CN108649071B - 半导体器件及其制造方法 - Google Patents

半导体器件及其制造方法 Download PDF

Info

Publication number
CN108649071B
CN108649071B CN201810470252.9A CN201810470252A CN108649071B CN 108649071 B CN108649071 B CN 108649071B CN 201810470252 A CN201810470252 A CN 201810470252A CN 108649071 B CN108649071 B CN 108649071B
Authority
CN
China
Prior art keywords
layer
barrier layer
doped
ion
barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810470252.9A
Other languages
English (en)
Other versions
CN108649071A (zh
Inventor
倪贤锋
范谦
何伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Han Hua Semiconductors Co Ltd
Original Assignee
Suzhou Han Hua Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Han Hua Semiconductors Co Ltd filed Critical Suzhou Han Hua Semiconductors Co Ltd
Priority to CN201810470252.9A priority Critical patent/CN108649071B/zh
Publication of CN108649071A publication Critical patent/CN108649071A/zh
Application granted granted Critical
Publication of CN108649071B publication Critical patent/CN108649071B/zh
Priority to US16/407,184 priority patent/US10622456B2/en
Priority to US16/807,633 priority patent/US11056572B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/2654Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds
    • H01L21/26546Bombardment with radiation with high-energy radiation producing ion implantation in AIIIBV compounds of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Abstract

本申请提供一种半导体器件及其制造方法,包括:在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽,并在所述沟槽上形成掺杂层;在所述势垒层与所述掺杂层上形成钝化层,并对所述钝化层进行刻蚀,暴露出部分势垒层,所述部分势垒层与所述掺杂层相接触;将所述离子掺杂到与所述部分势垒层相接触的部分缓冲层中。上述半导体器件及其制造方法,通过对部分缓冲层进行离子掺杂,减少二维电子气与掺杂层之间的接触电阻,从而减少器件的导通电阻。

Description

半导体器件及其制造方法
技术领域
本发明涉及半导体制造领域,特别是涉及一种半导体器件及其制造方法。
背景技术
作为第三代半导体材料的代表,氮化镓(GaN)具有许多优良的特性,高临界击穿电场、高电子迁移率、高二维电子气浓度和良好的高温工作能力等。基于氮化镓的第三代半导体器件,如高电子迁移率晶体管(HEMT)、异质结构场效应晶体管(HFET)等已经得到了应用,尤其在射频、微波等需要大功率和高频率的领域具有明显优势。
对于HEMT或者HFET器件而言,从源极到漏极的沟道导通主要通过氮化镓铝(AlGaN)和GaN界面处的二维电子气(2DEG)来实现。但由于AlGaN与GaN均接近于绝缘体,具有较大的接触电阻,导致了整个器件的导通电阻较大,限制了器件的使用范围。
发明内容
基于此,有必要提供一种半导体器件及其制造方法,以减少接触电阻而大幅减少导通电阻。
本申请提供一种半导体器件制造方法,包括:
在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;
刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽,并在所述沟槽上形成掺杂层;
在所述势垒层与所述掺杂层上形成钝化层,并对所述钝化层进行刻蚀,暴露出部分势垒层,所述部分势垒层与所述掺杂层相接触;
将所述离子掺杂到与所述部分势垒层相接触的部分缓冲层中。
可选的,在所述势垒层与所述掺杂层上形成钝化层之后的步骤包括:对所述钝化层进行刻蚀之后,还暴露出部分掺杂层,所述暴露出的部分势垒层与所述部分掺杂层相接触;
将离子注入到所述部分掺杂层和与所述部分势垒层相接触的部分缓冲层中。
可选的,所述刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽的步骤包括:
在所述势垒层上依次形成绝缘电介质层和掩膜层;
在所述掩膜层上形成对应所述源极区域和漏极区域的欧姆接触区;
对所述欧姆接触区内的势垒层和缓冲层进行刻蚀。
可选的,所述掺杂层为n型掺杂层。
可选的,所述在一个所述掺杂层上形成源极,在另一所述掺杂层上形成漏极,所述势垒层上形成栅极。
可选的,所述离子是n型硅离子或者是n型硅离子与n型氧离子的混合离子。
可选的,所述掺杂层的离子掺杂浓度大于2×1019cm-3
相应的,本申请还提供一种半导体器件,包括:
衬底;
依次位于所述衬底上缓冲层和势垒层;
刻蚀所述势垒层源极区域和漏极区域形成的沟槽,;
位于所述沟槽内并与所述势垒层接触的掺杂层;
所述缓冲层包括缓冲掺杂部,所述缓冲掺杂部与所述掺杂层和所述势垒层相接触。
可选的,所述掺杂层包括二次掺杂部,所述二次掺杂部与所述缓冲掺杂部和所述势垒层相接触
上述的半导体器件及其制造方法,通过对部分缓冲层进行离子掺杂,减少二维电子气与掺杂层之间的接触电阻,从而减少器件的导通电阻。
附图说明
图1为实施例一种的半导体器件制造的流程图;
图2-图7为实施例一的半导体器件制造过程中的结构图;
图8-图9为实施例二的半导体器件制造过程中的结构图。
图中标号:
1-衬底;2-缓冲层;3-势垒层;4-掺杂层;5-钝化层;6-二维电子气;7-源极;8-漏极;9-栅极;11-沟槽;21-缓冲掺杂部、;31-势垒掺杂部;41-二次掺杂部。
具体实施方式
以下结合附图和具体实施例对本发明提出的半导体器件及其制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
实施例一
在本实施例中所提供的半导体器件的制造方法请参考图1,所述方法包括:
S11:在衬底上依次形成缓冲层和势垒层;
其中,所述衬底材料包括但不限于蓝宝石、碳化硅、硅、金刚石、氮化镓和氮化铝等材料。所述缓冲层与所述势垒层堆叠在一起形成异质结,所述缓冲层靠近所述势垒层一端的表面形成二维电子气(2DEG),所述2DEG具有高电子密度和高电子迁移率。典型的异质结为AlGaN/GaN,即所述缓冲层为GaN,所述势垒层为AlGaN。所述缓冲层也可以为InN、AlN、AlGaN,InGaN等氮化物,所述势垒层也可以为InAlN、AlN、ScAlN等合金材料的一种或几种的叠加。所述衬底的厚度为50到1000微米,所述势垒层的厚度为3到100纳米,所述缓冲层的厚度为50到10000纳米。为方便说明,后续将以AlGaN/GaN结构为例进行说明,可以理解的是,这不会妨碍本领域技术人员对本申请的理解。
S12:刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽,并在所述沟槽上形成掺杂层;
其中,为了在所述缓冲层的上形成沟槽,可以在所述势垒层表面沉积绝缘介电层,并在所述绝缘介电层上覆盖掩膜层,采用光刻工艺在掩膜层上形成欧姆接触和非欧姆接触区,所述欧姆接触区位于所述非欧姆接触区的两侧。所述欧姆接触区对应所述势垒层的源极区域和漏极区域。然后对欧姆接触区的势垒层进行刻蚀,所述刻蚀完欧姆接触区的势垒层后,还会刻蚀势垒层下方的部分缓冲层,从而形成位于缓冲层上的沟槽。
在沟槽形成后,在沟槽中生长掺杂层,所述掺杂层的材料与所述缓冲层一致,在本实施例中,所述掺杂层为n型GaN掺杂层,所述掺杂层的离子掺杂浓度大于2×1019cm-3。所述掺杂层的厚度为5到100纳米。所述掺杂层与所述势垒层相接触。所述掺杂层为后续在掺杂层上形成的源极和漏极区域提供隧穿电子,形成非合金欧姆接触。而为了器件能够在高频率下工作,导通电阻必须尽可能低,所述导通电阻是指源极与漏极区域之间的总电阻。在高频器件中,导通电阻大小主要由掺杂层与电子气之间的接触电阻决定,因此为了获得低导通电阻,可以减小掺杂层与电子气之间的接触电阻。
S13:在所述势垒层与所述掺杂层上形成钝化层,并对所述钝化层进行刻蚀,暴露出部分势垒层,所述暴露出的部分势垒层与所述掺杂层相接触。
其中,可以通过在所述势垒层与所述掺杂层的表面沉积钝化层,并在钝化层上覆盖掩膜层,利用光刻工艺在掩膜层上形成需要的图案,之后对钝化层进行刻蚀,使与掺杂层相接触的部分势垒层暴露出来。
S14:将所述离子掺杂到与所述部分势垒层相接触的部分缓冲层中。
其中,进行离子注入时,由于钝化层的存在,掺杂层和未暴露出的势垒层会被钝化层挡住,离子只能轰击到暴露出的部分势垒层和暴露出的部分势垒层对应下方的缓冲层中,使离子掺杂到所述部分势垒层和部分缓冲层中。所述部分缓冲层与所述掺杂层和部分势垒层均接触。离子注入完成后,为激活注入的离子和修复离子轰击引起的晶格损伤,进行退火工艺,从而在所述缓冲层和势垒层内分别形成缓冲掺杂部和势垒掺杂部。
以下将结合图2-图6对本申请所提供的半导体器件制造方法做进一步说明。
具体的,所述衬底1上依次层叠有所述缓冲层2和势垒层3,形成如图2所示的结构。形成所述缓冲层2和所述势垒层3的方法可以是金属有机化学气相沉积(MOCVD)或者分子束外延(MBE)。
所述势垒层3包括源极区域、漏极区域和栅极区域,分别用于设置源极、漏极和栅极。由于势垒层3的电阻较大,为了增加器件的导电性能,将所述势垒层的源极区域与漏极区域刻蚀掉,并对下层的缓冲层形成过刻蚀,即刻蚀掉部分缓冲层2,在缓冲层2上形成沟槽11,所述沟槽11从势垒层3表面延伸至缓冲层2表面,形成如图3所示的结构。所述绝缘介电层可以为二氧化硅层、氮化硅层或者是二氧化硅层加氮化硅层。所述掩膜层可以为光刻胶。所述刻蚀可以为干法刻蚀或者为湿法刻蚀。
所述沟槽11形成后,可以通过MBE或者MOCVD等方式在所述沟槽11内形成掺杂层4,之后去除剩余的绝缘介电层和掩膜层,形成如图4所示的结构。
所述掺杂层4形成后,在所述掺杂层4和所述势垒层3上覆盖钝化层5,所述钝化层5可以为介电层与金属层(可以为铝、铜等)的堆叠。再在所述钝化层上覆盖掩膜层,所述掩膜层可以为光刻胶,利用光刻工艺在掩膜层上定义出需要刻蚀的部分,并采用等离子体干法蚀刻去除部分钝化层5,从而暴露出与所述掺杂层4相接触的部分势垒层3,形成如图5所示的结构。
如图6所示,所述离子按箭头所示方向轰击所述器件,钝化层能够阻挡离子轰击其覆盖的部分,保护钝化层下方的结构不被轰击,二未被钝化层覆盖的结构会被离子离子,形成离子掺杂结构。所述离子为n型离子,可以为硅离子,也可以是硅离子与氧离子的混合离子。离子注入的过程中,注入的离子能量和剂量都较高。因此,离子除了注入到暴露出的部分势垒层中,还会注入到所暴露出的势垒层3下方对应的缓冲层2中,然后进行退火工艺,在所述缓冲层和势垒层内形成缓冲掺杂部21和势垒掺杂部31。所述退火工艺可以是激光退火或者热退火。
离子注入完成后,通过湿法工艺去除残留的钝化层5和掩膜层,在一个所述掺杂层4上形成源极7,在另一所述掺杂层4上形成漏极8,在所述势垒层3的栅极区域形成栅极9,形成如图7所示的器件结构。所述源极7和漏极8可以为钛、铝、镍、金中任意多种组成的合金;所述栅极9可以为镍/金或者铂/金构成的金属叠层。
在本实施例中,通过对部分缓冲层进行离子掺杂,减少电子气与掺杂层之间的接触电阻,从而减少器件的导通电阻。
实施例二
本实施例所提供的半导体器件的制造方法与实施例一的区别在于:S12之后,在所述势垒层3和所述掺杂层4上形成钝化层5,对所述钝化层5进行刻蚀之后,暴露出部分势垒层31和部分掺杂层41,所述暴露出的部分势垒层3与所述部分掺杂层4相接触,然后对所述暴露出的部分势垒层3与所述部分掺杂层4进行离子掺杂,将离子掺杂到所述部分掺杂层3和与所述部分势垒层4相接触的部分缓冲层2中,形成缓冲掺杂部21、势垒掺杂部31和二次掺杂部41,形成如图8所示的结构。
在形成如图8所示的结构后,通过湿法工艺去除残留的钝化层5和掩膜层,在一个所述掺杂层4上形成源极7,在另一所述掺杂层4上形成漏极8,在所述势垒层3的栅极区域形成栅极9,最终形成如图9所示的器件结构。
本实施例的其他特征均与实施例一一致,此处不再进行阐述。
在本实施例中,通过对部分缓冲层进行离子掺杂,对部分掺杂层进行二次离子掺杂,进一步减少电子气与掺杂层之间的接触电阻,从而减少器件的导通电阻。
实施例三
在本实施例中所提供的半导体器件的结构请参考图7,包括:
衬底1;依次位于所述衬底上缓冲层2和势垒层3;刻蚀所述势垒层3源极区域和漏极区域形成位于所述缓冲层2上的沟槽11;位于所述沟槽11内并与所述势垒层3接触的掺杂层4;所述缓冲层2包括缓冲掺杂部31,所述缓冲掺杂部31与所述掺杂层4和所述势垒层3相接触。
其中,所述衬底材料包括但不限于蓝宝石、碳化硅、硅、金刚石和氮化铝等材料。
所述缓冲层2与所述势垒层3堆叠在一起形成异质结,所述缓冲层2靠近所述势垒层3一端的表面形成二维电子气6,所述二维电子气6具有高电子密度和高电子迁移率。典型的异质结为AlGaN/GaN,即所述缓冲层2为GaN,所述势垒层3为AlGaN。所述缓冲层2也可以为InN、AlN、AlGaN,InGaN等氮化物,所述势垒层也可以为InAlN、AlN、ScAlN等合金材料的一种或几种的叠加。为方便说明,后续将以AlGaN/GaN结构为例进行说明,可以理解的是,这不会妨碍本领域技术人员对本申请的理解。
为了在所述缓冲层2的上形成沟槽11,可以在所述势垒层3表面沉积绝缘介电层,并在所述绝缘介电层上覆盖掩膜层,采用光刻工艺在掩膜层上形成欧姆接触和非欧姆接触区,所述欧姆接触区位于所述非欧姆接触区的两侧。所述欧姆接触区对应所述势垒层3的源极区域和漏极区域。然后对欧姆接触区的势垒层3进行刻蚀,所述刻蚀完欧姆接触区的势垒层3后,还会刻蚀到势垒层3下方的部分缓冲层2,从而形成位于缓冲层2上的沟槽11。
在沟槽11形成后,在沟槽11中生长掺杂层4,所述掺杂层4的材料与所述缓冲层2一致,在本实施例中,所述掺杂层2为n型GaN掺杂层。所述n型GaN掺杂层为后续在n型GaN掺杂层上形成的源极和漏极区域提供隧穿电子,形成非合金欧姆接触。而为了器件能够在高频率下工作,导通电阻必须尽可能低,所述导通电阻是指源极与漏极区域之间的总电阻。而导通电阻大小主要由掺杂层与电子气之间的接触电阻决定,因此为了获得低导通电阻,可以减小掺杂层与电子气之间的接触电阻。
对暴露出的部分势垒层3以及对应下方的缓冲层2进行离子掺杂,形成缓冲掺杂部21和离子掺杂部31,所述缓冲掺杂部21靠近所述掺杂层4并与所述掺杂层4相接触。所述缓冲掺杂部21可用采用离子注入方式形成。所述离子为n型离子,可以是硅离子,也可以是硅离子和氧离子的混合离子。
所述半导体器件还包括源极7、漏极8和栅极9。所述源极7和漏极8分别位于所述掺杂层4上,所述栅极9位于所述势垒层3的栅极区域上。所述源极7和漏极8可以为钛、铝、镍、金中任意多种组成的合金;所述栅极9可以为镍/金或者铂/金构成的金属叠层。
实施例四
本实施所提供的所提供的半导体器件的结构请参考图9,包括:
衬底1;依次位于所述衬底上缓冲层2和势垒层3;刻蚀所述势垒层3源极区域和漏极区域形成位于所述缓冲层2上的沟槽11;位于所述沟槽11内并与所述势垒层3接触的掺杂层4;所述缓冲层2包括缓冲掺杂部31,所述缓冲掺杂部21与所述势垒层3相接触,所述掺杂层4包括二次掺杂部41,所述二次掺杂部41与所述缓冲掺杂部21和所述势垒层3相接触。
所述二次掺杂部41的离子浓度大于所述掺杂层4中除二次掺杂部41以外部分的浓度。
本实施例的其他特征均与实施例三一致,此处不再进行阐述。
综上所述,本申请所提供的半导体器件及其制造方法,通过对部分缓冲层进行离子掺杂的方式,减少电子气与掺杂层之间的接触电阻,从而减少器件的导通电阻。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.一种半导体器件制造方法,其特征在于,包括:
在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;
刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽,并在所述沟槽上形成掺杂层;
在所述势垒层与所述掺杂层上形成钝化层,并对所述钝化层进行刻蚀,暴露出部分势垒层,所述部分势垒层与所述掺杂层相接触;
将离子掺杂到与所述部分势垒层相接触的部分缓冲层中。
2.根据权利要求1所述的半导体器件制造方法,其特征在于,在所述势垒层与所述掺杂层上形成钝化层之后的步骤包括:
对所述钝化层进行刻蚀之后,还暴露出部分掺杂层,所述暴露出的部分势垒层与所述部分掺杂层相接触;
将离子掺杂到所述部分掺杂层和与所述部分势垒层相接触的部分缓冲层中。
3.根据权利要求1或2所述的半导体器件制造方法,其特征在于,所述刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽的步骤包括:
在所述势垒层上依次形成绝缘电介质层和掩膜层;
在所述掩膜层上形成对应所述源极区域和漏极区域的欧姆接触区;
对所述欧姆接触区内的势垒层和缓冲层进行刻蚀。
4.根据权利要求1或2所述的半导体器件制造方法,其特征在于,所述掺杂层为n型掺杂层。
5.根据权利要求1或2所述的半导体器件制造方法,其特征在于,在一个所述掺杂层上形成源极,在另一所述掺杂层上形成漏极,所述势垒层上形成栅极。
6.根据权利要求1或2所述的半导体器件制造方法,其特征在于,所述离子是n型硅离子或者是n型硅离子与n型氧离子的混合离子。
7.根据权利要求1或2所述的半导体器件制造方法,其特征在于,所述掺杂层的离子掺杂浓度大于2×1019cm-3
CN201810470252.9A 2018-05-17 2018-05-17 半导体器件及其制造方法 Active CN108649071B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201810470252.9A CN108649071B (zh) 2018-05-17 2018-05-17 半导体器件及其制造方法
US16/407,184 US10622456B2 (en) 2018-05-17 2019-05-09 Semiconductor device and method for manufacturing the same
US16/807,633 US11056572B2 (en) 2018-05-17 2020-03-03 Semiconductor device and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810470252.9A CN108649071B (zh) 2018-05-17 2018-05-17 半导体器件及其制造方法

Publications (2)

Publication Number Publication Date
CN108649071A CN108649071A (zh) 2018-10-12
CN108649071B true CN108649071B (zh) 2019-03-19

Family

ID=63756131

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810470252.9A Active CN108649071B (zh) 2018-05-17 2018-05-17 半导体器件及其制造方法

Country Status (2)

Country Link
US (2) US10622456B2 (zh)
CN (1) CN108649071B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888011A (zh) * 2019-03-12 2019-06-14 苏州汉骅半导体有限公司 半导体结构及其制造方法
CN111129118A (zh) * 2019-12-27 2020-05-08 英诺赛科(珠海)科技有限公司 半导体器件及其制造方法
US20230053045A1 (en) * 2020-03-19 2023-02-16 Enkris Semiconductor, Inc. Semiconductor structure and manufacturing method therefor
CN111477536A (zh) * 2020-03-31 2020-07-31 华为技术有限公司 一种半导体外延结构及半导体器件
US11721743B2 (en) * 2020-12-22 2023-08-08 Applied Materials, Inc. Implantation enabled precisely controlled source and drain etch depth
CN113439340B (zh) * 2021-05-03 2023-05-12 英诺赛科(苏州)科技有限公司 氮基半导体器件及其制造方法
CN114709256B (zh) * 2022-05-25 2022-08-23 深圳市时代速信科技有限公司 一种半导体器件和半导体器件的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714948A (en) * 1981-04-23 1987-12-22 Fujitsu Limited HEMT with epitaxial narrow bandgap source/drain contacts isolated from wide bandgap layer
US5026655A (en) * 1987-05-14 1991-06-25 Nec Corporation Process of fabricating a heterojunction field effect transistor
US6329677B1 (en) * 1998-11-09 2001-12-11 Fujitsu Quantum Devices Limited Field effect transistor
JP2010135399A (ja) * 2008-12-02 2010-06-17 Nec Corp ヘテロ接合電界効果トランジスタおよびその製造方法
CN102292801A (zh) * 2009-01-22 2011-12-21 松下电器产业株式会社 场效应晶体管及其制造方法
CN103003930A (zh) * 2010-07-14 2013-03-27 松下电器产业株式会社 场效应晶体管
CN104471713A (zh) * 2012-07-13 2015-03-25 雷声公司 具有低欧姆接触电阻的氮化镓器件
CN106796953A (zh) * 2014-10-30 2017-05-31 英特尔公司 源极/漏极至氮化镓晶体管中的2d电子气的低接触电阻再生长

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5200372B2 (ja) * 2006-12-07 2013-06-05 日立電線株式会社 電界効果トランジスタおよびその製造方法
WO2010074275A1 (ja) * 2008-12-26 2010-07-01 日本電気株式会社 ヘテロ接合電界効果トランジスタ、ヘテロ接合電界トランジスタの製造方法、および電子装置
US20130032860A1 (en) * 2011-08-01 2013-02-07 Fabio Alessio Marino HFET with low access resistance
JP6631950B2 (ja) * 2014-12-11 2020-01-15 パナソニックIpマネジメント株式会社 窒化物半導体装置および窒化物半導体装置の製造方法
US10388753B1 (en) * 2017-03-31 2019-08-20 National Technology & Engineering Solutions Of Sandia, Llc Regrowth method for fabricating wide-bandgap transistors, and devices made thereby

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4714948A (en) * 1981-04-23 1987-12-22 Fujitsu Limited HEMT with epitaxial narrow bandgap source/drain contacts isolated from wide bandgap layer
US5026655A (en) * 1987-05-14 1991-06-25 Nec Corporation Process of fabricating a heterojunction field effect transistor
US6329677B1 (en) * 1998-11-09 2001-12-11 Fujitsu Quantum Devices Limited Field effect transistor
JP2010135399A (ja) * 2008-12-02 2010-06-17 Nec Corp ヘテロ接合電界効果トランジスタおよびその製造方法
CN102292801A (zh) * 2009-01-22 2011-12-21 松下电器产业株式会社 场效应晶体管及其制造方法
CN103003930A (zh) * 2010-07-14 2013-03-27 松下电器产业株式会社 场效应晶体管
CN104471713A (zh) * 2012-07-13 2015-03-25 雷声公司 具有低欧姆接触电阻的氮化镓器件
CN106796953A (zh) * 2014-10-30 2017-05-31 英特尔公司 源极/漏极至氮化镓晶体管中的2d电子气的低接触电阻再生长

Also Published As

Publication number Publication date
US11056572B2 (en) 2021-07-06
US10622456B2 (en) 2020-04-14
CN108649071A (zh) 2018-10-12
US20200203506A1 (en) 2020-06-25
US20190267468A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
CN108649071B (zh) 半导体器件及其制造方法
US9502524B2 (en) Compound semiconductor device having gallium nitride gate structures
CN211578757U (zh) 高电子迁移率晶体管
CN112420850B (zh) 一种半导体器件及其制备方法
KR20190130032A (ko) 고전력 소자의 열관리를 위한 다이아몬드 에어 브리지
CN110690284A (zh) 一种氮化镓基场效应晶体管及其制备方法
CN111463260A (zh) 垂直型高电子迁移率场效应晶体管及其制备方法
CN113990948A (zh) 一种半导体器件及其应用与制造方法
CN109560120A (zh) 一种选择区域生长凹槽垂直的GaN常关型MISFET器件及其制作方法
CN113178480B (zh) 具有栅漏复合阶梯场板结构的增强型hemt射频器件及其制备方法
CN111739801B (zh) 一种SOI基p-GaN增强型GaN功率开关器件的制备方法
CN107706232A (zh) 一种原位MIS栅结构常关型GaN基晶体管及制备方法
CN111048411A (zh) 半导体装置的制造方法
CN111739800B (zh) 一种SOI基凹栅增强型GaN功率开关器件的制备方法
CN108493111B (zh) 半导体器件制造方法
CN109449213B (zh) 一种带场板的肖特基结金刚石二极管器件的制备方法
CN109888011A (zh) 半导体结构及其制造方法
CN109727918A (zh) 集成增强型与耗尽型场效应管的结构及其制造方法
WO2021029183A1 (ja) 半導体装置、半導体モジュールおよび電子機器
CN209104156U (zh) 集成增强型与耗尽型场效应管的结构
CN117438457B (zh) 凹槽栅型GaN基HEMT器件及其制备方法
CN115863401B (zh) 常闭型晶体管及其制备方法
CN113451130B (zh) 一种高电子迁移率晶体管及制备方法
CN113889412B (zh) 欧姆接触GaN器件及其制备方法
CN108695383B (zh) 实现高频mis-hemt的方法及mis-hemt器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 215000 west side of b0-1f, Zhongyuan industrial building, No. 259, Changyang street, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou City, Jiangsu Province

Patentee after: Suzhou Han Hua Semiconductor Co.,Ltd.

Address before: Room 303, building 11, Northwest District, Suzhou nano City, 99 Jinjihu Avenue, Suzhou Industrial Park, 215000, Jiangsu Province

Patentee before: Suzhou Han Hua Semiconductor Co.,Ltd.

CP02 Change in the address of a patent holder