小差异情况是:
t 2<t 3<t 1<t 4
S203:将各起始状态点在i d */(i q *) 2-t acc二维平面坐标系中的离散分布拟 合为连续凹函数。
S204:确定该凹函数的极值点处i d */(i q *) 2的取值x。
S205:根据k=1/x计算得到轨迹规划参数k。
具体地,申请人发现,在以不同电流状态点(或者说其对应的转矩)进行同一加速过程测试时,所需花费的加速时长与i d */(i q *) 2呈凹函数关系。而函数的极值点即为在相同电流幅值条件下的最优电流状态点,即MTPA状态点P opt,并且极值点在i d */(i q *) 2坐标轴的取值x即为轨迹规划参数k的倒数——1/k。
由此,为了解算出轨迹规划参数,本申请在选取多个电流状态点进行电机加速过程测试,并记录下各点所需的加速时长t acc后,以i d */(i q *) 2大小为横坐标轴,以t acc为纵坐标轴建立坐标系,将各个电流状态点下的加速时长的离散分布按照凹函数进行曲线拟合,并进一步通过对拟合函数进行解析求极值的方法或者利用拟合函数的对称性近似估计的方法求解该凹函数的极值点横坐标x,进而得到轨迹规划参数k。
以图6中四点为例,该四点在i d */(i q *) 2-t acc二维平面坐标系中的二次函数拟合曲线如图7所示。
实际上,除了加速时长以外,不同电流状态点对应的转矩T e大小与i d */(i q *) 2呈凸函数关系,具体可对照参见图8。容易理解的是,实际应用中加速时长更易测量,本领域技术人员可自行选择。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,选取电流幅值相同的若干个电流状态点,包括:选取电流幅值均等于额定电流幅值的若干个电流状态点。
具体地,理论上,为精确获取全负载运行范围内的MTPA参考轨迹,可通过上述自学习过程辨识出在不同电流幅值下的轨迹规划参数k的取值。但是,考虑到MTPA控制主要在电机的重载和满载运行下效果更明显,,同时也为了缩短轨迹参数自学习的持续时间,本实施例仅对额定电流幅值下的MTPA轨迹参数k进行自学习。
作为一种具体实施例,本申请实施例所提供的永磁同步电机的MTPA控制方法在上述内容的基础上,对于作为起始状态点的每个电流状态点, 控制永磁同步电机以起始状态点的转矩从零速加速至预设转速阈值,包括:
实时获取永磁同步电机的实际转速值;
判断实际转速值是否大于预设转速阈值;
若否,则将起始状态点设定的d轴电流给定值和q轴电流给定值输出至电流环,以控制永磁同步电机恒转矩加速运行;
若是,则将转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制永磁同步电机稳速运行在预设转速阈值。
具体地,为了避免在电机运行测试过程中出现电机飞车的问题,本申请设定了两种运行模式,可对照参见图9。在电机转速未达到预设转速阈值期间,采用模式1,即加速运行模式;当电机达到预设转速阈值后,采用模式0,即恒速运行模式。恒速运行一段时间后即可逐渐减速至零以便进行下一电流状态点的电机加速运行测试。
对照参见图10,图10为本申请实施例公开的一种进行电机旋转辨识运行的系统框图。在模式1即加速运行模式下,转速环不启用,电流环给定为作为起始状态点的电流状态点,电机以起始状态点产生的转矩加速运行;在模式0即恒速运行模式下,转速环启用,以便电机以预设转速阈值稳速运行,而电流环给定为转速调节器输出的电流给定值。
其中,作为一个具体实施例,该预设转速阈值可具体为电机的额定转速。
参见图11所示,本申请实施例公开了一种永磁同步电机的MTPA控制装置,主要包括:
转速调节模块301,用于根据转速给定和反馈值确定转矩电流给定值;
MTPA轨迹规划模块302,用于基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,该二次函数的参数通过预先对永磁同步电机进行旋转参数辨识而生成;
电流调节模块303,用于根据d轴电流给定值和q轴电流给定值,用 于基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制永磁同步电机实现MTPA运行。
可见,本申请实施例所公开的永磁同步电机的MTPA控制装置,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
关于上述永磁同步电机的MTPA控制装置的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
参见图12所示,本申请实施例公开了一种永磁同步电机的MTPA控制系统,主要包括:
调制单元401,用于根据控制单元403输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
功率变换器单元402,用于根据调制单元401的输出脉冲驱动永磁同步电机;
控制单元403,用于基于转速调节器,根据转速给定和反馈值计算转矩电流给定值;基于转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据d轴电流给定与反馈值和q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
其中,预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,该二次函数的参数通过预先对永磁同步电机进行旋转参数辨识而生成。
可见,本申请实施例所公开的永磁同步电机的MTPA控制系统,基于运行测试和参数辨识构建了与电机实际运行状况更为接近的轨迹规划公式,在对永磁同步电机进行在线MTPA轨迹规划时,不仅避免了电感自饱和、交叉磁饱和的影响,提高了规划轨迹的精度,而且算法复杂度低、计算耗时少,不会降低电机转速调节的动态响应速率。
关于上述永磁同步电机的MTPA控制系统的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
参见图13所示,本申请实施例公开了一种电子设备,包括:
存储器501,用于存储计算机程序;
处理器502,用于执行所述计算机程序以实现如上所述的任一种永磁同步电机的MTPA控制方法的步骤。
关于上述电子设备的具体内容,可参考前述关于永磁同步电机的MTPA控制方法的详细介绍,这里就不再赘述。
本申请中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的设备而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需说明的是,在本申请文件中,诸如“第一”和“第二”之类的关系术语,仅仅用来将一个实体或者操作与另一个实体或者操作区分开来,而不一定要求或者暗示这些实体或者操作之间存在任何这种实际的关系或者顺序。此外,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本申请所提供的技术方案进行了详细介绍。本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请的保护范围内。

Claims (10)

  1. 一种永磁同步电机的MTPA控制方法,其特征在于,包括:
    实时获取转速调节器输出的转矩电流给定值;
    基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,通过预先对所述永磁同步电机进行旋转参数辨识而生成;
    将所述d轴电流给定值和所述q轴电流给定值实时输出至电流环,以便基于所述电流环输出的d轴电压给定值和q轴电压给定值控制所述永磁同步电机实现MTPA运行。
  2. 根据权利要求1所述的永磁同步电机的MTPA控制方法,其特征在于,所述预设轨迹规划公式限定了所述d轴电流给定值与所述q轴电流给定值的平方项呈负比例相关。
  3. 根据权利要求2所述的永磁同步电机的MTPA控制方法,其特征在于,所述负比例的系数为-k;所述预设轨迹规划公式的生成过程包括如下步骤:
    选取电流幅值相同的若干个电流状态点(i d *,i q *);
    逐次以各所述电流状态点为起始状态点,控制所述永磁同步电机以所述起始状态点的转矩从零速加速至预设转速阈值,并记录每次的加速时长t acc
    将各所述起始状态点在i d */(i q *) 2-t acc二维平面坐标系中的离散分布拟合为连续凹函数;
    确定所述凹函数极值点处i d */(i q *) 2的取值x;
    对极值点x取倒数得到轨迹规划参数k。
  4. 根据权利要求3所述的永磁同步电机的MTPA控制方法,其特征在于,所述选取电流幅值相同的若干个电流状态点,包括:
    选取电流幅值均等于额定电流幅值的若干个电流状态点。
  5. 根据权利要求3所述的永磁同步电机的MTPA控制方法,其特征在于,对于作为起始状态点的每个所述电流状态点,所述控制所述永磁同 步电机以所述起始状态点的转矩从零速加速至预设转速阈值,包括:
    实时获取所述永磁同步电机的实际转速值;
    判断所述实际转速值是否大于所述预设转速阈值;
    若否,则将所述起始状态点设定的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机恒转矩加速运行;
    若是,则将所述转速调节器输出的d轴电流给定值和q轴电流给定值输出至电流环,以控制所述永磁同步电机稳速运行在预设转速阈值。
  6. 根据权利要求1至5任一项所述的永磁同步电机的MTPA控制方法,其特征在于,所述实时获取转速调节器输出的转矩电流给定值,包括:
    实时获取所述永磁同步电机的实际转速值;
    对转速给定值与所述实际转速值的差值进行比例积分调节以获取所述转矩电流给定值。
  7. 根据权利要求6所述的永磁同步电机的MTPA控制方法,其特征在于,所述实时获取所述永磁同步电机的实际转速值,包括:
    基于编码器实时检测所述永磁同步电机的转子磁场位置角;或者,基于无速度观测器算法,根据电压值和电流值实时计算所述转子磁场位置角;
    对所述转子磁场位置角进行微分和低通滤波以获取所述实际转速值。
  8. 一种永磁同步电机的MTPA控制装置,其特征在于,包括:
    转速调节模块,用于根据转速给定和反馈值确定转矩电流给定值;
    MTPA轨迹规划模块,用于基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
    电流调节模块,用于根据所述d轴电流给定值和所述q轴电流给定值,基于电流调节器计算输出d轴电压给定值和q轴电压给定值,以控制所述永磁同步电机实现MTPA运行。
  9. 一种永磁同步电机的MTPA控制系统,其特征在于,包括:
    控制单元,用于转速和电流调节,包括:基于转速调节器,根据转速 给定和反馈值计算转矩电流给定;基于所述转矩电流给定值,按照预设轨迹规划公式实时计算d轴电流给定值和q轴电流给定值;基于电流调节器,根据所述d轴电流给定与反馈值和所述q轴电流给定与反馈值,计算并输出d轴电压给定值和q轴电压给定值;
    其中,所述预设轨迹规划公式基于在MTPA条件下d轴电流给定值与q轴电流给定值间的二次函数关系,所述二次函数的参数通过预先对所述永磁同步电机进行旋转参数辨识而生成;
    调制单元,用于根据所述控制单元输出的给定电压,通过SVPWM调制生成开关驱动脉冲;
    功率变换器单元,用于根据所述调制单元的输出脉冲驱动所述永磁同步电机。
  10. 一种电子设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序以实现如权利要求1至7任一项所述的永磁同步电机的MTPA控制方法的步骤。
PCT/CN2020/138982 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、系统及设备 WO2022133892A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080003723.0A CN112740537B (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、系统及设备
PCT/CN2020/138982 WO2022133892A1 (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、系统及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138982 WO2022133892A1 (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、系统及设备

Publications (1)

Publication Number Publication Date
WO2022133892A1 true WO2022133892A1 (zh) 2022-06-30

Family

ID=75609537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138982 WO2022133892A1 (zh) 2020-12-24 2020-12-24 永磁同步电机的mtpa控制方法、装置、系统及设备

Country Status (2)

Country Link
CN (1) CN112740537B (zh)
WO (1) WO2022133892A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184801A (zh) * 2022-09-13 2022-10-14 苏州瑞纳电气科技有限公司 一种共轴高速永磁同步电机互馈测试系统
CN116027672A (zh) * 2023-03-28 2023-04-28 山东大学 基于神经网络的模型预测控制方法
CN116039341A (zh) * 2023-03-28 2023-05-02 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车
CN117543905A (zh) * 2024-01-05 2024-02-09 深圳市英士达机电技术开发有限公司 一种集成型闭环步进电机

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11671037B1 (en) * 2022-05-05 2023-06-06 Rockwell Automation Technologies, Inc. Efficiency optimization of maximum torque per amps control for synchronous motors
CN117424505B (zh) * 2023-12-19 2024-03-12 上海精泰技术有限公司 同步磁阻电机的控制方法、设备及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217916A1 (en) * 2011-02-28 2012-08-30 Deere & Company Device And Method For Generating An Initial Controller Lookup Table For An IPM Machine
CN104037794A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种飞轮储能系统及其控制方法
CN106452243A (zh) * 2016-10-26 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 永磁同步电机的弱磁控制系统、方法、冰箱控制器及冰箱
CN107332485A (zh) * 2017-07-14 2017-11-07 阳光电源股份有限公司 一种永磁同步电机的弱磁控制方法及控制器
CN107896080A (zh) * 2017-12-14 2018-04-10 成都雅骏新能源汽车科技股份有限公司 内嵌式永磁同步电机mtpa曲线拟合方法及控制系统
CN111884552A (zh) * 2020-07-02 2020-11-03 华中科技大学 基于电压反馈的永磁同步电机弱磁优化控制方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102857160A (zh) * 2012-09-20 2013-01-02 西北工业大学 一种基于多线拟合的变励磁同步电机mtpa控制方法
EP2892148B1 (en) * 2014-01-02 2021-09-22 ABB Schweiz AG Control system and method for an electric three-phase variable speed motor
CN103780191B (zh) * 2014-01-24 2015-12-02 浙江大学 开绕组永磁同步电机串联补偿矢量控制方法
JP6391438B2 (ja) * 2014-11-21 2018-09-19 スマック株式会社 モータ制御装置
CN109194229B (zh) * 2018-09-27 2020-07-17 北京理工大学 一种基于转矩闭环的永磁同步电机mtpa控制系统及方法
CN110429889B (zh) * 2019-08-07 2021-06-22 北京航空航天大学 一种幅度可调的方波注入最大转矩电流比电机控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120217916A1 (en) * 2011-02-28 2012-08-30 Deere & Company Device And Method For Generating An Initial Controller Lookup Table For An IPM Machine
CN104037794A (zh) * 2014-06-19 2014-09-10 国家电网公司 一种飞轮储能系统及其控制方法
CN106452243A (zh) * 2016-10-26 2017-02-22 珠海格力节能环保制冷技术研究中心有限公司 永磁同步电机的弱磁控制系统、方法、冰箱控制器及冰箱
CN107332485A (zh) * 2017-07-14 2017-11-07 阳光电源股份有限公司 一种永磁同步电机的弱磁控制方法及控制器
CN107896080A (zh) * 2017-12-14 2018-04-10 成都雅骏新能源汽车科技股份有限公司 内嵌式永磁同步电机mtpa曲线拟合方法及控制系统
CN111884552A (zh) * 2020-07-02 2020-11-03 华中科技大学 基于电压反馈的永磁同步电机弱磁优化控制方法及系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115184801A (zh) * 2022-09-13 2022-10-14 苏州瑞纳电气科技有限公司 一种共轴高速永磁同步电机互馈测试系统
CN115184801B (zh) * 2022-09-13 2022-11-29 苏州瑞纳电气科技有限公司 一种共轴高速永磁同步电机互馈测试系统
CN116027672A (zh) * 2023-03-28 2023-04-28 山东大学 基于神经网络的模型预测控制方法
CN116039341A (zh) * 2023-03-28 2023-05-02 浙江零跑科技股份有限公司 一种电机加热方法、计算机设备、可读存储介质及电动车
CN117543905A (zh) * 2024-01-05 2024-02-09 深圳市英士达机电技术开发有限公司 一种集成型闭环步进电机
CN117543905B (zh) * 2024-01-05 2024-03-22 深圳市英士达机电技术开发有限公司 一种集成型闭环步进电机

Also Published As

Publication number Publication date
CN112740537A (zh) 2021-04-30
CN112740537B (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
WO2022133892A1 (zh) 永磁同步电机的mtpa控制方法、装置、系统及设备
Ren et al. Direct torque control of permanent-magnet synchronous machine drives with a simple duty ratio regulator
Zhang et al. Discrete-time low-frequency-ratio synchronous-frame full-order observer for position sensorless IPMSM drives
Tuovinen et al. Adaptive full-order observer with high-frequency signal injection for synchronous reluctance motor drives
EP3002872B1 (en) Methods of estimating rotor magnet temperature and systems thereof
CN102647134B (zh) 一种永磁同步电机无角度传感器的效率优化控制方法
EP2760127A2 (en) Method of controlling an AC machine and controller for controlling an AC machine
CN111245328B (zh) 查表法结合调节器的永磁同步电机控制方法
WO2012029715A1 (ja) 電動機の駆動装置
CN109150042A (zh) 一种表面式永磁同步电机前馈解耦弱磁控制方法
Pellegrino et al. Plug-in direct-flux vector control of PM synchronous machine drives
Nishad et al. Induction motor control using modified indirect field oriented control
Jukic et al. Comparison of torque estimation methods for interior permanent magnet wind power generator
Chen et al. Adaptive second-order active-flux observer for sensorless control of PMSMs with MRAS-based VSI non-linearity compensation
Zhang et al. MTPA-based high-frequency square wave voltage signal injection strategy for IPMSM control
WO2022120772A1 (zh) 永磁同步电机的磁场定向校正方法、装置、设备及介质
Jing et al. Optimization of speed loop control technology for permanent magnet synchronous motor servo system
Shen et al. Seamless transition strategy for wide speed-range sensorless IPMSM drives with a virtual q-axis inductance
Heidari et al. A comparison of the vector control of synchronous reluctance motor and permanent magnet-assisted synchronous reluctance motor
Ozcira et al. Direct torque control of permanent magnet synchronous motors
Vasudevan et al. Development of torque and flux ripple minimization algorithm for direct torque control of induction motor drive
CN111245320B (zh) 基于功率平衡的同步磁阻电机的控制方法和控制装置
CN111224602B (zh) 基于功率平衡的永磁同步电机的控制方法和控制装置
Yu et al. A deadbeat-direct torque and flux control for speed-sensorless induction motor drives using adaptive full-order observer
CN116191969B (zh) 基于谐波电流注入的同步电机转矩密度提升方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20966464

Country of ref document: EP

Kind code of ref document: A1