WO2021029183A1 - 半導体装置、半導体モジュールおよび電子機器 - Google Patents

半導体装置、半導体モジュールおよび電子機器 Download PDF

Info

Publication number
WO2021029183A1
WO2021029183A1 PCT/JP2020/027822 JP2020027822W WO2021029183A1 WO 2021029183 A1 WO2021029183 A1 WO 2021029183A1 JP 2020027822 W JP2020027822 W JP 2020027822W WO 2021029183 A1 WO2021029183 A1 WO 2021029183A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact region
layer
semiconductor device
insulating film
semiconductor
Prior art date
Application number
PCT/JP2020/027822
Other languages
English (en)
French (fr)
Inventor
竹内 克彦
将志 柳田
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to JP2021539180A priority Critical patent/JPWO2021029183A1/ja
Priority to US17/628,376 priority patent/US20220278210A1/en
Priority to CN202080054414.6A priority patent/CN114175272A/zh
Publication of WO2021029183A1 publication Critical patent/WO2021029183A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41758Source or drain electrodes for field effect devices for lateral devices with structured layout for source or drain region, i.e. the source or drain region having cellular, interdigitated or ring structure or being curved or angular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/315Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the encapsulation having a cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Definitions

  • the present technology relates to a semiconductor device having a semiconductor layer and a gate electrode, a semiconductor module provided with this semiconductor device, and an electronic device.
  • a semiconductor device such as a field effect transistor (FET) has, for example, a semiconductor layer including a channel layer and a pair of electrodes (source electrode and drain electrode) electrically connected to the channel layer.
  • FET field effect transistor
  • the semiconductor layer is provided with a region in which N-type impurities are diffused at a high concentration, and the source electrode and the drain electrode are each electrically connected to the channel layer via this high concentration impurity diffusion region. ing.
  • the semiconductor device is provided with a semiconductor layer including a channel layer and a predetermined size in the thickness direction of the semiconductor layer, and has an impurity concentration higher than that of the surrounding semiconductor layer.
  • the contact region is opposed to the channel layer, and the gate electrode provided on the semiconductor layer away from the contact region is in contact with the semiconductor layer and electrically connected to the channel layer via the contact region. It is provided with an electrode extending at least toward the gate electrode side from the contact region.
  • the semiconductor module according to the embodiment of the present technology is provided with the semiconductor device according to the embodiment of the present technology.
  • the electronic device according to the embodiment of the present technology is provided with the semiconductor device according to the embodiment of the present technology.
  • the electrode extends at least toward the gate electrode side from the contact region, as compared with the case where the contact region is exposed from the electrode. Therefore, the influence of the sheet resistance in the contact area is suppressed.
  • FIG. 4A It is sectional drawing which shows the process following FIG. 4B. It is sectional drawing which shows the process following FIG. 4C. It is sectional drawing which shows the process following FIG. 4D. It is sectional drawing which shows the process following FIG. 4E. It is an energy band block diagram of the semiconductor device (during off operation) shown in FIG. FIG.
  • FIG. 5 is a cross-sectional view schematically showing a carrier-deficient region formed during off-operation of the semiconductor device shown in FIG. 1.
  • It is sectional drawing which shows the structure of the main part of the semiconductor device which concerns on a comparative example. It is a figure which shows the relationship between the distance shown in FIG. 1 and on-resistance. It is sectional drawing which shows the structure of the main part of the semiconductor device which concerns on modification 1.
  • FIG. It is sectional drawing which shows the manufacturing process of the semiconductor device shown in FIG. It is sectional drawing which shows the process following FIG. 10A. It is sectional drawing which shows the process following FIG. 10B. It is sectional drawing which shows the process following FIG. 10C.
  • FIG. 5 is a schematic plan view showing another example of the semiconductor device shown in FIG. 2 and the like.
  • Embodiment 2 A semiconductor device having a source electrode and a drain electrode extending closer to the gate electrode side than the contact region.
  • Modification 1 An example in which the interlayer insulating film has a laminated structure.
  • Modification 2 Example of having a gate insulating film between the gate electrode and the semiconductor layer
  • FIG. 1 is a cross-sectional view showing a main configuration of a semiconductor device (semiconductor device 1) according to an embodiment of the present technology.
  • FIG. 2 is a top view of the semiconductor device 1.
  • the detailed configuration of the semiconductor device 1 will be described based on these figures.
  • the semiconductor device 1 has a semiconductor layer 10 including a channel layer 13, a source electrode 21S and a drain electrode 21D, an interlayer insulating film 22, and a gate electrode 23 on the substrate 11 in this order.
  • the interlayer insulating film 22 has an opening 22M in a selective region, and a part of the gate electrode 23 is embedded in the opening 22M.
  • the gate electrode 23 has a so-called T-shaped cross-sectional structure.
  • the gate electrode 23, the source electrode 21S, and the drain electrode 21D provided on the semiconductor layer 10 are arranged apart from each other, and the source electrode 21S, the gate, and the gate are arranged along the channel length direction (X direction in FIG. 2).
  • the electrode 23 and the drain electrode 21D are arranged in this order.
  • the substrate 11 is made of a semiconductor material.
  • a substrate 11 is made of, for example, a group III-V compound semiconductor material.
  • a semi-insulating single crystal GaN (gallium nitride) substrate is used.
  • the constituent material of such a substrate 11 include SiC (silicon carbide), sapphire, and Si (silicon).
  • the lattice constant is adjusted by the buffer layer (buffer layer 12 described later) between the substrate 11 and the channel layer 13.
  • An island-shaped active region a is provided on the upper portion of the substrate 11 (FIG. 2).
  • the adjacent active regions a are separated by, for example, ion implantation of B (boron). As a result, the plurality of active regions a are separated from each other.
  • a gate electrode 23, a source electrode 21S, a drain electrode 21D, and the like are provided in each active region a.
  • the device may be separated by a method other than ion implantation.
  • the channel layer 13 may be divided by dry etching to separate the elements.
  • the semiconductor layer 10 has a structure in which a buffer layer 12, a channel layer 13, and a barrier layer 14 are laminated in this order from the substrate 11 side.
  • the buffer layer 12 is composed of, for example, a compound semiconductor layer epitaxially grown on the substrate 11, and is configured by using a compound semiconductor that is well lattice-matched with the substrate 11.
  • a compound semiconductor that is well lattice-matched with the substrate 11.
  • an epitaxial growth layer of u-GaN to which no impurities are added is provided on the substrate 11 made of a single crystal GaN substrate.
  • the buffer layer 12 is provided between the substrate 11 and the channel layer 13 to improve the crystal state of the channel layer 13 and warp the wafer. Can be suppressed.
  • the buffer layer 12 when the substrate 11 is made of Si and the channel layer 13 is made of GaN, for example, AlN (aluminum nitride), AlGaN (aluminum gallium nitride), GaN, or the like can be used for the buffer layer 12.
  • the buffer layer 12 may be composed of a single layer, or may have a laminated structure. When the buffer layer 12 is made of a ternary material, the composition of each may be gradually different in the buffer layer 12.
  • the channel layer 13 between the buffer layer 12 and the barrier layer 14 is a current passage between the source electrode 21S and the drain electrode 21D.
  • Carriers are accumulated in the channel layer 13 by polarization with the barrier layer 14, and two-dimensional electron gas (2DEG: Two Dimensional Electron gas) is accumulated in the vicinity of the junction surface (heterojunction interface) with the barrier layer 14.
  • Layer 13c is provided. That is, the semiconductor device 1 is a GaN-based heterofield effect transistor (HFET).
  • HFET GaN-based heterofield effect transistor
  • Such a channel layer 13 is preferably made of a compound semiconductor material in which carriers are likely to be accumulated due to polarization with the barrier layer 14.
  • the channel layer 13 is composed of GaN epitaxially grown on the buffer layer 12.
  • the channel layer 13 may be made of u-GaN to which no impurities are added.
  • the scattering of impurities of carriers in the channel layer 13 is suppressed, so that the mobility of carriers can be increased.
  • GaN is a wide-gap semiconductor material and has a high breakdown voltage. Further, the semiconductor layer 10 containing GaN is capable of high temperature operation and has a high saturation drift rate. The two-dimensional electron gas layer 13c formed in the channel layer 13 containing GaN has high mobility and a high sheet electron density.
  • the semiconductor device 1 which is such a GaN-based heterofield effect transistor is capable of low resistance, high speed, and high withstand voltage operation, and is suitably used for power devices, RF (Radio Frequency) devices, and the like.
  • a lower barrier layer (not shown) may be provided between the channel layer 13 and the buffer layer 12.
  • the lower barrier layer By providing the lower barrier layer, it is possible to suppress the spread of electron distribution toward the buffer layer 12 in the channel layer 13. As a result, the short channel effect and the like can be suppressed and the transistor characteristics can be improved.
  • the barrier layer 14 provided between the channel layer 13 and the interlayer insulating film 22 forms a heterojunction interface with the channel layer 13.
  • the barrier layer 14 is made of, for example, a compound semiconductor material having a bandgap wider than the bandgap of the channel layer 13.
  • Al (1-x ⁇ y) Ga x In y N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1) obtained epitaxially grown on the channel layer 13 is used.
  • the barrier layer 14 may be composed of u-Al (1-x - y) Ga x In y N to which no impurities are added.
  • the barrier layer 14 may be composed of a single layer or may have a laminated structure.
  • the barrier layer 14 may be configured by a laminated structure of Al (1-x ⁇ y) Ga x In y N having different compositions.
  • the composition of each of Al (1-x ⁇ y) Ga x In y N may be gradually different in the barrier layer 14.
  • the semiconductor layer 10 is provided with a source-side contact region 15S and a drain-side contact region 15D arranged separately from each other.
  • the source-side contact region 15S and the drain-side contact region 15D are regions having an impurity concentration higher than the impurity concentration of the semiconductor layer 10 in other portions, and are predetermined in the thickness direction of the semiconductor layer 10 (Z direction in FIG. 1). It is provided in size.
  • the source-side contact region 15S and the drain-side contact region 15D are provided from the surface of the semiconductor layer 10 (the surface opposite to the substrate 11) to a part of the channel layer 13 in the thickness direction.
  • the source side contact region 15S electrically connects the source electrode 21S and the two-dimensional electron gas layer 13c
  • the drain side contact region 15D electrically connects the drain electrode 21D and the two-dimensional electron gas layer 13c, respectively, with low resistance. Area of. In a plan view (XY plane in FIG. 2), the source side contact region 15S is arranged at a position overlapping the source electrode 21S, and the drain side contact region 15D is arranged at a position overlapping the drain electrode 21D.
  • the source-side contact region 15S and the drain-side contact region 15D are preferably formed to a deeper position (far from the surface) of the semiconductor layer 10 than a position near the barrier layer 14 in the channel layer 13. The side contact region 15S and the drain side contact region 15D do not have to be in contact with the two-dimensional electron gas layer 13c.
  • the source-side contact region 15S and the drain-side contact region 15D contain, for example, a high concentration of N-type impurities.
  • the N-type impurity is, for example, Si (silicon) or Ge (germanium).
  • the concentration of N-type impurities in the source-side contact region 15S and the drain-side contact region 15D is, for example, 1 ⁇ 10 18 cm -3 or more.
  • the source side contact region 15S and the drain side contact region 15D may be formed by diffusing impurities from the surface of the semiconductor layer 10 to the barrier layer 14 and the channel layer 13, for example, by using ion implantation. That is, the source side contact region 15S and the drain side contact region 15D may be provided in a part of the barrier layer 14 and the channel layer 13.
  • the source-side contact region 15S and the drain-side contact region 15D may be composed of, for example, a layer different from the barrier layer 14 and the channel layer 13.
  • a source-side contact region 15S and a drain-side contact region 15D for example, as described later, after removing a part of the barrier layer 14 and the channel layer 13, the barrier layer 14 and the channel layer 13 are removed. It is formed by filling the region with a semiconductor material.
  • the source side contact region 15S and the drain-side contact region 15D for example, is constituted by In (1-z) Ga z N (0 ⁇ z ⁇ 1) containing N-type impurities.
  • the source-side contact region 15S and the drain-side contact region 15D may be formed of a single layer or may have a laminated structure.
  • a source-side contact region 15S and the drain-side contact region 15D may be formed by a stacked structure of different In (1-z) Ga z N compositions.
  • an In may be (1-z) made different Ga z N gradually composition of each.
  • the source electrode 21S and the drain electrode 21D are respectively arranged separately from each other in a selective region on the surface of the semiconductor layer 10. Both the source electrode 21S and the drain electrode 21D are in contact with the surface of the semiconductor layer 10. That is, the source electrode 21S and the drain electrode 21D are each ohmic-bonded to the semiconductor layer 10.
  • the source electrode 21S covers the source side contact region 15S and extends a predetermined distance (distance Ls) from the source side contact region 15S to the gate electrode 23 side
  • the drain electrode 21D is a drain side contact. It covers the region 15D and extends a predetermined distance (distance Ld) to the gate electrode 23 side from the drain side contact region 15D.
  • the source side contact area 15S and the drain side contact area 15D are exposed as compared with the case where the source side contact area 15S and the drain side contact area 15D are exposed from the source electrode 21S and the drain electrode 21D.
  • the effect of sheet resistance is suppressed.
  • the source electrode 21S is provided in a region wider than the source side contact region 15S over the entire circumference of the source side contact region 15S (FIG. 2).
  • the source electrode 21S extends a distance Lsa on the side opposite to the gate electrode 23, for example, in the channel length direction.
  • the source electrode 21S preferably extends on both sides of the source side contact region 15S (the gate electrode 23 side and the side opposite to the gate electrode 23) in the channel length direction, but at least the gate electrode is more than the source side contact region 15S. It suffices if it extends to the 23 side.
  • the source electrode 21S is in contact with, for example, the source side contact region 15S and the barrier layer 14 (FIG. 1).
  • the drain electrode 21D is provided, for example, in a region wider than the drain side contact region 15D over the entire circumference of the drain side contact region 15D (FIG. 2).
  • the drain electrode 21D extends a distance Lda on the side opposite to the gate electrode 23, for example, in the channel length direction.
  • the drain electrode 21D preferably extends to both sides of the drain-side contact region 15D in the channel length direction, but may extend to at least the gate electrode 23 side from the drain-side contact region 15D.
  • the drain electrode 21D is in contact with, for example, the drain side contact region 15D and the barrier layer 14 (FIG. 1).
  • the source electrode 21S and the drain electrode 21D are composed of, for example, a laminated film in which titanium (Ti), aluminum (Al), nickel (Ni) and gold (Au) are laminated in this order from the semiconductor layer 10 side.
  • a part of each of the source electrode 21S and the drain electrode 21D may be provided so as to protrude from the active region a in a plan view (FIG. 2).
  • the source electrode 21S and the drain electrode 21D may be connected to the wiring layer via a contact provided above them. As a result, the resistance component of the metal drawing portion can be suppressed.
  • the interlayer insulating film 22 is provided on the semiconductor layer 10 so as to cover the source electrode 21S and the drain electrode 21D.
  • the opening 22M of the interlayer insulating film 22 is provided so as to penetrate the interlayer insulating film 22.
  • the opening 22M is arranged between the source side contact region 15S and the drain side contact region 15D in the channel length direction.
  • the opening 22M has, for example, a rectangular planar shape (FIG. 2).
  • the interlayer insulating film 22 functions as an insulating film with respect to the barrier layer 14, and also has a function of protecting the surface of the barrier layer 14 from contamination by impurities. Examples of this impurity include ions and the like.
  • the interlayer insulating film 22 is made of, for example, SiO 2 (silicon oxide) or the like.
  • the interlayer insulating film 22 may be made of, for example, Al 2 O 3 (aluminum oxide) or silicon nitride (SiN).
  • the gate electrode 23 is provided on the interlayer insulating film 22 and is embedded in the opening 22M of the interlayer insulating film 22.
  • the gate length (Lg) of the gate electrode 23 is defined by the size of the gate electrode 23 (the size in the X direction of FIG. 1) of the portion embedded in the opening 22M.
  • the gate electrode 23 is arranged apart from the source side contact region 15S and the drain side contact region 15D.
  • the gate electrode 23 is composed of, for example, a laminated film in which nickel (Ni) and gold (Au) are sequentially laminated from the substrate 11 side.
  • the gate electrode 23 on the interlayer insulating film 22 is widened over the entire circumference of the opening 22M, for example.
  • the gate electrode 23 on the interlayer insulating film 22 may be widened at a part around the opening 22M.
  • the gate resistance can be lowered while reducing the gate length, so that the cutoff frequency (fmax) can be increased. Therefore, the semiconductor device 1 having the gate electrode 23 is suitably used as a high frequency device.
  • FIG. 3 is an energy band configuration diagram below the gate electrode 23 of the semiconductor device 1 having the above configuration, and is in a bonded state in which the gate voltage Vg is not applied.
  • the channel layer 13 is composed of GaN and the barrier layer 14 is composed of Al 0.3 Ga 0.7 N mixed crystal, and a gate insulating film is formed between the gate electrode 23 and the barrier layer 14 (FIG. 11 described later). The case where the gate insulating film 24) is provided is shown.
  • a barrier layer 14 having a bandgap wider than that of the channel layer 13 is bonded to the channel layer 13 having a narrow bandgap. Therefore, in the channel layer 13, the carrier is accumulated in the vicinity of the junction surface with the barrier layer 14 in the channel layer 13 by spontaneous polarization, piezo polarization, or both of them. As a result, the two-dimensional electron gas layer 13c is formed in the channel layer 13.
  • the discontinuity ⁇ Ec between the conduction band end of the channel layer 13 and the conductor end of the barrier layer 14 is sufficiently large (0.3 eV in this case), the number of carriers (electrons) distributed in the barrier layer 14 Is negligibly small compared to the number of carriers (electrons) distributed in the channel layer 13.
  • the semiconductor device 1 having such a configuration can be manufactured, for example, as follows.
  • 4A to 4F are schematic cross-sectional views showing the manufacturing method of the semiconductor device 1 in the order of processes.
  • a buffer layer 12, a channel layer 13, a barrier layer 14, and an insulating film 16 are formed in this order on, for example, a substrate 11 made of Si.
  • the buffer layer 12, the channel layer 13, and the barrier layer 14 are formed by, for example, an epitaxial growth method.
  • the channel layer 13 is formed by, for example, epitaxially growing a GaN layer on the buffer layer 12, and the barrier layer 14 is formed, for example, by epitaxially growing u-AlGaN (Al 0.3- Ga 0.7 N mixed crystal) on the channel layer 13.
  • the insulating film 16 is used as a selection mask when forming the source side contact region 15S and the drain side contact region 15D in a later step.
  • element separation is performed. Element separation is performed, for example, by ion-implanting B (boron) or the like into a region between adjacent elements. By ion implantation, the region between the elements is increased in resistance, and the elements are separated (the active region a in FIG. 2 is formed).
  • the element separation step may be performed in a later step (for example, after the formation of the source side contact region 15S and the drain side contact region 15D, or after the formation of the gate electrode 23).
  • etching is performed from the insulating film 16 to the channel layer 13 as shown in FIG. 4B.
  • a pair of notches C are formed in the laminated body on the substrate 11.
  • the pair of notches C reaches, for example, a part of the channel layer 13, and the bottom surface of the notch C is formed by the channel layer 13.
  • a selective regrowth method is used to form a source-side contact region 15S on one of the pair of notches C and a drain-side contact region 15D on the other.
  • the semiconductor layer 10 is formed on the substrate 11.
  • the insulating film 16 (FIG. 4B) functions as a selection mask when the selective regrowth method is performed.
  • the insulating film 16 is removed by, for example, etching.
  • the source electrode 21S is electrically connected to the source side contact region 15S
  • the drain electrode 21D is formed by being electrically connected to the drain side contact region 15D.
  • the source electrode 21S and the drain electrode 21D are formed by, for example, mask-depositing titanium (Ti), aluminum (Al), nickel (Ni), and gold (Au) on the surface of the semiconductor layer 10 in this order. As a result, the source electrode 21S and the drain electrode 21D are patterned in a selective region on the surface of the semiconductor layer 10.
  • an interlayer insulating film 22 is formed on, for example, the entire surface of the semiconductor layer 10 so as to cover the source electrode 21S and the drain electrode 21D.
  • the interlayer insulating film 22 is formed, for example, by forming silicon oxide (SiO 2 ) by using a CVD (Chemical Vapor Deposition) method.
  • the interlayer insulating film 22 may be formed by, for example, forming aluminum oxide (Al 2 O 3 ) by using the ALD (Atomic Layer Deposition) method, or silicon nitride (SiN) by using the CVD method. May be formed by forming a film.
  • an opening 22M is formed in a predetermined region of the interlayer insulating film 22 as shown in FIG. 4F.
  • the opening 22M is formed, for example, by pattern etching a part of the interlayer insulating film 22 between the source electrode 21S and the drain electrode 21D in the channel length direction.
  • the opening 22M is formed to a depth reaching, for example, the semiconductor layer 10.
  • the gate electrode 23 is formed in a predetermined region on the interlayer insulating film 22 so as to embed the opening 22M.
  • the gate electrode 23 is formed, for example, by sequentially mask-depositing Ni (nickel) and Au (gold) on the interlayer insulating film 22. Through such a process, the semiconductor device 1 shown in FIGS. 1 and 2 is completed.
  • the semiconductor device 1 when a negative gate voltage Vg (for example, about ⁇ 10 V) is applied to the gate electrode 23, as shown in the cross-sectional view of FIG. 6, the region (carrier deficiency) of the channel layer 13 directly below the gate electrode 23 In region A), the number of carriers decreases. Therefore, the number of electrons in the channel layer 13 decreases, and the drain current Id hardly flows.
  • the energy band configuration at this time is as shown in FIG. 5, and the conduction band energy Ec in the channel layer 13 is completely higher than the Fermi level Ef.
  • the source electrode 21S extends in the channel length direction from the source side contact region 15S
  • the drain electrode 21D extends in the channel length direction from the drain side contact region 15D.
  • the source side contact area 15S and the drain side contact area 15D are exposed from the source electrode 21S and the drain electrode 21D in the channel length direction, respectively, as compared with the case where the source side contact area 15S and the drain side contact area 15D are exposed.
  • the effect of sheet resistance is suppressed.
  • this action and effect will be described.
  • FIG. 7 schematically shows the cross-sectional configuration of the main part of the semiconductor device (semiconductor device 100) according to the comparative example.
  • FIG. 7 corresponds to FIG. 1 showing the semiconductor device 1.
  • the semiconductor device 100 has a semiconductor layer 10 on the substrate 11.
  • the semiconductor device 100 is, for example, a GaN-based HFET like the semiconductor device 1, and the semiconductor layer 10 includes a buffer layer 12, a channel layer 13, and a barrier layer 14 in this order from the substrate 11 side, and is a semiconductor layer.
  • the source side contact region 15S and the drain side contact region 15D are provided on the 10 having a predetermined size in the thickness direction from the surface.
  • the source side contact region 15S is provided so as to extend to the gate electrode 23 side from the source electrode 21S, and the drain side contact region 15D extends to the gate electrode 23 side from the drain electrode 21D. It is provided. That is, a part of the source side contact region 15S is exposed from the source electrode 21S, and a part of the drain side contact region 15D is exposed from the drain electrode 21D. In this respect, the semiconductor device 100 is different from the semiconductor device 1.
  • the on-resistance is caused by the sheet resistance of the source side contact region 15S of the portion exposed from the source electrode 21S and the sheet resistance of the drain side contact region 15D of the portion exposed from the drain electrode 21D. (Ron) may be high. In particular, when the drain-side contact region 15D to which a high voltage is applied is exposed from the drain electrode 21D, the on-resistance tends to increase.
  • an interface trap is likely to occur in the vicinity of the interface between the barrier layer 14 and the interlayer insulating film 22, and the characteristics of the semiconductor device 100 may be deteriorated due to this interface trap.
  • the influence of this interface trap becomes large.
  • the characteristics of the semiconductor device 100 may fluctuate.
  • a method using the field plate effect can be considered (for example, JP-A-2016-136547).
  • this method using the field plate effect increases the capacitance between the gate and drain.
  • the capacitance between the gate and the drain is formed in a portion where the gate electrode and the two-dimensional electron gas layer on the drain side face each other in the stacking direction and a portion where the gate electrode and the drain electrode are close to each other in the channel length direction.
  • the frequency characteristics may deteriorate.
  • the distance between the gate and the drain is increased by the field plate, so that the device size tends to be increased.
  • the surface of the semiconductor layer 10 exposed from the source electrode 21S and the drain electrode 21D may be deteriorated due to the treatment in the manufacturing process.
  • the semiconductor layer 10 is deteriorated due to the treatment before forming the interlayer insulating film 22 and the plasma irradiation when forming the interlayer insulating film 22, and the sheet resistance of the two-dimensional electron gas layer 13c is high. There is a risk of becoming.
  • the source electrode 21S extends in the channel length direction from the source side contact region 15S
  • the drain electrode 21D extends in the channel length direction from the drain side contact region 15D. .. That is, since the source side contact region 15S and the drain side contact region 15D are not exposed from the source electrode 21S and the drain electrode 21D, the source side contact region 15S and the drain side contact region of the portion exposed from the source electrode 21S and the drain electrode 21D The influence of the seat resistance of 15D is suppressed. Therefore, in the semiconductor device 1, the on-resistance is reduced.
  • FIG. 8 shows the relationship between the on-resistance of the semiconductor device 1 and the distances Ls and Ld.
  • the source electrode 21S and the drain electrode 21D extend in the channel length direction from the source side contact region 15S and the drain side contact region 15D, so that the barrier layer 14 and the interfacial layer are formed as compared with the semiconductor device 100.
  • the area of the interface with the insulating film 22 becomes smaller.
  • deterioration of the characteristics of the semiconductor device 1 due to the interface trap near the interface between the barrier layer 14 and the interlayer insulating film 22 can be suppressed.
  • the semiconductor device 1 having the GaN (gallium nitride) -based semiconductor layer 10 the deterioration of characteristics due to the interface trap can be effectively suppressed.
  • the source electrode 21S and the drain electrode 21D are extended in the channel length direction from the source side contact region 15S and the drain side contact region 15D, so that the source electrode 21S and the drain are extended as compared with the semiconductor device 100.
  • the surface of the semiconductor layer 10 exposed from the electrode 21D becomes smaller. As a result, deterioration of the semiconductor layer 10 due to processing in the manufacturing process can be suppressed, and an increase in sheet resistance of the two-dimensional electron gas layer 13c can be suppressed.
  • the semiconductor device 1 a portion is formed in which the two-dimensional electron gas layer 13c and the source electrode 21S and the drain electrode 21D each face each other in the stacking direction (Z-axis direction in FIG. 1). As a result, the potential distribution inside the channel layer 13 is stabilized, and the high frequency characteristics can be improved.
  • the source electrode 21S is provided so as to extend at least toward the gate electrode 23 side from the source side contact region 15S, and extends at least toward the gate electrode 23 side from the drain side contact region 15D.
  • the drain electrode 21D was provided. As a result, the influence of the sheet resistance of the source side contact region 15S and the drain side contact region 15D can be suppressed, and the on-resistance can be reduced. Therefore, it is possible to improve the transistor characteristics.
  • FIG. 9 schematically shows a cross-sectional configuration of a main part of the semiconductor device (semiconductor device 1A) according to the first modification of the embodiment.
  • FIG. 9 corresponds to FIG. 1 showing the semiconductor device 1.
  • the semiconductor device 1A has a planar configuration similar to that of the semiconductor device 1 (FIG. 2).
  • the interlayer insulating film 22 has a laminated structure of the first interlayer insulating film 22A and the second interlayer insulating film 22B. Except for this point, the semiconductor device 1A has the same configuration as the semiconductor device 1, and its action and effect are also the same.
  • the interlayer insulating film 22 is composed of a laminated film in which the first interlayer insulating film 22A and the second interlayer insulating film 22B are laminated in order from the barrier layer 14 side.
  • the first interlayer insulating film 22A is provided with a first opening 22AM
  • the second interlayer insulating film 22B is provided with a second opening 22BM.
  • the gate electrode 23 is embedded in the first opening 22AM and the second opening 22BM.
  • the first interlayer insulating film 22A is provided between the barrier layer 14 and the second interlayer insulating film 22B, and between the source electrode 21S or the drain electrode 21D and the second interlayer insulating film 22B.
  • the first interlayer insulating film 22A is made of, for example, Al 2 O 3 (aluminum oxide).
  • Such a first interlayer insulating film 22A functions as an insulating film with respect to the barrier layer 14, and also has a function of protecting the surface of the barrier layer 14 from contamination by impurities. Examples of this impurity include ions and the like. Further, by forming a good interface between the first interlayer insulating film 22A and the barrier layer 14, deterioration of device characteristics can be suppressed.
  • the first interlayer insulating film 22A is preferably made of a material that can be wet-etched, and the selection ratio of wet etching between the constituent material of the second interlayer insulating film 22B and the constituent material of the first interlayer insulating film 22A is, for example. It is 1: 1 or more, and preferably 1: 5 or more.
  • the first opening 22AM provided in the first interlayer insulating film 22A penetrates the first interlayer insulating film 22A.
  • the second interlayer insulating film 22B faces the barrier layer 14 with the first interlayer insulating film 22A in between.
  • the second interlayer insulating film 22B has a width smaller than the width in the channel length direction (the size in the X-axis direction of FIG. 9) of the first opening 22AM of the first interlayer insulating film 22A. Is provided.
  • the second opening 22BM of the second interlayer insulating film 22B communicates with the first opening 22AM of the first interlayer insulating film 22A, and the gate electrode 23 is connected to both the first opening 22AM and the second opening 22BM. Is inserted.
  • the second opening 22BM is arranged at the center of the first opening 22AM.
  • the second opening 22BM of the second interlayer insulating film 22B is for defining the size of the gate electrode 23 of the portion embedded in the interlayer insulating film 22.
  • a gap is formed between the gate electrode 23 and the side wall of the first opening 22AM.
  • the permittivity of this void is lower than the permittivity of the interlayer insulating film 22. Therefore, the gate-drain capacitance (Cgd) and the gate-source capacitance (Cgs) are lower in the semiconductor device 1A than in the semiconductor device 1 having no voids. Therefore, the gain can be improved.
  • the second interlayer insulating film 22B is made of, for example, SiO 2 (silicon oxide). Such a second interlayer insulating film 22B, together with the first interlayer insulating film 22A, functions as an insulating film with respect to the barrier layer 14, and also has a function of protecting the surface of the barrier layer 14 from contamination by impurities.
  • the second interlayer insulating film 22B is preferably made of a material that can be dry-etched, and the selection ratio of dry etching between the constituent material of the first interlayer insulating film 22A and the constituent material of the second interlayer insulating film 22B is, for example. It is 1: 1 or more, and preferably 1: 5 or more.
  • the semiconductor device 1A can be formed, for example, as follows (FIGS. 10A to 10D).
  • the semiconductor layer 10, the source electrode 21S, and the drain electrode 21D are formed on the substrate 11 in the same manner as described in the above embodiment (FIG. 4D).
  • a first interlayer insulating film 22A is formed on the entire surface of the semiconductor layer 10 so as to cover the source electrode 21S and the drain electrode 21D.
  • the first interlayer insulating film 22A is formed, for example, by forming an aluminum oxide (Al 2 O 3 ) film using the ALD method.
  • the second interlayer insulating film 22B is formed on the first interlayer insulating film 22A.
  • the second interlayer insulating film 22B is formed by forming silicon oxide (SiO 2 ), for example, by using a CVD method.
  • a second opening 22BM is formed in the second interlayer insulating film 22B.
  • the second opening 22BM penetrates the second interlayer insulating film 22B and reaches the first interlayer insulating film 22A.
  • the second opening 22BM is preferably formed by, for example, dry etching. As a result, it is possible to suppress the expansion of the width of the second opening 22BM. Further, by setting the etching selection ratio between the constituent material of the first interlayer insulating film 22A and the constituent material of the second interlayer insulating film 22B to 1: 5 or more, the first interlayer when forming the second opening 22BM is formed. Deterioration of the semiconductor layer 10 due to the reduction of the insulating film 22A can be suppressed.
  • the first opening 22AM is formed in the first interlayer insulating film 22A as shown in FIG. 10D.
  • the first opening 22AM is preferably formed by, for example, wet etching. As a result, deterioration of the semiconductor layer 10 can be suppressed as compared with the case where the first opening 22AM is formed by dry etching.
  • the interlayer insulating film 22 is composed of a laminated structure of the first interlayer insulating film 22A and the second interlayer insulating film 22B, the first interlayer insulating film 22A closer to the semiconductor layer 10 is formed.
  • One opening 22AM can be formed by using wet etching. As a result, deterioration of the semiconductor layer 10 due to processing in the manufacturing process can be suppressed.
  • the second opening when forming the first opening 22AM is formed.
  • the spread of the width of the portion 22BM can be suppressed.
  • the gate electrode 23 is embedded so as to embed the second opening 22BM and the first opening 22AM from above the interlayer insulating film 22 (more specifically, the second interlayer insulating film 22B). To form.
  • the gate electrode 23 can be formed in the same manner as described in the above embodiment.
  • the semiconductor device 1A can be formed in this way.
  • the semiconductor device 1A of the present modification also has a source electrode 21S extending at least toward the gate electrode 23 side from the source side contact region 15S, and at least a gate electrode than the drain side contact region 15D.
  • the drain electrode 21D is provided so as to extend to the 23 side.
  • the interlayer insulating film 22 has a laminated structure of the first interlayer insulating film 22A and the second interlayer insulating film 22B in order from the barrier layer 14 side, the second opening 22BM of the second interlayer insulating film 22B is formed. At that time, the surface of the semiconductor layer 10 is covered with the first interlayer insulating film 22A. Therefore, the surface of the semiconductor layer 10 is protected by the first interlayer insulating film 22A from dry etching when the second opening 22BM is formed. Therefore, deterioration of the semiconductor layer 10 immediately below the gate electrode 23 due to the processing in the manufacturing process can be suppressed. As a result, in the semiconductor device 1A, it is possible to improve the gate characteristics such as reduction of resistance and improvement of withstand voltage.
  • the gap is provided between the gate electrode 23 and the side wall of the first opening 22AM, the gate-drain capacitance (Cgd) and the gate-source capacitance (Cgs) are lowered. Therefore, the gain can be improved.
  • FIG. 11 schematically shows a cross-sectional configuration of a main part of the semiconductor device (semiconductor device 1B) according to the second modification of the above embodiment.
  • FIG. 11 corresponds to FIG. 1 showing the semiconductor device 1.
  • the semiconductor device 1B has a planar configuration similar to that of the semiconductor device 1 (FIG. 2).
  • the semiconductor device 1B has a gate insulating film (gate insulating film 24) between the semiconductor layer 10 and the gate electrode 23. Except for this point, the semiconductor device 1B has the same configuration as the semiconductor devices 1 and 1A, and its action and effect are also the same.
  • the gate insulating film 24 covers, for example, the sidewalls of the first opening 22AM and the second opening 22BM from above the interlayer insulating film 22 (specifically, the second interlayer insulating film 22B), and the second opening 22BM. It is provided so as to cover the bottom surface of the.
  • the gate insulating film 24 provided on the bottom surface of the second opening 22BM is arranged between the semiconductor layer 10 (specifically, the barrier layer 14) and the gate electrode 23. That is, the semiconductor device 1 has a MIS (Metal Insulator Semiconductor) structure. As a result, it is possible to suppress the generation of leakage current and the decrease in withstand voltage due to the contact between the gate electrode 23 and the semiconductor layer 10. That is, the semiconductor device 1B can improve the gate characteristics as compared with the semiconductor devices 1 and 1A.
  • the gate insulating film 24 is made of, for example, Al 2 O 3 or HfO 2 (hafnium oxide) having a thickness of about 10 nm.
  • the gate insulating film 24 may be composed of a single layer or may have a laminated structure.
  • Such a gate insulating film 24 functions as an insulating film with respect to the barrier layer 14 and the interlayer insulating film 22, and also has a function of protecting the surface of the barrier layer 14 from contamination by impurities. Examples of this impurity include ions and the like. Further, by forming a good interface between the gate insulating film 24 and the barrier layer 14, deterioration of device characteristics can be suppressed.
  • the semiconductor device 1B can be formed, for example, as follows (FIG. 12).
  • the semiconductor layer 10, the source electrode 21S, the drain electrode 21D, the first interlayer insulating film 22A, and the second interlayer insulating film 22B are formed on the substrate 11 in this order ( 10B), the second opening 22BM and the first opening 22AM are formed (FIGS. 10C, 10D).
  • the gate insulating film 24 is formed so as to cover the side wall of the second opening 22BM, the side wall of the first opening 22AM, and the bottom surface of the first opening 22AM from above the second interlayer insulating film 22B.
  • the gate insulating film 24 is formed, for example, by forming an Al 2 O 3 (aluminum oxide) film using the ALD method. By using the ALD method, a homogeneous film formation is possible. Therefore, the exposed surfaces of the barrier layer 14, the first interlayer insulating film 22A, and the second interlayer insulating film 22B are covered with a homogeneous film.
  • the gate electrode 23 is formed so as to embed the second opening 22BM and the first opening 22AM from above the interlayer insulating film 22 (more specifically, the second interlayer insulating film 22B). Form.
  • the gate electrode 23 can be formed in the same manner as described in the above embodiment.
  • the semiconductor device 1B can be formed in this way.
  • the semiconductor device 1B of the present modification also has a source electrode 21S extending at least toward the gate electrode 23 side from the source side contact region 15S, and at least a gate electrode than the drain side contact region 15D.
  • the drain electrode 21D is provided so as to extend to the 23 side.
  • the semiconductor device 1B can improve the gate characteristics as compared with the semiconductor devices 1 and 1A.
  • the semiconductor devices 1, 1A and 1B described in the above-described embodiments and modifications 1 and 2 can be applied to various electronic devices.
  • the semiconductor devices 1, 1A and 1B are used in a wireless communication device in a mobile communication system or the like, and are particularly used as an RF switch or a power amplifier thereof.
  • the effect is particularly exhibited when the communication frequency is higher than the UHF (ultra high frequency) band.
  • the semiconductor devices 1, 1A and 1B for the RF switch and power amplifier of the wireless communication device, it becomes possible to achieve high speed, high efficiency and low power consumption of the wireless communication device.
  • the usage time can be extended by increasing the speed, efficiency, and power consumption of the device. Therefore, it is possible to improve portability.
  • FIG. 13 shows an example of the configuration of the wireless communication device (wireless communication device 4).
  • the wireless communication device 4 is a mobile phone system having multiple functions such as voice, data communication, and LAN connection.
  • the wireless communication device 4 includes, for example, an antenna ANT, an antenna switch circuit 3, a high power amplifier HPA, a high frequency integrated circuit RFIC (Radio Frequency Integrated Circuit), a base band unit BB, an audio output unit MIC, and data output. It has a unit DT and an interface unit I / F (for example, wireless LAN (W-LAN; Wireless Local Area Network), Bluetooth (registered trademark), etc.).
  • the high-frequency integrated circuit RFIC and the baseband portion BB are connected by an interface portion I / F.
  • the antenna switch circuit 3, the high power amplifier HPA, or the high frequency integrated circuit RFIC is configured to include any of the above semiconductor devices 1, 1A, and 1B.
  • the antenna switch circuit 3, the high power amplifier HPA, or the high frequency integrated circuit RFIC corresponds to a specific example of the semiconductor module of the present disclosure.
  • the transmission signal output from the baseband portion BB is the high frequency integrated circuit RFIC. It is output to the antenna ANT via the high power amplifier HPA and the antenna switch circuit 3.
  • the received signal is input to the baseband unit BB via the antenna switch circuit 3 and the high frequency integrated circuit RFIC.
  • the signal processed by the baseband unit BB is output from an audio output unit MIC, a data output unit DT, and an output unit such as an interface unit I / F.
  • the present technology has been described above with reference to embodiments and modifications, the present technology is not limited to the above embodiments and can be variously modified.
  • the components, arrangements, numbers, etc. of the semiconductor devices 1, 1A, 1B exemplified in the above-described embodiments are merely examples, and it is not necessary to include all the components, and other components may be further added. You may be prepared.
  • each layer described in the above-described embodiment and the like, or the film forming method and film forming conditions are not limited, and other materials and thickness may be used, or other film forming methods and formations may be used. It may be a membrane condition.
  • the semiconductor layer 10 is made of a GaN-based compound semiconductor material has been described, but the semiconductor layer 10 is made of another compound semiconductor material such as GaAs (gallium arsenide) -based material. It may be composed of a semiconductor material such as Si (silicon).
  • At least one of the source electrode 21S and the drain electrode 21D may extend in the channel length direction from the source side contact region 15S and the drain side contact region 15D.
  • the drain electrode 21D extends closer to the gate electrode 23 than the drain side contact region 15D, and a part of the source side contact region 15S on the gate electrode 23 side is exposed from the source electrode 21S. It may have been done. It is preferable that at least the drain electrode 21D extends closer to the gate electrode 23 side than the drain side contact region 15D.
  • the source electrode 21S and the drain electrode 21D extend in the channel length direction from the source side contact region 15S and the drain side contact region 15D at least on the gate electrode 23 side. Good.
  • the source electrode 21S and the drain electrode 21D extend from the source side contact region 15S and the drain side contact region 15D to the gate electrode 23 side, and on the side opposite to the gate electrode 23, the source side. A part of each of the contact region 15S and the drain side contact region 15D may be exposed from the source electrode 21S and the drain electrode 21D.
  • the present technology can also be configured as follows.
  • a semiconductor device having the following configuration, a semiconductor module equipped with this semiconductor device, and an electronic device, the electrode is provided so as to extend at least toward the gate electrode side from the contact region, so that the sheet resistance of the contact region can be reduced. The influence can be suppressed and the on-resistance can be reduced. Therefore, it is possible to improve the transistor characteristics.
  • a semiconductor layer including a channel layer and A contact region provided with a predetermined size in the thickness direction of the semiconductor layer and having an impurity concentration higher than that of the surrounding semiconductor layer.
  • a gate electrode provided on the semiconductor layer so as to face the channel layer and separated from the contact region.
  • the contact region includes a source-side contact region provided on one side of the gate electrode and a drain-side contact region provided on the other side of the gate electrode.
  • the electrode includes a source electrode electrically connected to the channel layer via the source side contact region and a drain electrode electrically connected to the channel layer via the drain side contact region.
  • it has an interlayer insulating film that covers the electrode and the semiconductor layer and has an opening in a selective region.
  • the interlayer insulating film has a laminated structure of a first interlayer insulating film and a second interlayer insulating film in order from the semiconductor layer side.
  • the first opening communicates with the second opening and The semiconductor device according to (8), wherein the width of the first opening is larger than the width of the second opening.
  • the semiconductor layer further includes a barrier layer provided between the channel layer and the gate electrode.
  • An electronic device comprising a semiconductor device that is in contact with the semiconductor layer is electrically connected to the channel layer via the contact region, and includes an electrode extending from the contact region to at least the gate electrode side.

Abstract

チャネル層を含む半導体層と、前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極とを備えた半導体装置。

Description

半導体装置、半導体モジュールおよび電子機器
 本技術は、半導体層およびゲート電極を有する半導体装置、この半導体装置を備えた半導体モジュールおよび電子機器に関する。
 電界効果トランジスタ(FET:Field Effect Transistor)等の半導体装置は、例えば、チャネル層を含む半導体層と、チャネル層に電気的に接続された一対の電極(ソース電極およびドレイン電極)とを有している(例えば、特許文献1参照)。例えば、半導体層にはN型不純物が高濃度で拡散された領域が設けられており、ソース電極およびドレイン電極は、各々、この高濃度の不純物拡散領域を介してチャネル層に電気的に接続されている。
特開2017-163082号公報
 このような半導体装置では、トランジスタ特性を向上させることが望まれている。
 トランジスタ特性を向上させることが可能な半導体装置、この半導体装置を備えた半導体モジュールおよび電子機器を提供することが望ましい。
 本技術の一実施の形態に係る半導体装置は、チャネル層を含む半導体層と、半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、チャネル層に対向するととともに、コンタクト領域から離間して半導体層上に設けられたゲート電極と、半導体層に接するとともにコンタクト領域を介してチャネル層に電気的に接続され、かつ、コンタクト領域より少なくともゲート電極側に延在する電極とを備えたものである
 本技術の一実施の形態に係る半導体モジュールは、上記本技術の一実施の形態に係る半導体装置を備えたものである。
 本技術の一実施の形態に係る電子機器は、上記本技術の一実施の形態に係る半導体装置を備えたものである。
 本技術の一実施の形態に係る半導体装置、半導体モジュールおよび電子機器では、電極が、コンタクト領域よりも少なくともゲート電極側に延在しているので、コンタクト領域が電極から露出されている場合に比べて、コンタクト領域のシート抵抗の影響が抑えられる。
本技術の一実施の形態に係る半導体装置の要部の構成を表す断面模式図である。 図1に示した半導体装置の上面構成を表す模式図である。 図1に示した半導体装置(Vg=0V)のエネルギーバンド構成図である。 図1に示した半導体装置の製造工程を表す断面模式図である。 図4Aに続く工程を表す断面模式図である。 図4Bに続く工程を表す断面模式図である。 図4Cに続く工程を表す断面模式図である。 図4Dに続く工程を表す断面模式図である。 図4Eに続く工程を表す断面模式図である。 図1に示した半導体装置(オフ動作時)のエネルギーバンド構成図である。 図1に示した半導体装置のオフ動作時に形成されるキャリア欠乏領域を模式的に表す断面図である。 比較例に係る半導体装置の要部の構成を表す断面模式図である。 図1に示した距離とオン抵抗との関係を表す図である。 変形例1に係る半導体装置の要部の構成を表す断面模式図である。 図9に示した半導体装置の製造工程を表す断面模式図である。 図10Aに続く工程を表す断面模式図である。 図10Bに続く工程を表す断面模式図である。 図10Cに続く工程を表す断面模式図である。 変形例2に係る半導体装置の要部の構成を表す断面模式図である。 図11に示した半導体装置の製造工程を表す断面模式図である。 図1等に示した半導体装置が適用された無線通信装置の構成の一例を表すブロック図である。 図1等に示した半導体装置の他の例を表す断面模式図である。 図2等に示した半導体装置の他の例を表す平面模式図である。
 以下、本技術の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
  1.実施の形態
    コンタクト領域よりもゲート電極側に延在したソース電極およびドレイン電極を有する半導体装置
  2.変形例1
    層間絶縁膜が積層構造を有する例
  3.変形例2
    ゲート電極と半導体層との間にゲート絶縁膜を有する例
<実施の形態>
(半導体装置1の構成)
 図1は、本技術の一実施の形態に係る半導体装置(半導体装置1)の要部構成を示す断面図である。図2は半導体装置1の上面図である。以下、これらの図に基づいて半導体装置1の詳細な構成を説明する。
 半導体装置1は、基板11上に、チャネル層13を含む半導体層10と、ソース電極21Sおよびドレイン電極21Dと、層間絶縁膜22と、ゲート電極23とをこの順に有している。層間絶縁膜22は、選択的な領域に開口部22Mを有しており、この開口部22Mにゲート電極23の一部が埋設されている。ゲート電極23は、いわゆるT字型の断面構造を有している。半導体層10上に設けられた、ゲート電極23、ソース電極21Sおよびドレイン電極21Dは、互いに離間して配置されており、チャネル長方向(図2のX方向)に沿って、ソース電極21S、ゲート電極23およびドレイン電極21Dがこの順に配置されている。
 基板11は、半導体材料で構成されている。このような基板11は、例えばIII-V族化合物半導体材料で構成されている。基板11には、例えば半絶縁性の単結晶GaN(窒化ガリウム)基板が用いられる。チャネル層13の格子定数と異なる格子定数を有する基板材料を基板11に用いることも可能である。このような基板11の構成材料としては、例えば、SiC(シリコンカーバイド),サファイアまたはSi(シリコン)等が挙げられる。このとき、基板11とチャネル層13との間のバッファ層(後述のバッファ層12)により、格子定数が調整される。基板11の上部には、島状のアクティブ領域aが設けられている(図2)。隣り合うアクティブ領域aの間は、例えばB(ホウ素)のイオン注入等により分離されている。これにより、複数のアクティブ領域aが、素子分離される。各アクティブ領域aに、ゲート電極23、ソース電極21Sおよびドレイン電極21D等が設けられている。イオン注入以外の方法により、素子分離を行うようにしてもよい。例えば、ドライエッチングによりチャネル層13を分断し、素子分離を行うようにしてもよい。
 半導体層10は、例えば、基板11側から順に、バッファ層12、チャネル層13および障壁層14が積層された構造を有している。
 バッファ層12は、例えば基板11上にエピタキシャル成長させた化合物半導体層で構成され、基板11に対して、良好に格子整合する化合物半導体を用いて構成される。例えば、単結晶GaN基板からなる基板11上には、不純物を添加しないu-GaN(u-は不純物を添加していないことを表す;以下同様)のエピタキシャル成長層が設けられている。基板11の格子定数とチャネル層13の格子定数とが異なるとき、基板11とチャネル層13との間にバッファ層12を設けることにより、チャネル層13の結晶状態を良好にし、かつ、ウェハの反りを抑えることができる。例えば、基板11をSiにより構成し、チャネル層13をGaNにより構成するとき、バッファ層12には、例えば、AlN(窒化アルミニウム),AlGaN(窒化アルミニウムガリウム)またはGaN等を用いることができる。バッファ層12は単層により構成してもよく、あるいは積層構造を有していてもよい。バッファ層12が3元系の材料により構成されるとき、バッファ層12内で各々の組成を徐々に異ならせるようにしてもよい。
 バッファ層12と障壁層14との間のチャネル層13は、ソース電極21Sとドレイン電極21Dとの間の電流通路である。このチャネル層13には、障壁層14との分極によりキャリアが蓄積されるようになっており、障壁層14との接合面(ヘテロ接合界面)近傍に2次元電子ガス(2DEG:Two Dimensional Electron gas)層13cが設けられている。即ち、半導体装置1は、GaN系ヘテロ電界効果トランジスタ(HFET)である。このようなチャネル層13は、障壁層14との分極によりキャリアが蓄積されやすい化合物半導体材料により構成されていることが好ましい。例えば、チャネル層13は、バッファ層12上にエピタキシャル成長させたGaNにより構成されている。チャネル層13は、不純物を添加しないu-GaNにより構成するようにしてもよい。u-GaNにより構成されたチャネル層13では、チャネル層13内でのキャリアの不純物散乱が抑えられるので、キャリアの移動度を高めることができる。
 GaNは、ワイドギャップ半導体材料であり、絶縁破壊電圧が高い。また、GaNを含む半導体層10では、高温動作が可能であり、飽和ドリフト速度も高い。GaNを含むチャネル層13に形成された2次元電子ガス層13cは、移動度が高く、かつ、シート電子密度が高い。このようなGaN系ヘテロ電界効果トランジスタである半導体装置1は、低抵抗、高速、高耐圧動作が可能であり、パワーデバイスおよびRF(Radio Frequency)デバイス等に好適に用いられる。
 チャネル層13とバッファ層12との間に、下部障壁層(図示せず)を設けるようにしてもよい。下部障壁層を設けることにより、チャネル層13内のバッファ層12側への電子分布の広がりを抑えることが可能となる。これにより、短チャネル効果などを抑え、トランジスタ特性を向上させることができる。
 チャネル層13と層間絶縁膜22との間に設けられた障壁層14は、チャネル層13とヘテロ接合界面を形成するものである。障壁層14は、例えば、チャネル層13のバンドギャップよりも広いバンドギャップを有する化合物半導体材料により構成されている。障壁層14には、例えば、チャネル層13上にエピタキシャル成長させたAl(1-xy)GaxInyN(0≦x<1,0≦y<1)が用いられる。障壁層14は、不純物を添加しないu-Al(1-xy)GaxInyNにより構成するようにしてもよい。u-Al(1-xy)GaxInyNにより構成された障壁層14を用いることにより、チャネル層13内でのキャリアの不純物散乱が抑えられるので、キャリアの移動度を高めることができる。障壁層14は単層により構成してもよく、あるいは積層構造を有していてもよい。例えば、障壁層14を、互いに組成の異なるAl(1-xy)GaxInyNの積層構造により構成するようにしてもよい。あるいは、障壁層14内で、Al(1-xy)GaxInyN各々の組成を徐々に異ならせるようにしてもよい。
 半導体層10には、互いに分離して配置されたソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dが設けられている。ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、他の部分の半導体層10の不純物濃度よりも高い不純物濃度を有する領域であり、半導体層10の厚み方向(図1のZ方向)に所定の大きさで設けられている。例えば、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、半導体層10の表面(基板11と反対側の面)からチャネル層13の厚み方向の一部にかけて設けられている。ソース側コンタクト領域15Sは、ソース電極21Sと2次元電子ガス層13cとを、ドレイン側コンタクト領域15Dは、ドレイン電極21Dと2次元電子ガス層13cとを、各々低抵抗で電気的に接続するための領域である。平面(図2のXY平面)視で、ソース側コンタクト領域15Sはソース電極21Sに重なる位置に配置され、ドレイン側コンタクト領域15Dはドレイン電極21Dに重なる位置に配置されている。ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、チャネル層13のうち、障壁層14近傍の位置よりも、半導体層10のより深い位置(表面から遠い位置)まで形成することが好ましいが、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは2次元電子ガス層13cに接していなくてもよい。
 ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dには、例えば、高濃度のN型不純物を含んでいる。N型不純物は、例えば、Si(シリコン)またはGe(ゲルマニウム)等である。ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15DのN型不純物の濃度は、例えば、1×1018cm-3以上である。
 ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、例えば、イオン注入を用いて、半導体層10の表面から障壁層14およびチャネル層13に不純物を拡散させて形成するようにしてもよい。即ち、障壁層14およびチャネル層13の一部の領域に、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dが設けられていてもよい。
 ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、例えば、障壁層14およびチャネル層13とは別の層により構成されていてもよい。このようなソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、例えば、後述のように、障壁層14およびチャネル層13の一部を除去した後、この障壁層14およびチャネル層13が除去された領域を半導体材料により埋めることにより形成される。このとき、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは、例えば、N型不純物を含むIn(1-z)GazN(0≦z<1)により構成されている。ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dは単層により構成してもよく、あるいは積層構造を有していてもよい。例えば、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dを、組成の異なるIn(1-z)GazNの積層構造により構成するようにしてもよい。あるいは、ソース側コンタクト領域15S内およびドレイン側コンタクト領域15D内で、In(1-z)GazN各々の組成を徐々に異ならせるようにしてもよい。
 ソース電極21Sおよびドレイン電極21Dは、各々、半導体層10の表面の選択的な領域に互いに分離して配置されている。ソース電極21Sおよびドレイン電極21Dはともに、半導体層10の表面に接している。即ち、ソース電極21Sおよびドレイン電極21Dは、それぞれ半導体層10にオーミック接合されている。本実施の形態では、ソース電極21Sがソース側コンタクト領域15Sを覆うとともにソース側コンタクト領域15Sよりもゲート電極23側に所定の距離(距離Ls)延在しており、ドレイン電極21Dがドレイン側コンタクト領域15Dを覆うとともにドレイン側コンタクト領域15Dよりもゲート電極23側に所定の距離(距離Ld)延在している。詳細は後述するが、これにより、ソース側コンタクト領域15S,ドレイン側コンタクト領域15Dがソース電極21S,ドレイン電極21Dから露出されている場合に比べて、ソース側コンタクト領域15S,ドレイン側コンタクト領域15Dのシート抵抗の影響が抑えられる。
 ソース電極21Sは、例えば、ソース側コンタクト領域15Sの全周にわたって、ソース側コンタクト領域15Sよりも広い領域に設けられている(図2)。ソース電極21Sは、例えば、チャネル長方向において、ゲート電極23と反対側にも、距離Lsa延在している。ソース電極21Sは、チャネル長方向において、ソース側コンタクト領域15Sの両側(ゲート電極23側およびゲート電極23と反対側)に延在していることが好ましいが、ソース側コンタクト領域15Sより少なくともゲート電極23側に延在していればよい。ソース電極21Sは、例えば、ソース側コンタクト領域15Sおよび障壁層14に接している(図1)。
 ドレイン電極21Dは、例えば、ドレイン側コンタクト領域15Dの全周にわたって、ドレイン側コンタクト領域15Dよりも広い領域に設けられている(図2)。ドレイン電極21Dは、例えば、チャネル長方向において、ゲート電極23と反対側にも、距離Lda延在している。ドレイン電極21Dは、チャネル長方向において、ドレイン側コンタクト領域15Dの両側に延在していることが好ましいが、ドレイン側コンタクト領域15Dより少なくともゲート電極23側に延在していればよい。ドレイン電極21Dは、例えば、ドレイン側コンタクト領域15Dおよび障壁層14に接している(図1)。
 ソース電極21Sおよびドレイン電極21Dは、例えば、半導体層10側から、チタン(Ti)、アルミニウム(Al)、ニッケル(Ni)および金(Au)がこの順に積層された積層膜により構成されている。ソース電極21Sおよびドレイン電極21D各々の一部は、平面視で、アクティブ領域aからはみ出して設けられていてもよい(図2)。ソース電極21Sおよびドレイン電極21Dは、これらの上部に設けられたコンタクトを介して配線層に接続されていてもよい。これにより、メタル引き出し部の抵抗成分を抑えることができる。
 層間絶縁膜22は、ソース電極21Sおよびドレイン電極21Dを覆うように、半導体層10上に設けられている。層間絶縁膜22の開口部22Mは、層間絶縁膜22を貫通して設けられている。開口部22Mは、チャネル長方向において、ソース側コンタクト領域15Sとドレイン側コンタクト領域15Dとの間に配置されている。開口部22Mは、例えば、矩形の平面形状を有している(図2)。層間絶縁膜22は、障壁層14に対して絶縁膜として機能するとともに、障壁層14の表面を不純物による汚染から保護する機能を有する。この不純物としては、例えば、イオン等が挙げられる。また、層間絶縁膜22と障壁層14との間に良好な界面を形成することにより、デバイス特性の劣化が抑えられる。層間絶縁膜22は、例えば、SiO2(酸化シリコン)等により構成されている。層間絶縁膜22は、例えば、Al23(酸化アルミニウム)または窒化シリコン(SiN)等により構成されていてもよい。
 ゲート電極23は、層間絶縁膜22上に設けられるとともに、層間絶縁膜22の開口部22Mに埋設されている。この開口部22Mに埋設された部分のゲート電極23の大きさ(図1のX方向の大きさ)により、ゲート電極23のゲート長(Lg)が規定される。ゲート電極23は、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dから離間して配置されている。ゲート電極23は、例えば、基板11側からニッケル(Ni)および金(Au)が順次積層された積層膜により構成されている。
 層間絶縁膜22を間にして半導体層10に対向する部分のゲート電極23、即ち、層間絶縁膜22上のゲート電極23は、開口部22Mを覆い、開口部22Mの周囲に拡幅している。層間絶縁膜22上のゲート電極23は、例えば、開口部22Mの全周にわたって拡幅されている。層間絶縁膜22上のゲート電極23は、開口部22Mの周囲の一部で拡幅されていてもよい。開口部22Mの周囲にゲート電極23を設けることにより、ゲート電極23の面積(断面積)が大きくなるので、ゲート抵抗(Rg)を低くすることができる。このようなT字型の構造を有するゲート電極23では、ゲート長を小さくしつつ、ゲート抵抗を低くできるので、遮断周波数(fmax)を高くすることができる。したがって、ゲート電極23を有する半導体装置1は、高周波デバイスとして好適に用いられる。
(半導体装置1のバンド構造)
 図3は、上記構成の半導体装置1のゲート電極23の下方におけるエネルギーバンド構成図であり、ゲート電圧Vgを印加していない接合状態のものである。尚、このエネルギーバンド構成図は、チャネル層13をGaN、障壁層14をAl0.3Ga0.7N混晶により各々構成し、ゲート電極23と障壁層14との間にゲート絶縁膜(後述の図11のゲート絶縁膜24)を設けた場合について表している。
 半導体装置1では、バンドギャップの狭いチャネル層13に、チャネル層13よりもバンドギャップが広い障壁層14が接合されている。このため、チャネル層13には、自発分極またはピエゾ分極、あるいはこれらの両方によって、チャネル層13内の障壁層14との接合面近傍にキェリアが蓄積される。これにより、チャネル層13に2次元電子ガス層13cが形成される。
 また、チャネル層13の伝導帯端と障壁層14の伝導体端との間の不連続量ΔEcが十分に大きい(ここでは0.3eV)ので、障壁層14内に分布するキャリア(電子)数はチャネル層13内に分布するキャリア(電子)数に比べて無視できる程度に少なくなっている。
(半導体装置1の製造方法)
 このような構成を有する半導体装置1は、例えば次のようにして製造することができる。図4A~図4Fは、半導体装置1の製造方法を工程順に表した断面模式図である。
 まず、図4Aに示したように、例えばSiからなる基板11上に、バッファ層12、チャネル層13、障壁層14および絶縁膜16をこの順に形成する。バッファ層12、チャネル層13および障壁層14は、例えば、エピタキシャル成長法を用いて形成する。チャネル層13は、例えば、バッファ層12上にGaN層をエピタキシャル成長させて形成し、障壁層14は、例えば、チャネル層13上にu-AlGaN(Al0.3-Ga0.7N混晶)をエピタキシャル成長させて形成する。絶縁膜16は、後の工程でソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dを形成する際に、選択マスクとして使用する。絶縁膜16を形成した後、例えば、素子分離を行う。素子分離は、例えば、隣り合う素子間の領域にB(ホウ素)等をイオン注入することにより行う。イオン注入により、素子間の領域が高抵抗化されて、素子分離がなされる(図2のアクティブ領域aが形成される)。素子分離の工程は、後(例えば、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dの形成後、あるいは、ゲート電極23の形成後)の工程で行うようにしてもよい。
 絶縁膜16を形成した後、図4Bに示したように、絶縁膜16からチャネル層13にかけてエッチングを行う。これにより、基板11上の積層体に、一対の切欠Cが形成される。この一対の切欠Cは、例えば、チャネル層13の一部まで達しており、切欠Cの底面はチャネル層13により形成されている。
 次に、図4Cに示したように、例えば、選択再成長法を用いて、この一対の切欠Cの一方にソース側コンタクト領域15S、他方にドレイン側コンタクト領域15Dを形成する。これにより、基板11上に半導体層10が形成される。ここで、選択再成長法を行う際に、絶縁膜16(図4B)が選択マスクとして機能する。ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dを形成した後、例えば、エッチングにより、絶縁膜16を除去する。
 続いて、図4Dに示したように、ソース側コンタクト領域15Sに電気的に接続させてソース電極21Sを形成し、ドレイン側コンタクト領域15Dに電気的に接続させてドレイン電極21Dを形成する。ソース電極21Sおよびドレイン電極21Dは、例えば、半導体層10の表面に、チタン(Ti)、アルミニウム(Al)、ニッケル(Ni)および金(Au)をこの順にマスク蒸着して形成する。これにより、ソース電極21Sおよびドレイン電極21Dが、半導体層10の表面の選択的な領域にパターン形成される。
 次いで、図4Eに示したように、ソース電極21Sおよびドレイン電極21Dを覆うように、例えば、半導体層10の表面全面に層間絶縁膜22を成膜する。層間絶縁膜22は、例えば、CVD(Chemical Vapor Deposition)法を用いて酸化シリコン(SiO2)を成膜することにより形成する。層間絶縁膜22は、例えば、ALD(Atomic Layer Deposition)法を用いて酸化アルミニウム(Al23)を成膜することにより形成してもよく、あるいは、CVD法を用いて窒化シリコン(SiN)を成膜することにより形成してもよい。
 層間絶縁膜22を成膜した後、図4Fに示したように、層間絶縁膜22の所定の領域に開口部22Mを形成する。開口部22Mは、例えば、チャネル長方向において、ソース電極21Sとドレイン電極21Dとの間の層間絶縁膜22の一部をパターンエッチングすることにより形成する。開口部22Mは、例えば、半導体層10に達する深さまで形成する。
 開口部22Mを形成した後、開口部22Mを埋め込むように、層間絶縁膜22上の所定の領域にゲート電極23を形成する。ゲート電極23は、例えば、層間絶縁膜22上にNi(ニッケル)およびAu(金)を順次マスク蒸着することにより形成する。このような工程を経て、図1,図2に示した半導体装置1が完成する。
(半導体装置1の動作)
 このような半導体装置1の動作を、先の図3と共に、図5のエネルギーバンド構成図、および図6の半導体装置1の断面図を用いて説明する。ここでは、半導体装置1が、しきい値電圧-5V程度のデプレッション型のトランジスタである場合についての動作として説明する。
 図5はオフ動作時(Vg=-10V)のものである。また図5は、図3と同様に、チャネル層13をGaN、障壁層14をAl0.3Ga0.7N混晶によりそれぞれ構成した場合について表している。
 半導体装置1では、ゲート電極23に、負のゲート電圧Vg(例えば、-10V程度)を印加すると、図6の断面図に示すように、ゲート電極23の直下のチャネル層13の領域(キャリア欠乏領域A)では、キャリア数が減少する。このため、チャネル層13の電子数が減少し、ドレイン電流Idがほとんど流れなくなる。このときのエネルギーバンド構成は図5のようであり、チャネル層13内におけるコンダクションバンドエネルギーEcは、フェルミ準位Efよりも完全に高くなる。
 一方、ゲート電極23に、正のゲート電圧Vg(例えば、1V程度)を印加すると、オン動作時の状態となる。この場合、図6の断面図において示したキャリア欠乏領域Aは消失し、チャネル層13における電子数が増大し、ドレイン電流Idが変調される。このときのエネルギーバンド構成は図3のようであり、チャネル層13内におけるコンダクションバンドエネルギーEcは、フェルミ準位Efよりも低くなる。
(半導体装置の作用および効果)
 本実施の形態の半導体装置1では、ソース電極21Sがソース側コンタクト領域15Sよりもチャネル長方向に延在しており、ドレイン電極21Dがドレイン側コンタクト領域15Dよりもチャネル長方向に延在している。これにより、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dが各々、チャネル長方向において、ソース電極21S、ドレイン電極21Dから露出されている場合に比べて、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dのシート抵抗の影響が抑えられる。以下、この作用効果について説明する。
 図7は、比較例に係る半導体装置(半導体装置100)の要部の断面構成を模式的に表している。図7は、半導体装置1を表す図1に対応する。半導体装置100は、基板11上に半導体層10を有している。この半導体装置100は、例えば、半導体装置1と同様に、GaN系HFETであり、半導体層10は、基板11側から順に、バッファ層12、チャネル層13および障壁層14を含んでおり、半導体層10には、表面から厚み方向に所定の大きさで、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dが設けられている。半導体装置100では、ソース側コンタクト領域15Sがソース電極21Sよりもゲート電極23側に延在して設けられており、ドレイン側コンタクト領域15Dがドレイン電極21Dよりもゲート電極23側に延在して設けられている。即ち、ソース側コンタクト領域15Sの一部がソース電極21Sから露出され、ドレイン側コンタクト領域15Dの一部がドレイン電極21Dから露出されている。この点において、半導体装置100は、半導体装置1と異なっている。
 このような半導体装置100では、ソース電極21Sから露出された部分のソース側コンタクト領域15Sのシート抵抗およびドレイン電極21Dから露出された部分のドレイン側コンタクト領域15Dのシート抵抗に起因して、オン抵抗(Ron)が高くなるおそれがある。特に、高電圧がかかるドレイン側コンタクト領域15Dが、ドレイン電極21Dから露出されていると、オン抵抗が高くなりやすい。
 また、障壁層14と層間絶縁膜22との界面近傍では、界面トラップが発生しやすく、この界面トラップに起因して半導体装置100の特性が低下するおそれがある。特に、GaN(ガリウムナイトライド)系の半導体層10を用いた半導体装置100では、この界面トラップの影響が大きくなる。これにより、ゲート電極23およびドレイン電極21Dに電圧を印加した後、半導体装置100では特性変動が生じるおそれがある。この界面トラップに起因した半導体装置100の特性低下を抑える方法として、フィールドプレート効果を用いる方法を考え得る(例えば、特開平2016-136547号公報)。しかし、このフィールドプレート効果を用いる方法では、ゲートとドレインとの間の容量が増加する。ゲートとドレインとの間の容量は、ゲート電極とドレイン側の2次元電子ガス層とが積層方向で対向する部分と、チャネル長方向において、ゲート電極とドレイン電極とが近接する部分とに形成される。このようなゲートとドレインとの間の容量の増加に起因して周波数特性が低下するおそれがある。また、フィールドプレート効果を用いる方法では、フィールドプレートによりゲートとドレインとの間の距離が大きくなるので、デバイスサイズが大きくなりやすい。
 更に、ソース電極21Sおよびドレイン電極21Dから露出された部分の半導体層10の表面が、製造工程での処理に起因して劣化するおそれがある。例えば、層間絶縁膜22を成膜する前の処理および層間絶縁膜22を成膜する際のプラズマ照射等に起因して、半導体層10が劣化し、2次元電子ガス層13cのシート抵抗が高くなるおそれがある。
 これに対し、半導体装置1では、ソース電極21Sがソース側コンタクト領域15Sよりもチャネル長方向に延在しており、ドレイン電極21Dがドレイン側コンタクト領域15Dよりもチャネル長方向に延在している。即ち、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dが、ソース電極21S、ドレイン電極21Dから露出されないので、ソース電極21S、ドレイン電極21Dから露出された部分のソース側コンタクト領域15S、ドレイン側コンタクト領域15Dのシート抵抗の影響が抑えられる。したがって、半導体装置1では、オン抵抗が低減される。
 図8は、半導体装置1のオン抵抗と、距離Ls,Ldとの関係を表したものである。ソース側コンタクト領域15Sよりもゲート電極23側に延在する部分のソース電極21Sの距離Ls(図1,図2)、ドレイン側コンタクト領域15Dよりもゲート電極23側に延在する部分のドレイン電極21Dの距離Ld(図1,図2)が大きくなるにつれて、半導体装置1のオン抵抗が低減することが確認された。
 また、半導体装置1では、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dよりもソース電極21S、ドレイン電極21Dをチャネル長方向において延在させることにより、半導体装置100に比べて、障壁層14と層間絶縁膜22との界面の面積が小さくなる。これにより、障壁層14と層間絶縁膜22との界面近傍の界面トラップに起因した半導体装置1の特性劣化が抑えられる。特に、GaN(ガリウムナイトライド)系の半導体層10を有する半導体装置1では、効果的に界面トラップに起因した特性劣化が抑えられる。したがって、ゲート電極23およびドレイン電極21Dに電圧を印加した後の半導体装置1の特性変動を抑えることができる。また、半導体装置1では、フィールドプレート効果を用いることなく、界面トラップの影響が抑えられるので、ゲートとドレインとの間の容量の増加に起因した周波数特性の低下およびデバイスサイズの増加を抑えることができる。
 更に、半導体装置1では、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dよりもソース電極21S、ドレイン電極21Dをチャネル長方向において延在させることにより、半導体装置100に比べて、ソース電極21Sおよびドレイン電極21Dから露出された部分の半導体層10の表面が小さくなる。これにより、製造工程での処理に起因した半導体層10の劣化が抑えられ、2次元電子ガス層13cのシート抵抗の上昇を抑えることができる。
 加えて、半導体装置1では、積層方向(図1のZ軸方向)において、2次元電子ガス層13cと、ソース電極21Sおよびドレイン電極21D各々とが対向する部分が形成される。これにより、チャネル層13内部のポテンシャル分布が安定し、高周波特性を改善することが可能となる。
 以上説明したように、本実施の形態では、ソース側コンタクト領域15Sよりも少なくともゲート電極23側に延在させてソース電極21Sを設け、ドレイン側コンタクト領域15Dよりも少なくともゲート電極23側に延在させてドレイン電極21Dを設けるようにした。これにより、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dのシート抵抗の影響を抑え、オン抵抗を低減することができる。よって、トランジスタ特性を向上させることが可能となる。
 なお、上記実施の形態では、半導体装置1をデプレッション型とした場合を説明したが、エンハンスメント型とした場合であっても同様に考えることができる。
 以下、上記実施の形態の変形例について説明するが、以降の説明において上記実施の形態と同一構成部分については同一符号を付してその説明は適宜省略する。
<変形例1>
 図9は、上記実施の形態の変形例1に係る半導体装置(半導体装置1A)の要部の断面構成を模式的に表したものである。図9は、半導体装置1を表す図1に対応する。半導体装置1Aは、半導体装置1と同様の平面構成を有している(図2)。この半導体装置1Aでは、層間絶縁膜22が、第1層間絶縁膜22Aおよび第2層間絶縁膜22Bの積層構造を有している。この点を除き、半導体装置1Aは、半導体装置1と同様の構成を有し、その作用および効果も同様である。
 層間絶縁膜22は、障壁層14側から順に第1層間絶縁膜22Aおよび第2層間絶縁膜22Bが積層された積層膜により構成されている。第1層間絶縁膜22Aには、第1開口部22AMが設けられ、第2層間絶縁膜22Bには、第2開口部22BMが設けられている。ゲート電極23は、第1開口部22AMおよび第2開口部22BMに埋設されている。
 第1層間絶縁膜22Aは、障壁層14と第2層間絶縁膜22Bとの間、およびソース電極21Sまたはドレイン電極21Dと第2層間絶縁膜22Bとの間に設けられている。この第1層間絶縁膜22Aは、例えばAl23(酸化アルミニウム)により構成されている。このような第1層間絶縁膜22Aは、障壁層14に対して絶縁膜として機能するとともに、障壁層14の表面を不純物による汚染から保護する機能を有する。この不純物としては、例えば、イオン等が挙げられる。また、第1層間絶縁膜22Aと障壁層14との間に良好な界面を形成することにより、デバイス特性の劣化が抑えられる。第1層間絶縁膜22Aは、ウェットエッチング可能な材料により構成されていることが好ましく、第2層間絶縁膜22Bの構成材料と第1層間絶縁膜22Aの構成材料とのウェットエッチングの選択比は例えば1:1以上であり、1:5以上であることが好ましい。第1層間絶縁膜22Aに設けられた第1開口部22AMは、第1層間絶縁膜22Aを貫通している。
 第2層間絶縁膜22Bは、第1層間絶縁膜22Aを間にして障壁層14に対向している。この第2層間絶縁膜22Bには、第1層間絶縁膜22Aの第1開口部22AMのチャネル長方向の幅(図9のX軸方向の大きさ)よりも小さい幅を有する第2開口部22BMが設けられている。この第2層間絶縁膜22Bの第2開口部22BMは、第1層間絶縁膜22Aの第1開口部22AMに連通しており、第1開口部22AMおよび第2開口部22BMの両方にゲート電極23が挿通されている。平面(図9のXY平面)視で、例えば、第2開口部22BMは、第1開口部22AMの中央部に配置されている。第2層間絶縁膜22Bの第2開口部22BMは、層間絶縁膜22に埋設された部分のゲート電極23の大きさを規定するためのものである。このような第1開口部22AMおよび第2開口部22BMを設けることにより、ゲート電極23と第1開口部22AMの側壁との間に空隙が形成される。この空隙の誘電率は、層間絶縁膜22の誘電率よりも低くなっている。したがって、空隙のない半導体装置1に比べて、半導体装置1Aでは、ゲート―ドレイン間容量(Cgd)およびゲート―ソース間容量(Cgs)が低くなる。したがって、利得を向上させることができる。
 第2層間絶縁膜22Bは、例えば、SiO2(酸化シリコン)により構成されている。このような第2層間絶縁膜22Bは、第1層間絶縁膜22Aとともに、障壁層14に対して絶縁膜として機能するとともに、障壁層14の表面を不純物による汚染から保護する機能を有する。第2層間絶縁膜22Bは、ドライエッチング可能な材料により構成されていることが好ましく、第1層間絶縁膜22Aの構成材料と第2層間絶縁膜22Bの構成材料とのドライエッチングの選択比は例えば1:1以上であり、1:5以上であることが好ましい。
 半導体装置1Aは、例えば、以下のようにして形成することができる(図10A~図10D)。
 まず、上記実施の形態で説明したのと同様に、基板11上に半導体層10と、ソース電極21Sおよびドレイン電極21Dとを形成する(図4D)。
 次いで、図10Aに示したように、ソース電極21Sおよびドレイン電極21Dを覆うように、半導体層10の表面全面に第1層間絶縁膜22Aを成膜する。第1層間絶縁膜22Aは、例えば、ALD法を用いて酸化アルミニウム(Al23)を成膜することにより形成する。
 次に、図10Bに示したように、第1層間絶縁膜22A上に第2層間絶縁膜22Bを形成する。第2層間絶縁膜22Bは、例えば、CVD法を用いて、酸化シリコン(SiO2)を成膜することにより形成する。
 続いて、図10Cに示したように、第2層間絶縁膜22Bに第2開口部22BMを形成する。第2開口部22BMは、第2層間絶縁膜22Bを貫通しており、第1層間絶縁膜22Aに達している。第2開口部22BMは、例えば、ドライエッチングを用いて形成することが好ましい。これにより、第2開口部22BMの幅の広がりを抑えることができる。また、第1層間絶縁膜22Aの構成材料と第2層間絶縁膜22Bの構成材料とのエッチング選択比を1:5以上にしておくことにより、第2開口部22BMを形成する際の第1層間絶縁膜22Aの膜減りに起因した半導体層10の劣化を抑えることができる。
 第2開口部22BMを形成した後、図10Dに示したように、第1層間絶縁膜22Aに第1開口部22AMを形成する。第1開口部22AMは、例えば、ウェットエッチングを用いて形成することが好ましい。これにより、ドライエッチングを用いて第1開口部22AMを形成する場合に比べて、半導体層10の劣化を抑えることができる。本変形例では、このように、層間絶縁膜22が第1層間絶縁膜22Aおよび第2層間絶縁膜22Bの積層構造により構成されているので、半導体層10により近い第1層間絶縁膜22Aの第1開口部22AMを、ウェットエッチングを用いて形成することができる。これにより、製造工程での処理に起因した半導体層10の劣化が抑えられる。
 また、第1層間絶縁膜22Aの構成材料と第2層間絶縁膜22Bの構成材料とのエッチング選択比を5:1以上にしておくことにより、第1開口部22AMを形成する際の第2開口部22BMの幅の広がりを抑えることができる。
 第1開口部22AMを形成した後、層間絶縁膜22(より具体的には、第2層間絶縁膜22B)上から、第2開口部22BMおよび第1開口部22AMを埋め込むように、ゲート電極23を形成する。ゲート電極23は、上記実施の形態で説明したのと同様に形成することができる。例えば、このようにして半導体装置1Aを形成することができる。
 本変形例の半導体装置1Aも、上記半導体装置1と同様に、ソース側コンタクト領域15Sよりも少なくともゲート電極23側に延在させてソース電極21Sを設け、ドレイン側コンタクト領域15Dよりも少なくともゲート電極23側に延在させてドレイン電極21Dを設けるようにした。これにより、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dのシート抵抗の影響を抑え、オン抵抗を低減することができる。よって、トランジスタ特性を向上させることが可能となる。
 また、層間絶縁膜22が障壁層14側から順に第1層間絶縁膜22Aおよび第2層間絶縁膜22Bの積層構造を有しているので、第2層間絶縁膜22Bの第2開口部22BMを形成する際に、半導体層10の表面が第1層間絶縁膜22Aにより覆われる。このため、第2開口部22BMを形成する際のドライエッチングから、第1層間絶縁膜22Aにより半導体層10の表面が保護される。したがって、製造工程での処理に起因したゲート電極23の直下の半導体層10の劣化が抑えられる。これにより、半導体装置1Aでは、抵抗の低減および耐圧の向上等のゲート特性を向上させることが可能となる。
 更に、ゲート電極23と、第1開口部22AMの側壁との間に空隙が設けられているので、ゲート―ドレイン間容量(Cgd)およびゲート―ソース間容量(Cgs)が低くなる。したがって、利得を向上させることができる。
<変形例2>
 図11は、上記実施の形態の変形例2に係る半導体装置(半導体装置1B)の要部の断面構成を模式的に表したものである。図11は、半導体装置1を表す図1に対応する。半導体装置1Bは、半導体装置1と同様の平面構成を有している(図2)。この半導体装置1Bは、半導体層10とゲート電極23との間にゲート絶縁膜(ゲート絶縁膜24)を有している。この点を除き、半導体装置1Bは、半導体装置1,1Aと同様の構成を有し、その作用および効果も同様である。
 ゲート絶縁膜24は、例えば、層間絶縁膜22(具体的には、第2層間絶縁膜22B)上から、第1開口部22AMおよび第2開口部22BMの側壁を覆うとともに、第2開口部22BMの底面を覆うように設けられている。第2開口部22BMの底面に設けられたゲート絶縁膜24は、半導体層10(具体的には、障壁層14)とゲート電極23との間に配置される。即ち、半導体装置1は、MIS(Metal Insulator Semiconductor)構造を有している。これにより、ゲート電極23と半導体層10とが接することに起因したリーク電流の発生および耐圧性の低下等が抑えられる。即ち、半導体装置1Bでは、半導体装置1,1Aに比べてゲート特性を向上させることが可能となる。
 ゲート絶縁膜24は、例えば、厚みが10nm程度のAl23またはHfO2(酸化ハフニウム)等により構成されている。ゲート絶縁膜24は、単層により構成してもよく、あるいは積層構造を有していてもよい。このようなゲート絶縁膜24は、障壁層14および層間絶縁膜22に対して絶縁膜として機能するとともに、障壁層14の表面を不純物による汚染から保護する機能を有する。この不純物としては、例えば、イオン等が挙げられる。また、ゲート絶縁膜24と障壁層14との間に良好な界面を形成することにより、デバイス特性の劣化が抑えられる。
 半導体装置1Bは、例えば、以下のようにして形成することができる(図12)。
 まず、上記変形例1で説明したのと同様に、基板11上に半導体層10、ソース電極21S,ドレイン電極21D、第1層間絶縁膜22Aおよび第2層間絶縁膜22Bをこの順に形成した後(図10B)、第2開口部22BMおよび第1開口部22AMを形成する(図10C,図10D)。
 次いで、図12に示したように、第2層間絶縁膜22B上から第2開口部22BMおよび第1開口部22AMの側壁および第1開口部22AMの底面を覆うように、ゲート絶縁膜24を成膜する。ゲート絶縁膜24は、例えば、ALD法を用いてAl23(酸化アルミニウム)を成膜することにより形成する。ALD法を用いることにより、均質な成膜が可能となる。したがって、障壁層14、第1層間絶縁膜22Aおよび第2層間絶縁膜22Bの露出面が均質な膜で被覆される。
 ゲート絶縁膜24を形成した後、層間絶縁膜22(より具体的には、第2層間絶縁膜22B)上から、第2開口部22BMおよび第1開口部22AMを埋め込むように、ゲート電極23を形成する。ゲート電極23は、上記実施の形態で説明したのと同様に形成することができる。例えば、このようにして半導体装置1Bを形成することができる。
 本変形例の半導体装置1Bも、上記半導体装置1と同様に、ソース側コンタクト領域15Sよりも少なくともゲート電極23側に延在させてソース電極21Sを設け、ドレイン側コンタクト領域15Dよりも少なくともゲート電極23側に延在させてドレイン電極21Dを設けるようにした。これにより、ソース側コンタクト領域15Sおよびドレイン側コンタクト領域15Dのシート抵抗の影響を抑え、オン抵抗を低減することができる。よって、トランジスタ特性を向上させることが可能となる。
 また、半導体層10(具体的には、障壁層14)とゲート電極23との間に、ゲート絶縁膜24が設けられているので、ゲート電極23と半導体層10とが接することに起因したリーク電流の発生および耐圧性の低下等が抑えられる。よって、半導体装置1Bでは、半導体装置1,1Aに比べてゲート特性を向上させることが可能となる。
<適用例>
 以上のような実施の形態および変形例1,2で説明した半導体装置1,1A,1Bは、様々な電子機器に適用可能である。例えば、半導体装置1,1A,1Bは、移動体通信システムなどにおける無線通信装置に用いられ、特にそのRFスイッチまたはパワーアンプ等として用いられる。このような無線通信装置としては、通信周波数がUHF(ultra high frequency)帯以上のもので効果が特に発揮される。
 換言すれば、半導体装置1,1A,1Bを無線通信装置のRFスイッチやパワーアンプに用いることにより、無線通信装置の高速化、高効率化および低消費電力化を図ることが可能になる。特に、携帯通信端末においては、装置の高速化、高効率化および低消費電力化によって使用時間の延長が可能となる。このため、携帯性の向上を図ることが可能になる。
 図13は、無線通信装置(無線通信装置4)の構成の一例を表したものである。この無線通信装置4は、例えば、音声、データ通信、LAN接続など多機能を有する携帯電話システムである。無線通信装置4は、例えば、アンテナANTと、アンテナスイッチ回路3と、高電力増幅器HPAと、高周波集積回路RFIC(Radio Frequency Integrated Circuit)と、ベースバンド部BBと、音声出力部MICと、データ出力部DTと、インタフェース部I/F(例えば、無線LAN(W-LAN;Wireless Local Area Network)、Bluetooth(登録商標)、他)とを有している。高周波集積回路RFICとベースバンド部BBとはインタフェース部I/Fにより接続されている。例えば、アンテナスイッチ回路3、高電力増幅器HPAまたは高周波集積回路RFICが、上記半導体装置1,1A,1Bのいずれかを含んで構成されている。ここでは、アンテナスイッチ回路3、高電力増幅器HPAまたは高周波集積回路RFICが、本開示の半導体モジュールの一具体例に対応する。
 この無線通信装置4では、送信時、すなわち、無線通信装置4の送信系から送信信号をアンテナANTへと出力する場合には、ベースバンド部BBから出力される送信信号は、高周波集積回路RFIC、高電力増幅器HPA、およびアンテナスイッチ回路3を介してアンテナANTへと出力される。
 受信時、すなわち、アンテナANTで受信した信号を無線通信装置の受信系へ入力させる場合には、受信信号は、アンテナスイッチ回路3および高周波集積回路RFICを介してベースバンド部BBに入力される。ベースバンド部BBで処理された信号は、音声出力部MICと、データ出力部DTと、インタフェース部I/Fなどの出力部から出力される。
 以上、実施の形態および変形例を挙げて本技術を説明したが、本技術は上記実施の形態等に限定されるものではなく、種々変形可能である。例えば、上記実施の形態等において例示した半導体装置1,1A,1Bの構成要素、配置および数等は、あくまで一例であり、全ての構成要素を備える必要はなく、また、他の構成要素を更に備えていてもよい。
 また、上記実施の形態等において説明した各層の材料および厚み、または成膜方法および成膜条件等は限定されるものではなく、他の材料および厚みとしてもよく、または他の成膜方法および成膜条件としてもよい。例えば、上記実施の形態等では、半導体層10がGaN系の化合物半導体材料により構成されている場合について説明したが、半導体層10は、例えばGaAs(ガリウムヒ素)系等の他の化合物半導体材料により構成されていてもよく、あるいは、Si(シリコン)等の半導体材料により構成されていてもよい。
 また、半導体装置1,1A,1Bでは、ソース電極21Sおよびドレイン電極21Dの少なくとも一方が、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dよりもチャネル長方向に延在していればよい。例えば、図14に示したように、ドレイン電極21Dが、ドレイン側コンタクト領域15Dよりもゲート電極23側に延在し、ゲート電極23側のソース側コンタクト領域15Sの一部がソース電極21Sから露出されていてもよい。少なくともドレイン電極21Dが、ドレイン側コンタクト領域15Dよりもゲート電極23側に延在していることが好ましい。
 また、半導体装置1,1A,1Bでは、少なくともゲート電極23側において、ソース電極21S、ドレイン電極21Dが、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dよりもチャネル長方向に延在していればよい。例えば、図15に示したように、ソース電極21S、ドレイン電極21Dが、ソース側コンタクト領域15S、ドレイン側コンタクト領域15Dよりゲート電極23側に延在し、ゲート電極23と反対側では、ソース側コンタクト領域15S、ドレイン側コンタクト領域15D各々の一部が、ソース電極21S、ドレイン電極21Dから露出されていてもよい。
 なお、本明細書に記載された効果はあくまで例示であってこれに限定されるものではなく、また他の効果があってもよい。
 なお、本技術は、以下のような構成も可能である。以下の構成を有する半導体装置、この半導体装置を備えた半導体モジュールおよび電子機器によれば、コンタクト領域よりも少なくともゲート電極側に延在させて電極を設けるようにしたので、コンタクト領域のシート抵抗の影響を抑え、オン抵抗を低減することができる。よって、トランジスタ特性を向上させることが可能となる。
(1)
 チャネル層を含む半導体層と、
 前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
 前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
 前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
 を備えた半導体装置。
(2)
 前記半導体層は化合物半導体材料を含む
 前記(1)に記載の半導体装置。
(3)
 前記コンタクト領域は、前記ゲート電極の一方の側に設けられたソース側コンタクト領域と、前記ゲート電極の他方の側に設けられたドレイン側コンタクト領域とを含み、
 前記電極は、前記ソース側コンタクト領域を介して前記チャネル層に電気的に接続されたソース電極と、前記ドレイン側コンタクト領域を介して前記チャネル層に電気的に接続されたドレイン電極とを含む
 前記(1)または(2)に記載の半導体装置。
(4)
 前記電極は、前記コンタクト領域より前記ゲート電極と反対側にも延在する
 前記(1)ないし(3)のうちいずれか1つに記載の半導体装置。
(5)
 前記コンタクト領域は、前記半導体層の表面から少なくとも前記チャネル層の厚み方向の一部にわたって設けられている
 前記(1)ないし(4)のうちいずれか1つに記載の半導体装置。
(6)
 前記電極は前記コンタクト領域に接している
 前記(1)ないし(5)のうちいずれか1つに記載の半導体装置。
(7)
 更に、前記電極および前記半導体層を覆うとともに、選択的な領域に開口部を有する層間絶縁膜を有し、
 前記ゲート電極は、前記層間絶縁膜の前記開口部に埋設されている
 前記(1)ないし(6)のうちいずれか1つに記載の半導体装置。
(8)
 前記層間絶縁膜は、前記半導体層側から順に、第1層間絶縁膜および第2層間絶縁膜の積層構造を有し、
 前記開口部は、前記第1層間絶縁膜に設けられた第1開口部と、前記第2層間絶縁膜に設けられた第2開口部とを含む
 前記(7)に記載の半導体装置。
(9)
 前記第1開口部は前記第2開口部に連通され、
 前記第1開口部の幅は、前記第2開口部の幅よりも大きくなっている
 前記(8)に記載の半導体装置。
(10)
 更に、前記ゲート電極と前記半導体層との間に設けられたゲート絶縁膜を有する
 前記(1)ないし(9)のうちいずれか1つに記載の半導体装置。
(11)
 前記半導体層は、更に、前記チャネル層と前記ゲート電極との間に設けられた障壁層とを含み、
 前記障壁層は、前記チャネル層のバンドギャップよりも広いバンドギャップを有する半導体材料により構成されている
 前記(1)ないし(10)のうちいずれか1つに記載の半導体装置。
(12)
 チャネル層を含む半導体層と、
 前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
 前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
 前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
 を含む半導体装置を備えた半導体モジュール。
(13)
 チャネル層を含む半導体層と、
 前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
 前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
 前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
 を含む半導体装置を備えた電子機器。
 本出願は、日本国特許庁において2019年8月9日に出願された日本特許出願番号2019-147801号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (13)

  1.  チャネル層を含む半導体層と、
     前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
     前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
     前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
     を備えた半導体装置。
  2.  前記半導体層は化合物半導体材料を含む
     請求項1に記載の半導体装置。
  3.  前記コンタクト領域は、前記ゲート電極の一方の側に設けられたソース側コンタクト領域と、前記ゲート電極の他方の側に設けられたドレイン側コンタクト領域とを含み、
     前記電極は、前記ソース側コンタクト領域を介して前記チャネル層に電気的に接続されたソース電極と、前記ドレイン側コンタクト領域を介して前記チャネル層に電気的に接続されたドレイン電極とを含む
     請求項1に記載の半導体装置。
  4.  前記電極は、前記コンタクト領域より前記ゲート電極と反対側にも延在する
     請求項1に記載の半導体装置。
  5.  前記コンタクト領域は、前記半導体層の表面から少なくとも前記チャネル層の厚み方向の一部にわたって設けられている
     請求項1に記載の半導体装置。
  6.  前記電極は前記コンタクト領域に接している
     請求項1に記載の半導体装置。
  7.  更に、前記電極および前記半導体層を覆うとともに、選択的な領域に開口部を有する層間絶縁膜を有し、
     前記ゲート電極は、前記層間絶縁膜の前記開口部に埋設されている
     請求項1に記載の半導体装置。
  8.  前記層間絶縁膜は、前記半導体層側から順に、第1層間絶縁膜および第2層間絶縁膜の積層構造を有し、
     前記開口部は、前記第1層間絶縁膜に設けられた第1開口部と、前記第2層間絶縁膜に設けられた第2開口部とを含む
     請求項7に記載の半導体装置。
  9.  前記第1開口部は前記第2開口部に連通され、
     前記第1開口部の幅は、前記第2開口部の幅よりも大きくなっている
     請求項8に記載の半導体装置。
  10.  更に、前記ゲート電極と前記半導体層との間に設けられたゲート絶縁膜を有する
     請求項1に記載の半導体装置。
  11.  前記半導体層は、更に、前記チャネル層と前記ゲート電極との間に設けられた障壁層とを含み、
     前記障壁層は、前記チャネル層のバンドギャップよりも広いバンドギャップを有する半導体材料により構成されている
     請求項1に記載の半導体装置。
  12.  チャネル層を含む半導体層と、
     前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
     前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
     前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
     を含む半導体装置を備えた半導体モジュール。
  13.  チャネル層を含む半導体層と、
     前記半導体層の厚み方向に所定の大きさで設けられ、かつ、周囲の前記半導体層の不純物濃度よりも高い不純物濃度を有するコンタクト領域と、
     前記チャネル層に対向するととともに、前記コンタクト領域から離間して前記半導体層上に設けられたゲート電極と、
     前記半導体層に接するとともに前記コンタクト領域を介して前記チャネル層に電気的に接続され、かつ、前記コンタクト領域より少なくとも前記ゲート電極側に延在する電極と
     を含む半導体装置を備えた電子機器。
PCT/JP2020/027822 2019-08-09 2020-07-17 半導体装置、半導体モジュールおよび電子機器 WO2021029183A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021539180A JPWO2021029183A1 (ja) 2019-08-09 2020-07-17
US17/628,376 US20220278210A1 (en) 2019-08-09 2020-07-17 Semiconductor device, semiconductor module, and electronic apparatus
CN202080054414.6A CN114175272A (zh) 2019-08-09 2020-07-17 半导体装置、半导体模块和电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-147801 2019-08-09
JP2019147801 2019-08-09

Publications (1)

Publication Number Publication Date
WO2021029183A1 true WO2021029183A1 (ja) 2021-02-18

Family

ID=74570574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/027822 WO2021029183A1 (ja) 2019-08-09 2020-07-17 半導体装置、半導体モジュールおよび電子機器

Country Status (4)

Country Link
US (1) US20220278210A1 (ja)
JP (1) JPWO2021029183A1 (ja)
CN (1) CN114175272A (ja)
WO (1) WO2021029183A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302166A (ja) * 2008-06-11 2009-12-24 Panasonic Corp 半導体装置およびその製造方法
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
WO2010082272A1 (ja) * 2009-01-16 2010-07-22 日本電気株式会社 半導体装置及びその製造方法
JP2010278137A (ja) * 2009-05-27 2010-12-09 Sharp Corp 半導体装置
JP2013038239A (ja) * 2011-08-09 2013-02-21 Sanken Electric Co Ltd 窒化物半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302166A (ja) * 2008-06-11 2009-12-24 Panasonic Corp 半導体装置およびその製造方法
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
WO2010082272A1 (ja) * 2009-01-16 2010-07-22 日本電気株式会社 半導体装置及びその製造方法
JP2010278137A (ja) * 2009-05-27 2010-12-09 Sharp Corp 半導体装置
JP2013038239A (ja) * 2011-08-09 2013-02-21 Sanken Electric Co Ltd 窒化物半導体装置

Also Published As

Publication number Publication date
US20220278210A1 (en) 2022-09-01
JPWO2021029183A1 (ja) 2021-02-18
CN114175272A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
EP2763179B1 (en) High Electron Mobility Transistor (HEMT)
Nanjo et al. AlGaN channel HEMT with extremely high breakdown voltage
JP5595685B2 (ja) 半導体装置
EP2538445B1 (en) Manufacturing method of a III-nitride device and associated III-nitride device
US20110227132A1 (en) Field-effect transistor
US20210050209A1 (en) High electron mobility transistor (hemt) having an indium-containing layer and method of manufacturing the same
TWI462290B (zh) 化合物半導體裝置、其製造方法以及電氣裝置
JP2013118360A (ja) 高電子移動度トランジスタ構造及び方法
KR101285598B1 (ko) 질화물계 이종접합 반도체 소자 및 그 제조 방법
US20150060861A1 (en) GaN Misfets with Hybrid AI203 As Gate Dielectric
US20210043744A1 (en) Semiconductor device, method of manufacturing semiconductor device, and electronic apparatus
US9093511B2 (en) Transistor having high breakdown voltage and method of making the same
JP2017157589A (ja) 半導体装置および半導体装置の製造方法
US10985253B2 (en) Semiconductor devices with multiple channels and three-dimensional electrodes
US20230014905A1 (en) Semiconductor device and method of producing the same, and electronic device
JP2006114795A (ja) 半導体装置
JP5509544B2 (ja) 半導体装置及びその製造方法
CN113192836A (zh) 射频半导体器件的制备方法及其结构
US9450071B2 (en) Field effect semiconductor devices and methods of manufacturing field effect semiconductor devices
CN108352408B (zh) 半导体装置、电子部件、电子设备以及半导体装置的制造方法
KR101306591B1 (ko) 고-전자 이동도 트랜지스터 소자 및 그 제조 방법
KR20190027700A (ko) 전계효과 트랜지스터
KR20240007684A (ko) 후방 장벽 구조와 매립된 p형 층을 갖는 3족 질화물 트랜지스터 및 그 방법
WO2021029183A1 (ja) 半導体装置、半導体モジュールおよび電子機器
US20230261099A1 (en) Semiconductor device, semiconductor module, and wireless communication apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20852101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021539180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20852101

Country of ref document: EP

Kind code of ref document: A1