CN211578757U - 高电子迁移率晶体管 - Google Patents

高电子迁移率晶体管 Download PDF

Info

Publication number
CN211578757U
CN211578757U CN201922013785.7U CN201922013785U CN211578757U CN 211578757 U CN211578757 U CN 211578757U CN 201922013785 U CN201922013785 U CN 201922013785U CN 211578757 U CN211578757 U CN 211578757U
Authority
CN
China
Prior art keywords
gate
layer
electrode
gate electrode
source electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922013785.7U
Other languages
English (en)
Inventor
F·尤克拉诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STMicroelectronics SRL
Original Assignee
STMicroelectronics SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STMicroelectronics SRL filed Critical STMicroelectronics SRL
Application granted granted Critical
Publication of CN211578757U publication Critical patent/CN211578757U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66446Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET]
    • H01L29/66462Unipolar field-effect transistors with an active layer made of a group 13/15 material, e.g. group 13/15 velocity modulation transistor [VMT], group 13/15 negative resistance FET [NERFET] with a heterojunction interface channel or gate, e.g. HFET, HIGFET, SISFET, HJFET, HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/291Oxides or nitrides or carbides, e.g. ceramics, glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT
    • H01L29/7787Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT with wide bandgap charge-carrier supplying layer, e.g. direct single heterostructure MODFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本公开涉及高电子迁移率晶体管。一种高电子迁移率晶体管,包括:异质结构;异质结构上的电介质层;在贯穿电介质层的厚度上延伸的栅极电极;源极电极;以及漏极电极。电介质层在栅极电极和漏极电极之间延伸,而在栅极电极和源极电极之间不存在电介质层。以这样的方式,可以在没有由于朝向源极电极延伸的场板所导致的约束下,设计栅极电极和源极电极之间的距离。

Description

高电子迁移率晶体管
技术领域
本公开涉及一种高电子迁移率晶体管(HEMT),特别地,涉及一种具有经调整的栅极-源极距离的HEMT晶体管。
背景技术
基于在异质结处,即在具有不同带隙的半导体材料之间的界面处形成具有高迁移率的二维电子气(2DEG)层的晶体管是已知的。例如,基于氮化铝镓(AlGaN)的层与氮化镓(GaN)的层之间的异质结的HEMT晶体管是已知的。
基于AlGaN/GaN异质结的HEMT晶体管给予多种的优点,使它们特别适于和广泛地用于各种应用。例如,HEMT晶体管的高击穿阈值被利用在高性能功率开关中。电子在导电沟道中的高迁移率使得可以提供高频放大器。而且,2DEG中电子的高浓度使得能够获得低导通状态电阻(RON)。
由于氮化镓衬底的高成本,基于AlGaN/GaN异质结的HEMT晶体管通常经由在硅衬底上生长GaN和AlGaN层来获得。因此,由此获得的HEMT晶体管是平面型的;即,该HEMT晶体管具有在平行于衬底的平面中对准的源极、栅极和漏极电极或端子。
用于提供HEMT晶体管的已知方案主要包括凹陷的栅极端子的使用。
在图1中示意性地图示了这种类型的晶体管。
图1示出了在相互正交的轴X、Y、Z的三轴系统中的HEMT器件1,其包括:衬底2(例如,由硅制成);在衬底2之上延伸的本征氮化镓(GaN)的沟道层4;在沟道层4之上延伸的本征氮化铝镓(AlGaN)的阻挡层6;在阻挡层6的上侧6a上延伸的电介质材料(诸如氧化镍(NiO))的绝缘层7;以及在源极端子10和漏极端子12之间的绝缘层7中延伸的栅极区域8。
沟道层4和阻挡层6形成异质结构3。
以未在图中图示的方式,缓冲层可以存在于衬底2和异质结构3之间。
凹陷类型的栅极端子8在深度上延伸穿过绝缘层7,直到达到阻挡层6。换言之,栅极端子8形成沟槽9中,沟槽9被蚀刻穿过绝缘层7。由导电材料(例如金属材料)制成的源极端子10和漏极端子12在半导体本体5的深度上延伸、完全地通过阻挡层6、终止于阻挡层6和沟道层4之间的界面。沟道层4和阻挡层6通常由这样的材料制成,当这些材料如图1中图示的那样耦合在一起时,使得它们形成异质结,该异质结使得能够形成二维电子气(2DEG)的区域或层。
栅极电介质层8a在沟槽9中延伸,面向沟槽9的底壁和侧壁。栅极金属化体8b完成对沟槽9的填充并且在栅极电介质层8a之上延伸。栅极电介质层8a和栅极金属化体8b形成HEMT器件1的栅极端子8。
借助于绝缘层7的相应部分7a和7b,栅极端子8与源极端子10和漏极端子12侧向(即,沿X)分离。如图1中所示,由于当前使用的制造工艺,栅极金属化体8b还也在沟槽9的旁边的绝缘层7之上延伸,形成特别地沿X朝向源极端子10延伸的场板(field-plate)元件8c。相似的场板元件8d在相反方向上沿X延伸,即朝向漏极端子12。
例如由绝缘或电介质材料制成,特别是由氮化硅(Si3N4)制成的钝化层5,在源极端子10、漏极端子12和栅极端子8之上并且在绝缘层7之上延伸。钝化层5具有保护源极端子10、漏极端子12和栅极端子8免受外部化学物的影响的功能。
场板栅极拓扑是用于减少栅极端子和漏极端子之间的区域中的高电场的有效技术。场板栅极拓扑意味着HEMT器件1的设计使得栅极端子8的面向漏极端子12的一侧在绝缘层7之上延伸,以形成场板元件8d,以便减小在栅极端子8和漏极端子12之间的区域中的电场,并且因此提高了HEMT器件1的击穿阈值。
在当前的制造工艺中,在朝向源极端子10定向的场板元件8c的形成的同时,获得朝向漏极端子12定向的场板元件8d的形成。
本申请人发现,即使由于高电流密度和电子迁移率而使AlGaN/GaN结构形成具有低电阻的2DEG层,栅极端子8和源极端子10之间的距离LD,特别是对于射频(RF)应用和低压电源应用来说,该参数距离LD显著影响以下项:来自HEMT器件1在输出处供给的电流密度的值、导通状态电阻RON的值,以及跨导的峰值来说。
特别地,通过使栅极端子8靠近源极端子10,即减小沿着沟道6的上表面6a处的X轴测量的、栅极端子8和源极端子10之间的距离LD,上述参数得以改善。
然而,距离LD的减小导致场板元件8c到源极端子10的不期望的靠近。由于这增加了栅极端子8和源极端子10之间短路的风险,并且也增加了栅极端子8和源极端子10之间的电容CGS的值,该方面是不期望的。
而且,应当注意,RF增益RFgain与截止频率Ft和频率f的值之间的比成比例(RFgain≈Ft/f),其中Ft与栅极端子8和源极端子10之间的电容CGS的倒数成比例(Ft≈1/CGS)。因此,为了使RF增益最大化,减小电容CGS的值是有利的,或者换言之,使场板元件8c远离源极端子10是有利的。而且,还可以注意到,在场板元件8c与下面的异质结构3之间形成的电容,对RF增益也有负面影响。
实用新型内容
本申请人已经发现,高电子迁移率晶体管的场板元件向源极端子不期望的靠近,增加了栅极端子和源极端子之间短路的风险。
为了克服上述问题,本实用新型因此提供了一种高电子迁移率晶体管。
在一个方面中,提供了一种高电子迁移率晶体管,其特征在于,包括:异质结构;电介质层,在异质结构上;源极电极和漏极电极,源极电极和漏极电极延伸到异质结构中,并且与异质结构电接触;以及栅极电极,其在源极电极和漏极电极之间延伸,其中栅极电极包括栅极金属化体,栅极金属化体具有面向源极电极的侧表面,侧表面在相距源极电极一距离处延伸,该距离在贯穿栅极金属化体的侧表面的整个延伸中均是恒定的。
在一些实施例中,该距离沿着第一方向取得,第一方向正交于由栅极金属化体的侧表面限定的平面。
在一些实施例中,高电子迁移率晶体管进一步包括钝化层,钝化层贯穿侧表面的整个延伸而在栅极电极和源极电极之间延伸,并且钝化层还在栅极电极、源极电极和漏极电极之上延伸。
在一些实施例中,异质结构包括沟道层和在沟道层上的阻挡层,并且钝化层延伸到阻挡层。
在一些实施例中,异质结构包括沟道层和在沟道层上的阻挡层,并且栅极电极包括栅极电介质层,栅极电介质层在栅极金属化体和阻挡层之间、与阻挡层相接触地延伸,并且在栅极电极和漏极电极之间、相对于栅极金属化体侧向地延伸,以及钝化层延伸到栅极电介质层。
在一些实施例中,电介质层在栅极电极和漏极电极之间延伸,并且在栅极电极和源极电极之间不存在电介质层。
在一些实施例中,高电子迁移率晶体管进一步包括场板元件,场板元件作为栅极电极的延长而朝向漏极电极延伸。
在一些实施例中,高电子迁移率晶体管还包括:钝化层,钝化层贯穿侧表面的整个延伸而在栅极电极和源极电极之间延伸,并且钝化层还在栅极电极、源极电极和漏极电极之上延伸;以及场板金属层,场板金属层在钝化层上、并且在栅极电极和源极电极的上方延伸,钝化层使场板金属层与栅极电极和源极电极电绝缘。
在一个方面中,提供了一种高电子迁移率晶体管,其特征在于,包括:异质结构;电介质层,在异质结构上;源极电极和漏极电极,源极电极和漏极电极延伸与异质结构电接触;栅极电极,其在源极电极和漏极电极之间延伸,其中栅极电极包括栅极金属化体,栅极金属化体具有面对源极电极的侧表面;以及钝化层,钝化层贯穿侧表面的整个延伸而在栅极电极和源极电极之间延伸,并且钝化层还在电介质层、栅极电极、源极电极和漏极电极之上延伸。
在一些实施例中,异质结构包括沟道层和在沟道层上的阻挡层,并且钝化层延伸到阻挡层。
在一些实施例中,异质结构包括沟道层和在沟道层上的阻挡层,并且栅极电极包括栅极电介质层,栅极电介质层在栅极金属化体和阻挡层之间、与阻挡层相接触地延伸,并且在栅极电极和漏极电极之间、相对于栅极金属化体侧向地延伸,以及钝化层延伸到栅极电介质层。
在一些实施例中,电介质层在栅极电极和漏极电极之间延伸,并且在栅极电极和源极电极之间不存在电介质层。
在一些实施例中,高电子迁移率晶体管还包括场板金属层,场板金属层在钝化层上、并且在栅极电极和源极电极的上方延伸,钝化层使场板金属层与栅极电极和源极电极电绝缘。
附图说明
为了更好地理解本公开,现在仅通过非限制性示例的方式参考附图来描述本公开的优选实施例,其中:
图1是根据已知类型的一个实施例的HEMT晶体管的侧视截面图;
图2A是根据本公开的一个实施例的HEMT晶体管的侧视截面图;
图2B是根据本公开的另外的实施例的HEMT晶体管的侧视截面图;以及
图3A-图3F示出了用于制造图2A的HEMT晶体管的步骤。
图2A示出了在相互正交的轴X、Y、Z的三轴系统中的HEMT器件31。本公开无差别地适用于常关断型的或常导通型的HEMT器件。
具体实施方式
HEMT器件31包括:衬底12,例如由硅或碳化硅(SiC)或蓝宝石(Al2O3)制成;(可选的)缓冲层22,其在衬底12上延伸;沟道层14,由本征氮化镓(GaN)制成,其在缓冲层22上延伸(或者在不存在缓冲层22的情况下,直接在衬底12上延伸),并且沟道层14具有包括在大约1μm和5μm之间的厚度;阻挡层16,由本征氮化铝镓(AlGaN)制成,或更一般地,由基于氮化镓的三元或四元合金的化合物(诸如AlxGa1-xN,AlInGaN,InxGa1-xN和AlxIn1-xAl)制成,其在沟道层14上延伸并且具有包括在大约5nm和30nm之间的厚度tb;绝缘层17,由诸如氧化镍(NiO)的电介质材料制成,其在阻挡层16的上侧16a上延伸;以及栅极端子18,其在源极端子21和漏极端子22之间的绝缘层17中延伸。
沟道层14和阻挡层16形成异质结构13。衬底12、缓冲层22(在存在时)、沟道层14和阻挡层16在下文中整体被称为“半导体本体20”。因此,异质结构13在沟道层14的下侧14a与阻挡层16的上侧16a之间延伸,沟道层14的下侧14a构成与下面的衬底12的界面的一部分。沟道层14和阻挡层16通常由这样的材料制成,当这样的材料耦合在一起时(如图2A中所示),使得形成异质结,该异质结使得能够形成二维电子气(2DEG)的区域或层。
包括栅极电介质18a和栅极金属化体18b的栅极端子18在贯穿绝缘层17的厚度上延伸,直到其达到阻挡层16为止。可选地,根据一个不同的实施例(未图示),栅极端子18延伸穿过阻挡层16的一部分,并且终止在阻挡层16内。栅极电介质层18a使栅极金属化体18b与阻挡层16电绝缘。
由导电材料(例如,金属)制成的源极区域21和漏极区域22在半导体本体20的深度上延伸、一直穿过阻挡层16、并且终止于阻挡层16和沟道层14之间的界面处。
2DEG区域在绝缘层17下方的沟道层14和阻挡层16之间的界面处延伸,即,在沟道层14和阻挡层16之间的、对应于沿着绝缘层17的Z的投影的界面部分中。根据另外的实施例,半导体本体20可以仅包括一层或包括多于一层的GaN或GaN合金,GaN或GaN合金被适当地掺杂或是本征类型。
根据本公开的一个方面,借助于绝缘层17的一部分17’,栅极端子18与漏极端子22侧向(即,沿X)分离。代替地,绝缘层17的相应部分不存在于栅极端子18和源极端子21之间。以这种方式,在制造步骤期间,如在下文中更充分地说明的,不会形成由图1中的附图标记8c表示的、朝向源极端子21突出的场板元件。
沿X测量的栅极端子18和源极端子21之间的最小距离LGS’等于在阻挡层16的表面16a处测量的栅极端子18和源极端子21之间的距离LD’。在栅极端子18和源极端子21之间不存在场板元件的情况下,栅极端子18和源极端子21之间的距离,在贯穿沿Z的、栅极端子18的面向源极端子21的侧表面25的延伸上保持恒定。换言之,该侧表面25在平面YZ中延伸或位于平面YZ中,并且在所考虑的每个点中具有距源极端子21相同的距离LD。距离LD是在侧表面的所考虑的每个点处,在平行于X轴的方向上测量的,X轴与平面YZ正交。清楚的是,即使在存在源自制造工艺的非理想性的情况下(例如,在栅极端子18的侧表面25上和/或源极端子21的面对(facing)表面上存在波纹、凹进或凸起),距离LD也被认为是恒定的。
根据本公开,在设计步骤中选择栅极端子18和源极端子21之间的距离,以便同时提高导通状态电阻RON的值和跨导的峰值,并且使RF增益最大化。
实际上,与图1表示的已知类型的实施例相比,本公开可以在降低短路风险的情况下(由于不存在对应的场板元件)使栅极端子18靠近源极端子21,并且同时在消除了面向源极端子的场板元件与下面的异质结构之间的电容的影响的情况下,使RF增益最大化。
而且,HEMT器件31的沿X的侧向延伸可以减小,例如,减小等于场板元件8c的沿X的侧向延伸的值,而场板元件8c不再存在。
换言之,根据本公开,通过消除仅在栅极端子和源极端子之间的空间区域中的场板元件,可以获得被配置成满足应用的可能的特定需求的HEMT晶体管,且减少设计约束。
钝化层24例如由诸如Si3N4、SiO2、Al2O3或AlN的绝缘或电介质材料制成,钝化层24在源极端子21、漏极端子22和栅极端子18上并且特别是在栅极端子18和源极端子21之间延伸。钝化层24在栅极端子18和源极端子21之间延伸,直到其达到且物理地接触沟道层16。
钝化层24具有保护源极端子21、漏极端子22和栅极端子18免受外部化学物影响的功能,并且也具有在栅极端子18和源极端子21之间进行侧电绝缘的功能。
根据另一个实施例,在图2B中图示的另外的场板金属层26在钝化层24之上延伸,特别是在栅极端子18上并且还在栅极端子18旁边延伸。为了提供对上述另外的场板金属层26的保护和绝缘,在这种情况下,存在例如由SiO2制成的电介质层27。图2B的其余元件对应于已经在图2A中图示并且参考图2A描述过的元件。因此,不再对它们进行描述,并且它们由相同的附图标记来标识。
下面参考图3A-3F来说明用于制造HEMT器件1的步骤。图3A以截面图示出了根据本公开的一个实施例的、在用于制造HEMT器件31的步骤期间的晶片40的一部分。与上面已经参考图2描述的、并且在图2中图示的那些元件共同的晶片40的元件由相同的附图标记表示。特别地(图3A),提供晶片40,包括:衬底12,例如由硅(Si)或碳化硅(SiC)或氧化铝(Al2O3)制成,衬底12具有在方向Z上彼此相对的正面12a和背面12b;沟道层14,由氮化镓(GaN)制成,具有其自己的底面14a,该底面14a邻近衬底12的正面12a延伸且重叠于衬底12的正面12a;以及阻挡层16,由氮化铝镓(AlGaN)制成,其在沟道层14之上延伸。阻挡层16和沟道层14形成异质结构13。
接下来(图3B),在阻挡层16的正面16a上形成绝缘层17,该绝缘层17由诸如氧化硅(SiO2)的电介质材料制成,并且具有包括在10nm至150nm之间的厚度。绝缘层17还可以由氧化镍(NiO)或氮化硅(Si3N4)或氧化铝(Al2O3)或氮化铝(AlN)制成。经由在阻挡层16(AlGaN)上的外延生长来执行绝缘层17的形成。参考2012年Roccaforte,F.等人的“Epitaxial NiOgate dielectric on AlGaN/GaN heterostructures”Appl.Phys.Lett.,vol.100,063511,可以知道,可以借助于MOCVD(金属有机化学气相沉积)在AlGaN上执行NiO的外延生长。
然后(图3C),执行对绝缘层17的掩模蚀刻步骤,以去除绝缘层17的选择性部分,该选择性部分在期望形成HEMT器件1的源极区域21和漏极区域22的晶片40的区域中延伸。继续进行蚀刻,用于去除阻挡层16的暴露部分,直到达到沟道层14,该蚀刻可能利用不同的化学蚀刻来进行。特别地,形成开口34a和34b。
然后(图3D),执行欧姆接触形成的步骤,用以借助于溅射或气相沉积通过在开口34a、34b内沉积导电材料(特别是金属,例如钛(Ti)、钽(Ta)、铝(Al)或其合金或化合物)来获得源极区域21和漏极区域22。
这之后是快速热退火(RTA)的步骤,例如,在大约500℃和700℃之间的温度进行30s至120s的快速热退火,这使得可以完美地形成源极区域21和漏极区域22与下面的区域(表示2DEG)的欧姆接触。
然后(图3E),(例如借助于光刻和蚀刻步骤)选择性地去除绝缘层17,以便在晶片40的区域中去除绝缘层17的选择性部分,在随后的步骤中,将在该区域中形成HEMT器件31的栅极区域18。
蚀刻步骤可以在下面的阻挡层16处停止(如图3E图示),或者部分地在阻挡层16内继续进行,再或者完全地涉及阻挡层16(以图中未图示的方式)。
因此,阻挡层16的表面部分16’被暴露。对阻挡层16的蚀刻例如是干式的。被去除的阻挡层16的部分生成沟槽19,该沟槽在贯穿绝缘层17的厚度上延伸。
如参考图2A所描述的,图3E的步骤设想利用去除源极端子21旁边的绝缘层17,来蚀刻在从源极端子21朝向漏极端子22延伸的区域中的绝缘层17(而不达到漏极端子)。
然后(图3F),(例如,通过沉积)形成栅极电介质层18a,其例如由从氮化铝(AlN)、氮化硅(SiN)、氧化铝(Al2O3)和氧化硅(SiO2)中选择的材料制成。栅极电介质层18a具有在5nm和50nm之间选择的厚度,例如30nm的厚度。
然后,执行在晶片40上沉积导电材料的步骤,用以借助于已知的光刻技术在栅极电介质层18a上形成栅极金属化体18b,栅极金属化体18b填充沟槽19,并且因此形成栅极区域18。例如,栅极金属化体18b由金属材料制成,金属材料诸如是钽(Ta)、氮化钽(TaN)、氮化钛(TiN)、钯(Pa)、钨(W)、硅化钨(WSi2)、钛铝(Ti/Al)和镍金(Ni/Au)。
未被栅极金属化体18b保护的栅极电介质层18a(特别地,在平面XY的俯视平面图中,在栅极金属化体18b和源极端子21之间延伸的栅极电介质18a的部分)可以,无差别地,借助于蚀刻步骤而被去除,或被保持在晶片40上。
栅极端子18的形成不会损坏已经形成的源极端子和漏极端子。实际上,即使源极端子和漏极端子的一些金属(通常是Ti和Ta)可能被部分地蚀刻,对其的影响对于器件的操作也不重要;用于蚀刻栅极电介质18a的化学物质不会损坏或部分蚀刻铝。
如前面参考图2A所提及,栅极端子18被形成以使得在距源极端子21距离LD处提供栅极金属化体18b。在绝缘层17上只有一个场板元件18’,作为栅极金属化体18b朝向漏极端子22的延伸的延续。相反,因为在栅极端子18和源极端子21之间的空间区域中不存在绝缘层17,故不存在朝向源极端子21延伸的类似的场板元件。
最后,执行沉积钝化层24的步骤。该步骤例如通过借助于PECVD沉积400nm的层来执行。
钝化层24的材料被沉积存在于栅极端子18和源极端子21之间的空间内、填充该空间并且使栅极端子18与源极端子21电绝缘。
由此形成图2A中图示的HEMT器件31。
根据本公开的本公开的优点从之前已经阐述的内容中清楚地显现。
特别地,根据本公开,可以注意到RON的减小(由于较小的栅极-源极距离),并且因此可以注意到在从器件的输出处提供的最大电流的增加,以及输出功率的增加。
而且,可以注意到栅极到源极电容CGS的减小,并且因此可以注意到截止频率和增益的增大,特别是在RF应用中。
最后,清楚的是,在不脱离本公开的保护范围的情况下,可以对本文已经描述和说明的内容进行修改和变化。
例如,晶片正面上的(源极、漏极和栅极)接触的金属化,可以使用文献中已知的任何变型来执行,诸如形成由AlSiCu/Ti或Al/Ti或钨塞或其他制成的接触。
而且,沟道层4和阻挡层6可以由从由III族和V族元素构成的化合物中选择的其他材料制成,诸如InGaN/GaN或AlN/GaN。
可以将上述各种实施例组合以提供另外的实施例。可以根据以上详细描述对实施例进行这些和其他改变。通常,在以下权利要求中,所使用的术语不应当被解释为将权利要求限制为说明书和权利要求书中公开的特定实施例,而是应当被解释为包括所有可能的实施例,连同这些权利要求所享有的等同物的全部范围。因此,权利要求不受本公开的限制。

Claims (13)

1.一种高电子迁移率晶体管,其特征在于,包括:
异质结构;
电介质层,在所述异质结构上;
源极电极和漏极电极,所述源极电极和所述漏极电极延伸到所述异质结构中,并且与所述异质结构电接触;以及
栅极电极,其在所述源极电极和所述漏极电极之间延伸,其中所述栅极电极包括栅极金属化体,所述栅极金属化体具有面向所述源极电极的侧表面,所述侧表面在相距所述源极电极一距离处延伸,该距离在贯穿所述栅极金属化体的所述侧表面的整个延伸中均是恒定的。
2.根据权利要求1所述的高电子迁移率晶体管,其特征在于,所述距离沿着第一方向取得,所述第一方向正交于由所述栅极金属化体的所述侧表面限定的平面。
3.根据权利要求1所述的高电子迁移率晶体管,其特征在于,进一步包括钝化层,所述钝化层贯穿所述侧表面的所述整个延伸而在所述栅极电极和所述源极电极之间延伸,并且所述钝化层还在所述栅极电极、所述源极电极和所述漏极电极之上延伸。
4.根据权利要求3所述的高电子迁移率晶体管,其特征在于,所述异质结构包括沟道层和在所述沟道层上的阻挡层,并且所述钝化层延伸到所述阻挡层。
5.根据权利要求3所述的高电子迁移率晶体管,其特征在于:
所述异质结构包括沟道层和在所述沟道层上的阻挡层,并且所述栅极电极包括栅极电介质层,
所述栅极电介质层在所述栅极金属化体和所述阻挡层之间、与所述阻挡层相接触地延伸,并且在所述栅极电极和所述漏极电极之间、相对于所述栅极金属化体侧向地延伸,以及
所述钝化层延伸到所述栅极电介质层。
6.根据权利要求1所述的高电子迁移率晶体管,其特征在于,所述电介质层在所述栅极电极和所述漏极电极之间延伸,并且在所述栅极电极和所述源极电极之间不存在所述电介质层。
7.根据权利要求1所述的高电子迁移率晶体管,其特征在于,进一步包括场板元件,所述场板元件作为所述栅极电极的延长而朝向所述漏极电极延伸。
8.根据权利要求1所述的高电子迁移率晶体管,其特征在于,还包括:
钝化层,所述钝化层贯穿所述侧表面的所述整个延伸而在所述栅极电极和所述源极电极之间延伸,并且所述钝化层还在所述栅极电极、所述源极电极和所述漏极电极之上延伸;以及
场板金属层,所述场板金属层在所述钝化层上、并且在所述栅极电极和所述源极电极的上方延伸,所述钝化层使所述场板金属层与所述栅极电极和所述源极电极电绝缘。
9.一种高电子迁移率晶体管,其特征在于,包括:
异质结构;
电介质层,在所述异质结构上;
源极电极和漏极电极,所述源极电极和所述漏极电极延伸与所述异质结构电接触;
栅极电极,其在所述源极电极和所述漏极电极之间延伸,其中所述栅极电极包括栅极金属化体,所述栅极金属化体具有面对所述源极电极的侧表面;以及
钝化层,所述钝化层贯穿所述侧表面的整个延伸而在所述栅极电极和所述源极电极之间延伸,并且所述钝化层还在所述电介质层、所述栅极电极、所述源极电极和所述漏极电极之上延伸。
10.根据权利要求9所述的高电子迁移率晶体管,其特征在于,所述异质结构包括沟道层和在所述沟道层上的阻挡层,并且所述钝化层延伸到所述阻挡层。
11.根据权利要求9所述的高电子迁移率晶体管,其特征在于:
所述异质结构包括沟道层和在所述沟道层上的阻挡层,并且所述栅极电极包括栅极电介质层,
所述栅极电介质层在所述栅极金属化体和所述阻挡层之间、与所述阻挡层相接触地延伸,并且在所述栅极电极和所述漏极电极之间、相对于所述栅极金属化体侧向地延伸,以及
所述钝化层延伸到所述栅极电介质层。
12.根据权利要求9所述的高电子迁移率晶体管,其特征在于,所述电介质层在所述栅极电极和所述漏极电极之间延伸,并且在所述栅极电极和所述源极电极之间不存在所述电介质层。
13.根据权利要求9所述的高电子迁移率晶体管,其特征在于,还包括:
场板金属层,所述场板金属层在所述钝化层上、并且在所述栅极电极和所述源极电极的上方延伸,所述钝化层使所述场板金属层与所述栅极电极和所述源极电极电绝缘。
CN201922013785.7U 2018-11-20 2019-11-20 高电子迁移率晶体管 Active CN211578757U (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
IT201800010448 2018-11-20
IT102018000010448 2018-11-20

Publications (1)

Publication Number Publication Date
CN211578757U true CN211578757U (zh) 2020-09-25

Family

ID=65324501

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201911142971.9A Active CN111199883B (zh) 2018-11-20 2019-11-20 具有经调整的栅极-源极距离的hemt晶体管及其制造方法
CN201922013785.7U Active CN211578757U (zh) 2018-11-20 2019-11-20 高电子迁移率晶体管

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201911142971.9A Active CN111199883B (zh) 2018-11-20 2019-11-20 具有经调整的栅极-源极距离的hemt晶体管及其制造方法

Country Status (3)

Country Link
US (2) US11316038B2 (zh)
EP (1) EP3657549B1 (zh)
CN (2) CN111199883B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659366A (zh) * 2018-12-21 2019-04-19 英诺赛科(珠海)科技有限公司 高电子迁移率晶体管及其制造方法
DE112019007609T5 (de) * 2019-08-06 2022-04-21 Mitsubishi Electric Corporation Halbleitereinheit und herstellungsverfahren für dieselbe
US11855198B2 (en) * 2020-04-09 2023-12-26 Qualcomm Incorporated Multi-gate high electron mobility transistors (HEMTs) employing tuned recess depth gates for improved device linearity
CN112560381B (zh) * 2020-12-14 2023-07-28 厦门市三安集成电路有限公司 氮化镓基高电子迁移率晶体管仿真方法、装置及存储介质
CN113800094B (zh) * 2021-09-30 2023-01-10 山东恒华新材料有限公司 一种石墨烯颗粒的存放工艺

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416532B2 (ja) 1998-06-15 2003-06-16 富士通カンタムデバイス株式会社 化合物半導体装置及びその製造方法
JP4997660B2 (ja) 1999-10-29 2012-08-08 富士通株式会社 半導体装置
US6521961B1 (en) 2000-04-28 2003-02-18 Motorola, Inc. Semiconductor device using a barrier layer between the gate electrode and substrate and method therefor
KR100920434B1 (ko) * 2001-07-24 2009-10-08 크리, 인코포레이티드 절연 게이트 갈륨 비소 질화물/갈륨 질화물계 고전자이동도 트랜지스터
JP4751150B2 (ja) * 2005-08-31 2011-08-17 株式会社東芝 窒化物系半導体装置
US7932539B2 (en) * 2005-11-29 2011-04-26 The Hong Kong University Of Science And Technology Enhancement-mode III-N devices, circuits, and methods
JP5065616B2 (ja) * 2006-04-21 2012-11-07 株式会社東芝 窒化物半導体素子
JP2008277604A (ja) * 2007-05-01 2008-11-13 Oki Electric Ind Co Ltd 電界効果トランジスタ
US8519438B2 (en) * 2008-04-23 2013-08-27 Transphorm Inc. Enhancement mode III-N HEMTs
JP2009267155A (ja) 2008-04-25 2009-11-12 Sanken Electric Co Ltd 半導体装置
CN101414625B (zh) * 2008-12-01 2010-12-01 西安电子科技大学 槽栅型栅-漏复合场板高电子迁移率晶体管
US8878246B2 (en) * 2010-06-14 2014-11-04 Samsung Electronics Co., Ltd. High electron mobility transistors and methods of fabricating the same
CN102130158B (zh) 2011-01-05 2012-07-25 西安电子科技大学 阶梯型凹槽栅高电子迁移率晶体管
CN104185899B (zh) * 2012-04-11 2017-03-29 夏普株式会社 氮化物半导体器件
CN102683406B (zh) 2012-04-29 2014-08-20 西安电子科技大学 GaN基的MS栅增强型高电子迁移率晶体管及制作方法
CN102637726A (zh) 2012-04-29 2012-08-15 西安电子科技大学 MS栅GaN基增强型高电子迁移率晶体管及制作方法
CN102629624B (zh) 2012-04-29 2014-08-20 西安电子科技大学 基于GaN的MIS栅增强型HEMT器件及制作方法
US9391189B2 (en) * 2012-09-16 2016-07-12 Sensor Electronic Technology, Inc. Lateral/vertical semiconductor device
US20140159116A1 (en) 2012-12-07 2014-06-12 International Rectifier Corporation III-Nitride Device Having an Enhanced Field Plate
JP5940481B2 (ja) 2013-03-22 2016-06-29 株式会社東芝 半導体装置
JP6220161B2 (ja) * 2013-06-03 2017-10-25 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP6270572B2 (ja) * 2014-03-19 2018-01-31 株式会社東芝 半導体装置及びその製造方法
JP6230456B2 (ja) * 2014-03-19 2017-11-15 株式会社東芝 半導体装置
JP6395502B2 (ja) * 2014-08-20 2018-09-26 ルネサスエレクトロニクス株式会社 半導体装置
US9614069B1 (en) 2015-04-10 2017-04-04 Cambridge Electronics, Inc. III-Nitride semiconductors with recess regions and methods of manufacture
US9419121B1 (en) 2015-07-17 2016-08-16 Mitsubishi Electric Research Laboratories, Inc. Semiconductor device with multiple carrier channels
JP2017054960A (ja) * 2015-09-10 2017-03-16 株式会社東芝 半導体装置
JP6659283B2 (ja) * 2015-09-14 2020-03-04 株式会社東芝 半導体装置
CN106298905B (zh) 2016-04-15 2020-06-12 苏州能讯高能半导体有限公司 一种半导体器件及其制造方法
EP3252825B1 (en) 2016-05-30 2022-12-21 STMicroelectronics S.r.l. Double-channel hemt device and manufacturing method thereof
WO2018191096A1 (en) * 2017-04-10 2018-10-18 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Diamond air bridge for thermal management of high power devices

Also Published As

Publication number Publication date
US20200161462A1 (en) 2020-05-21
US20220216333A1 (en) 2022-07-07
CN111199883A (zh) 2020-05-26
EP3657549A1 (en) 2020-05-27
CN111199883B (zh) 2023-08-11
EP3657549B1 (en) 2022-10-26
US11316038B2 (en) 2022-04-26

Similar Documents

Publication Publication Date Title
CN211578757U (zh) 高电子迁移率晶体管
US11489068B2 (en) Double-channel HEMT device and manufacturing method thereof
TWI610438B (zh) 積體電路裝置及製造其之方法
JP5983999B2 (ja) 半導体装置の製造方法
TWI512993B (zh) 電晶體與其形成方法與半導體元件
JP2014170934A (ja) ヘテロ構造パワートランジスタおよびヘテロ構造半導体装置を作製する方法
US10002956B1 (en) High electron mobility transistor
WO2011148443A1 (ja) 電界効果トランジスタ
CN117546299A (zh) 包括半导体表面修改的晶体管及相关制造方法
JP2016174140A (ja) 高電子移動度トランジスタ装置及びその製造方法
US20240047451A1 (en) Nitride-based semiconductor ic chip and method for manufacturing the same
US20240021703A1 (en) High electron mobility transistor and method for forming the same
US11043574B2 (en) Method of manufacturing a HEMT device with reduced gate leakage current, and HEMT device
US11127846B2 (en) High electron mobility transistor devices and methods for forming the same
JP5504660B2 (ja) 化合物半導体装置及びその製造方法
WO2023141749A1 (en) GaN-BASED SEMICONDUCTOR DEVICE WITH REDUCED LEAKAGE CURRENT AND METHOD FOR MANUFACTURING THE SAME
CN215680609U (zh) 高电子迁移率晶体管器件和半导体器件
CN220604694U (zh) Hemt器件
US20230282727A1 (en) Hemt device and manufacturing process thereof
WO2024103252A1 (en) Nitride-based semiconductor ic chip and method for manufacturing the same
WO2024040516A1 (en) Nitride-based electronic device with wafer-level dynamic on-resistance monitoring capability
US10424659B1 (en) High electron mobility transistor
KR20150039481A (ko) 전력 반도체 소자
CN115863401A (zh) 常闭型晶体管及其制备方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant