CN108493111B - 半导体器件制造方法 - Google Patents

半导体器件制造方法 Download PDF

Info

Publication number
CN108493111B
CN108493111B CN201810554936.7A CN201810554936A CN108493111B CN 108493111 B CN108493111 B CN 108493111B CN 201810554936 A CN201810554936 A CN 201810554936A CN 108493111 B CN108493111 B CN 108493111B
Authority
CN
China
Prior art keywords
doping
flow
layer
gas
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810554936.7A
Other languages
English (en)
Other versions
CN108493111A (zh
Inventor
倪贤锋
范谦
何伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Han Hua Semiconductors Co Ltd
Original Assignee
Suzhou Han Hua Semiconductors Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Han Hua Semiconductors Co Ltd filed Critical Suzhou Han Hua Semiconductors Co Ltd
Priority to CN201810554936.7A priority Critical patent/CN108493111B/zh
Publication of CN108493111A publication Critical patent/CN108493111A/zh
Priority to US16/294,500 priority patent/US11049718B2/en
Application granted granted Critical
Publication of CN108493111B publication Critical patent/CN108493111B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02505Layer structure consisting of more than two layers
    • H01L21/02507Alternating layers, e.g. superlattice
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种半导体器件制造方法,包括:在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽;在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部,所述第一掺杂部与所述第二掺杂部组成掺杂层;在所述掺杂层上形成源极和漏极,在所述势垒层上形成栅极。本发明所提供的半导体器件制造方法,通过形成交替叠加的第一掺杂部和第二掺杂部增加掺杂层的掺杂浓度,从而降低接触电阻。

Description

半导体器件制造方法
技术领域
本发明涉及半导体制造技术领域,特别是涉及一种半导体器件制造方法。
背景技术
作为第三代半导体材料的代表,氮化镓(GaN)具有许多优良的特性,高临界击穿电场、高电子迁移率、高二维电子气浓度和良好的高温工作能力等。基于氮化镓的第三代半导体器件,如高电子迁移率晶体管(HEMT)、异质结场效应晶体管(HFET)等已经得到了应用,尤其在射频、微波等需要大功率和高频率的领域具有明显优势。
实现HEMT器件高性能射频性能的关键要素之一是降低接触电阻。为降低接触电阻,现有技术是在AlGaN/GaN表面上生长n+型GaN掺杂层,以形成光滑的接触表面。然而,这种方法形成的掺杂层的掺杂浓度上限为2×1019/cm3-6×1019/cm3,这种浓度的掺杂不足以形成较低的接触电阻。因此需要一种新的掺杂技术来提高掺杂浓度。
发明内容
基于此,提供一种半导体器件制造方法来提高掺杂浓度。
本发明提供一种半导体器件制造方法,包括:
在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;
刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽;
在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部,所述第一掺杂部与所述第二掺杂部组成掺杂层;
在所述掺杂层上形成源极和漏极,在所述势垒层上形成栅极。
可选的,所述在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部的过程为:
S11:在t1时间段内,供应A1流量的镓源气体、B1流量铟源气体和C1流量的n型掺杂剂气体形成所述第一掺杂层;
S12:在t2时间段内,供应A1流量的镓源气体、B2流量铟源气体和C2流量的n型掺杂剂气体形成所述第二掺杂层;
S13:重复步骤S11和S12;其中,所述B1小于B2,所述C1大于C2,或者B1大于B2,C1小于C2。
可选的,所述在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部的过程为:
S21:在t1时间段内,供应B1流量铟源气体和C1流量的n型掺杂剂气体形成所述第一掺杂层;
S22:在t2时间段内,供应A1流量的镓源的气体、B2流量铟源气体和C2流量的n型掺杂剂气体形成所述第二掺杂层;
S23:重复步骤S11和S12;其中,所述B1小于B2,所述C1大于C2,或者B1大于B2,C1小于C2。
可选的,所述镓源为包含镓元素的气态物质。
可选的,所述铟源为包含铟元素的气态物质。
可选的,所述n型掺杂剂为锗烷或者硅烷。
可选的,所述第一掺杂部的掺杂浓度为5×1020/cm3-7×1020/cm3,所述第二掺杂部的掺杂浓度为1×1019/cm3-1×1020/cm3,或者所述第一掺杂部的掺杂浓度为1×1019/cm3-1×1020/cm3,所述第二掺杂部的掺杂浓度为5×1020/cm3-7×1020/cm3
可选的,所述掺杂层的掺杂浓度为1×1020/cm3-7×1020/cm3
可选的,第一掺杂部的厚度为1nm-500nm,所述第二掺杂部的厚度为1nm-500nm。
上述半导体器件制造方法,通过形成交替叠加的第一掺杂部和第二掺杂部增加掺杂层的掺杂浓度,从而降低接触电阻。
附图说明
图1-图4为表示制备根据本发明的一些实施例的半导体器件的示意图;
图5为一种形成所述掺杂层的气体流量时间图;
图6是一种形成所述掺杂层的气体流量时间图。
图中标号:
1-衬底;2-缓冲层;3-势垒层;4-掺杂层;5-沟槽;6-二维电子气;7-源极;8-漏极;9-栅极。
具体实施方式
以下结合附图和具体实施例对本发明提出的半导体器件制造方法作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。
本实施例所提供的半导体器件的制造方法请参考图1-图5,所述方法包括:
S1:在衬底1上依次形成缓冲层2和势垒层3;
其中,所述衬底1材料包括但不限于蓝宝石、碳化硅、硅、金刚石、氮化镓和氮化铝等材料。所述缓冲层2与所述势垒层3堆叠在一起形成异质结,所述缓冲层2靠近所述势垒层3一端的表面形成二维电子气6(2DEG),所述2DEG具有高电子密度和高电子迁移率。典型的异质结为AlGaN/GaN,即所述缓冲层2为GaN,所述势垒层3为AlGaN。所述缓冲层2也可以为InN、AlN、AlGaN,InGaN等氮化物,所述势垒层3也可以为InAlN、AlN等合金材料的一种或几种的叠加。所述衬底1的厚度为50到2000微米,所述势垒层3的厚度为3到100纳米,所述缓冲层2的厚度为50到10000纳米。可以采用金属有机化学气相沉积(MOCVD)或者分子束外延(MBE)的工艺在所述衬底1上分别形成所述缓冲层2和所述势垒层3,形成如图1所示的结构。
S2:刻蚀所述势垒层3的源极区域和漏极区域,以在所述缓冲层2上形成沟槽5;
其中,为了在所述缓冲层2的上形成沟槽5,可以在所述势垒层3表面沉积绝缘介电层,并在所述绝缘介电层上覆盖掩膜层,采用光刻工艺在掩膜层上形成欧姆接触和非欧姆接触区,所述欧姆接触区位于所述非欧姆接触区的两侧。所述欧姆接触区对应所述势垒层3的源极区域和漏极区域。然后对欧姆接触区的势垒层进行刻蚀,所述刻蚀完欧姆接触区的势垒层后,还会刻蚀势垒层下方的部分缓冲层,从而形成位于缓冲层2上的沟槽5。在所述沟槽5形成后,去除所述掩膜层。所述势垒层3包括源极区域、漏极区域和栅极区域,分别用于设置源极、漏极和栅极。由于势垒层3的电阻较大,为了增加器件的导电性能,将所述势垒层3的源极区域与漏极区域刻蚀掉,并对下层的缓冲层2形成过刻蚀,即刻蚀掉部分缓冲层2,在缓冲层2上形成沟槽5,所述沟槽5从势垒层3表面延伸至缓冲层2表面,形成如图2所示的结构。所述绝缘介电层可以为二氧化硅层、氮化硅层或者是二氧化硅层加氮化硅层。所述掩膜层可以为光刻胶。所述刻蚀可以为干法刻蚀或者为湿法刻蚀。
S3:在所述沟槽5上交替形成相互叠加的第一掺杂部和第二掺杂部,所述第一掺杂部与所述第二掺杂部组成掺杂层4;
其中,在所述沟槽5形成后,需要在沟槽5内形成能够使源极和漏极之间导通的掺杂层4。首先在所述沟槽5内形成第一掺杂部(或者是第二掺杂部),然后在所述第一掺杂部(或第二掺杂部)上形成第二掺杂部或(第一掺杂部),依此类推,交替叠加第一掺杂部与第二掺杂部,最终形成掺杂层4。所述第一掺杂部的掺杂浓度可以大于所述第二掺杂部,也可以小于第二掺杂部。为方便后续说明,现假设所述第一掺杂部的掺杂浓度大于所述第二掺杂部,可以理解的是,这不会妨碍本领域技术人员对本申请技术方案的理解。如图3所示,图中阴影部分表示第一掺杂部,阴影的中间空白部分表示第二掺杂部,所述第一掺杂部和所述第二掺杂部共同构成掺杂层4,这种掺杂方法可以称为调制掺杂。所述掺杂层4为氮化物材料层,在本实施例中,掺杂浓度为1×1020/cm3-7×1020/cm3
S4:在所述掺杂层4上形成源极7和漏极8,在所述势垒层上形成栅极9。
在所述掺杂层4形成后,在一个所述掺杂层4上形成源极7,在另一所述掺杂层4上形成漏极8,在所述势垒层3的栅极区域形成栅极9,形成如图4所示的器件结构。所述源极7和漏极8可以为钛、铝、镍、金中任意多种组成的合金;所述栅极9可以为镍/金或者铂/金构成的金属叠层。
为了实现具有高n型掺杂浓度(1×1020/cm3-7×1020/cm3)的掺杂层4,所述第一掺杂部的掺杂浓度为5×1020/cm3-7×1020/cm3,所述第二掺杂部的掺杂浓度为1×1019/cm3-1×1020/cm3。形成所述第一掺杂部与第二掺杂部可以通过调节掺杂剂的流量来实现。
图5是一种形成所述掺杂层的气体流量时间图。请参照图5,本实施例中的,在反应设备中分别供应包含n型掺杂剂、铟源和镓源的气体。在一个周期内(t1+t2),镓源的气体流量保持一定,n型掺杂剂的气体流量与铟源气体的流量呈现方波状。在t1时间内,供应C1流量的n型掺杂剂气体与B1流量的铟源气体以形成高掺杂浓度的第一掺杂部;在t2时间内,供应C2流量的n型掺杂剂气体与B2流量的铟源气体以在所述第一掺杂部上形成低掺杂浓度的第二掺杂部。经过多个周期后,形成所述第一掺杂部与所述第二掺杂部交替叠加的掺杂层。所述C1大于C2,所述B2大于B1,所述C1小于5L/m(升/分钟),所述B2小于5L/m。在本实施例中,所述B1和C2均大于0。在另一实施例中,所述C2可以为0,所述B1也可以为0。由于第一掺杂部的掺杂浓度大于第二掺杂部的掺杂浓度,因此,在形成第一掺杂部与第二掺杂部后,所述第一掺杂部的n型掺杂剂会自然扩散到相邻的第二掺杂部中,从而使整个掺杂层的掺杂浓度达到平衡。所述第一掺杂部与第二掺杂部的厚度为1nm-500nm,通过调节t1与t2或者镓源的流量能够改变所述第一掺杂部与第二掺杂部的厚度。t1与t2的范围为1s-15min。在形成第二掺杂部时,供应较多的铟源气体,可以在低掺杂浓度的情况下降低接触电阻;而在形成所属第一掺杂部时,由于高掺杂浓度本身可以带来较小的接触电阻,因此只需供应较少(或者不供应)的铟源气体。所述n型掺杂剂可以为锗离子或者硅离子,包含所述n型掺杂剂的气体可以为锗烷或者硅烷。所述铟源可以为三甲基铟、三乙基铟等包含铟元素的气态物质,其中铟的组份为1%-10%。所述镓源可以为三甲基镓、三乙基镓等包含镓元素的气体,其中镓源的流量为0-5L/m。
图6是另一种形成所述掺杂层的气体流量时间图。请参考图6,本实施例中的,在反应设备中分别供应包含n型掺杂剂、铟源和镓源的气体。在一个周期内(t1+t2),所述n型掺杂剂、铟源气体与镓源气体的流量均呈现方波状。在t1时间内,不供应镓源气体(A1等于0),供应C1流量的n型掺杂剂气体与B1流量的铟源气体以形成高掺杂浓度的第一掺杂部,即第一掺杂部不包含氮化镓。在t2时间内,供应C2流量的n型掺杂剂气体与B2流量的铟源气体和A2流量的镓源气体以在所述第一掺杂部上形成低掺杂浓度的第二掺杂部。经过多个周期后,形成所述第一掺杂部与所述第二掺杂部交替叠加的掺杂层。所述C1大于C2,所述B2大于B1,所述C1小于5L/m,所述B2小于5L/m。在本实施例中,所述B1和C2均大于0。在另一实施例中,所述C2可以为0,所述B1也可以为0。由于第一掺杂部的掺杂浓度大于第二掺杂部的掺杂浓度,因此,在形成第一掺杂部与第二掺杂部后,所述第一掺杂部的n型掺杂剂会自然扩散到相邻的第二掺杂部中,从而使整个掺杂层的掺杂浓度达到平衡。所述第一掺杂部与第二掺杂部的厚度为1nm-500nm,通过调节t1与t2或者镓源的流量能够改变所述第一掺杂部与第二掺杂部的厚度。t1与t2的范围为1s-15min。在形成第二掺杂部时,供应较多的铟源气体,可以在低掺杂浓度的情况下降低接触电阻;而在形成所属第一掺杂部时,由于高掺杂浓度本身可以带来较小的接触电阻,因此只需供应较少(或者不供应)的铟源气体。所述n型掺杂剂可以为锗离子或者硅离子,包含所述n型掺杂剂的气体可以为锗烷或者硅烷。所述铟源可以为三甲基铟、三乙基铟等包含铟元素的气态物质,其中铟的组份为1%-10%。所述镓源可以为三甲基镓、三乙基镓等包含镓元素的气态物质,其中镓源的流量为0-5L/m。
相应的,由于所述掺杂层为氮化物材料层,因此,还需供应包含氮元素的活性气体到反应设备中,从而生长出包含氮化物的掺杂层。所述包含氮元素的活性气体可以为氨气。
上述实施例仅以在一个周期内先形成高掺杂浓度的第一掺杂部,后形成低掺杂浓度的第二掺杂层为例。本领域技术人员可以理解的是,一个周期内先形成第二掺杂部,后形成第一掺杂部的技术方案也属于本申请的保护范围。
综上所述,本发明所提供的半导体器件制造方法,通过形成交替叠加的第一掺杂部和第二掺杂部增加掺杂层的掺杂浓度,从而降低接触电阻。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (8)

1.一种半导体器件制造方法,其特征在于,包括:
在衬底上依次形成缓冲层和势垒层,其中,所述缓冲层与所述势垒层之间形成有二维电子气;
刻蚀所述势垒层的源极区域和漏极区域,以在所述缓冲层上形成沟槽;
在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部,所述第一掺杂部与所述第二掺杂部组成掺杂层;
在所述掺杂层上形成源极和漏极,在所述势垒层上形成栅极;
其中,所述第一掺杂部的掺杂浓度为5×1020/cm3-7×1020/cm3,所述第二掺杂部的掺杂浓度为1×1019/cm3-1×1020/cm3,或者所述第一掺杂部的掺杂浓度为1×1019/cm3-1×1020/cm3,所述第二掺杂部的掺杂浓度为5×1020/cm3-7×1020/cm3
2.根据权利要求1所述的半导体器件制造方法,其特征在于,所述在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部的过程为:
S11:在t1时间段内,供应A1流量的镓源气体、B1流量铟源气体和C1流量的n型掺杂剂气体形成所述第一掺杂层;
S12:在t2时间段内,供应A1流量的镓源气体、B2流量铟源气体和C2流量的n型掺杂剂气体形成所述第二掺杂层;
S13:重复步骤S11和S12;其中,所述B1小于B2,所述C1大于C2,或者B1大于B2,C1小于C2。
3.根据权利要求1所述的半导体器件制造方法,其特征在于,所述在所述沟槽上交替形成相互叠加的第一掺杂部和第二掺杂部的过程为:
S21:在t1时间段内,供应B1流量铟源气体和C1流量的n型掺杂剂气体形成所述第一掺杂层;
S22:在t2时间段内,供应A1流量的镓源的气体、B2流量铟源气体和C2流量的n型掺杂剂气体形成所述第二掺杂层;
S23:重复步骤S11和S12;其中,所述B1小于B2,所述C1大于C2,或者B1大于B2,C1小于C2。
4.根据权利要求2或3所述的半导体器件制造方法,其特征在于,所述镓源为包含镓元素的气态物质。
5.根据权利要求2或3所述的半导体器件制造方法,其特征在于,所述铟源为包含铟元素的气态物质。
6.根据权利要求2或3所述的半导体器件制造方法,其特征在于,所述n型掺杂剂为锗烷或者硅烷。
7.根据权利要求1所述的半导体器件制造方法,其特征在于,所述掺杂层的掺杂浓度为1×1020/cm3-7×1020/cm3
8.根据权利要求1所述的半导体器件制造方法,其特征在于,第一掺杂部的厚度为1nm-500nm,所述第二掺杂部的厚度为1nm-500nm。
CN201810554936.7A 2018-06-01 2018-06-01 半导体器件制造方法 Active CN108493111B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810554936.7A CN108493111B (zh) 2018-06-01 2018-06-01 半导体器件制造方法
US16/294,500 US11049718B2 (en) 2018-06-01 2019-03-06 Fabrication of group III-nitride semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810554936.7A CN108493111B (zh) 2018-06-01 2018-06-01 半导体器件制造方法

Publications (2)

Publication Number Publication Date
CN108493111A CN108493111A (zh) 2018-09-04
CN108493111B true CN108493111B (zh) 2019-04-19

Family

ID=63352486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810554936.7A Active CN108493111B (zh) 2018-06-01 2018-06-01 半导体器件制造方法

Country Status (2)

Country Link
US (1) US11049718B2 (zh)
CN (1) CN108493111B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113192836A (zh) * 2021-04-26 2021-07-30 深圳市汇芯通信技术有限公司 射频半导体器件的制备方法及其结构

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7268375B2 (en) * 2003-10-27 2007-09-11 Sensor Electronic Technology, Inc. Inverted nitride-based semiconductor structure
JP2008124262A (ja) * 2006-11-13 2008-05-29 Oki Electric Ind Co Ltd 選択再成長を用いたAlGaN/GaN−HEMTの製造方法
JP2009054782A (ja) * 2007-08-27 2009-03-12 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法
US8785285B2 (en) * 2012-03-08 2014-07-22 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor devices and methods of manufacture thereof
US9166035B2 (en) * 2013-09-12 2015-10-20 Taiwan Semiconductor Manufacturing Company Limited Delta doping layer in MOSFET source/drain region
CN103811542B (zh) * 2013-12-04 2016-07-06 华南师范大学 一种锡化物超晶格势垒半导体晶体管
US10109767B2 (en) * 2014-04-25 2018-10-23 Seoul Viosys Co., Ltd. Method of growing n-type nitride semiconductor, light emitting diode and method of fabricating the same
US10415904B1 (en) * 2015-04-23 2019-09-17 The United States Of America As Represented By The Secretary Of The Army Firing weapons bonded with diamond-like carbon solid and methods for production thereof
CN105552108A (zh) * 2015-12-07 2016-05-04 成都海威华芯科技有限公司 GaN HEMT器件非合金欧姆接触的制作方法
WO2018119958A1 (zh) * 2016-12-29 2018-07-05 深圳市柔宇科技有限公司 薄膜晶体管和薄膜晶体管的制备方法和阵列基板
CN108039321A (zh) * 2017-11-14 2018-05-15 同辉电子科技股份有限公司 以SiC为衬底GaN基HEMT器件外延生长方法
US10535777B2 (en) * 2018-03-29 2020-01-14 Intel Corporation Nanoribbon structures with recessed source-drain epitaxy

Also Published As

Publication number Publication date
CN108493111A (zh) 2018-09-04
US20190371598A1 (en) 2019-12-05
US11049718B2 (en) 2021-06-29

Similar Documents

Publication Publication Date Title
US12094962B2 (en) Enhancement-mode semiconductor device and preparation method therefor
US9660063B2 (en) Semiconductor structure having sets of III-V compound layers and method of forming the same
CN108649071B (zh) 半导体器件及其制造方法
CN104022148A (zh) 具有AlSiN钝化层的异质结构功率晶体管
CN103972284A (zh) 半导体器件
US20150123139A1 (en) High electron mobility transistor and method of manufacturing the same
JP2021174987A (ja) 高電子移動度トランジスタ及びその製造方法
JP4474292B2 (ja) 半導体装置
KR20140042470A (ko) 노멀리 오프 고전자이동도 트랜지스터
CN111900203B (zh) 一种GaN基高空穴迁移率晶体管及其制备方法
TW201513342A (zh) 半導體裝置及其製造方法
KR100912592B1 (ko) 고전자 이동도 트랜지스터 및 그 제조방법
JP5510544B2 (ja) 化合物半導体装置及びその製造方法
US8907377B2 (en) High electron mobility transistor and method of manufacturing the same
CN109950324A (zh) p型阳极的Ⅲ族氮化物二极管器件及其制作方法
KR20140112272A (ko) 고전자 이동도 트랜지스터 및 그 제조방법
CN113555429A (zh) 高击穿电压和低导通电阻的常开hfet器件及其制备方法
CN108493111B (zh) 半导体器件制造方法
TWI483397B (zh) 功率裝置及製造該功率裝置之方法
JP2008053436A (ja) 半導体素子
US9450071B2 (en) Field effect semiconductor devices and methods of manufacturing field effect semiconductor devices
CN111933709A (zh) 一种具有高可靠性的氮化物器件及其制备方法
US20220416071A1 (en) High electron mobility transistor and method of manufacturing the same
WO2021029183A1 (ja) 半導体装置、半導体モジュールおよび電子機器
CN209747520U (zh) 一种新型增强型半导体器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder
CP02 Change in the address of a patent holder

Address after: 215127 west side of b0-1f, Zhongyuan industrial building, No. 259, Changyang street, Suzhou Industrial Park, Suzhou area, China (Jiangsu) pilot Free Trade Zone, Suzhou, Jiangsu

Patentee after: Suzhou Han Hua Semiconductor Co.,Ltd.

Address before: Room 303, building 11, Northwest District, Suzhou nano City, 99 Jinjihu Avenue, Suzhou Industrial Park, 215000, Jiangsu Province

Patentee before: Suzhou Han Hua Semiconductor Co.,Ltd.