CN108623303A - 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 - Google Patents

一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN108623303A
CN108623303A CN201710152676.6A CN201710152676A CN108623303A CN 108623303 A CN108623303 A CN 108623303A CN 201710152676 A CN201710152676 A CN 201710152676A CN 108623303 A CN108623303 A CN 108623303A
Authority
CN
China
Prior art keywords
preparation
potassium niobate
piezoelectric ceramic
based leadless
niobate sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710152676.6A
Other languages
English (en)
Inventor
王晓慧
岑侦勇
李龙土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201710152676.6A priority Critical patent/CN108623303A/zh
Publication of CN108623303A publication Critical patent/CN108623303A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/446Sulfides, tellurides or selenides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法。该压电陶瓷的化学式如下:(1‑x)K0.5Na0.5NbO3‑xBi0.5Na0.5ZrO3+y%M;其中,x、y表示本压电陶瓷体系中的摩尔分数,0.03≤x≤0.06,0≤y≤1;M表示二价锰化合物(如MnCO3、MnO或MnS)。本发明抗还原型铌酸钾钠基无铅压电陶瓷具有优良的压电性能及综合性能。通过选择适当的x、y值及工艺参数,可使该体系的压电常数d33达310pC/N以上,平面机电耦合系数kp可达0.52,高场应变可达0.18%,最大高场压电常数d33 *达到440pm/V(E=20kV/cm),居里温度在340℃以上。

Description

一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
技术领域
本发明属于无铅压电陶瓷材料技术领域,尤其涉及一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法。
背景技术
随着电子信息技术的飞速发展,压电陶瓷材料及其应用研究也正在加深,这要求未来的电子元器件要做到小型化、功能化、低成本、高稳定性和多层化。因此,压电微型器件的研发成为当前国内外一个热门的研究方向,其在工业、国防、信息和通讯、航空航天、航海、医药和生物工程、农业等领域有着巨大的应用前景。压电陶瓷多层化是器件微型化且能拉近与铅基材料性能距离的一种有效方式。然而,市场上的多层压电陶瓷的内电极多为Pd-Ag银钯电极。该电极浆料价格昂贵,致使器件的成本升高。采用镍电极作为内电极具有很大的优势:1、镍电极成本低,仅为常规的Pd30-Ag70电极的5%左右,价格低;2、镍原子的电迁移速度较Ag或Pd-Ag小,因而具有良好的电化学稳定性,可以提高多层压电陶瓷的可靠性;3、镍电极对焊料的耐腐蚀性和耐热性好,工艺稳定性好;4、Ni电极的抗氧化性要优于Ag电极;5、Ni电极具有很高的熔点,可达1300℃以上,可实现与陶瓷基体共烧。由于Ni金属容易在400℃以上发生氧化,因此,多层陶瓷材料在共烧时就必须提供还原气氛。因此,研究具有良好的抗还原特性、优秀的压电性能的无铅压电陶瓷十分重要。
当前,国内仅有北京科技大学张波萍教授课题组在N2气氛下烧结出了(1-x)K0.535Na0.482NbO3-xLiNbO3陶瓷(授权公告号CN101355135)。而国外的研究主要来自日本村田(MURATA)公司和日本太阳诱电(TAIYO YUDEN)公司的Kobayashi课题组。日本村田公司在2009年以0.96(Na0.5K0.5)NbO3-0.04CaZrO3+0.03ZrO2流延陶瓷坯膜和镍电极一次共烧技术得到多层片式压电陶瓷驱动器,并且压电性能d33 *高达360pm/V(在2kV/mm下)、准静态压电常数d33达到190pC/N,居里温度Tc为260℃[Kawada,S.Applied Physics Express2009,2,111401]。2014年Kobayashi通过加入NaF-Nb2O5助烧剂实现了KNN与镍内电极在还原气氛烧结,获得细晶高性能d33 *=350pm/V驱动器原型器件且居里温度Tc为296℃[Kobayashi,K.Journal of Electroceramics2014,32,301.]。当前国内外的还原气氛烧结的铌酸钾钠基压电陶瓷的研究极少,且该体系的性能仍需进一步提高。
发明内容
本发明的目的是提供一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法,该铌酸钾钠基无铅压电陶瓷在还原气氛下烧结,居里温度和致密度高、压电性能优异、具有抗还原特性。
本发明提供的一种抗还原铌酸钾钠基无铅压电陶瓷,其化学式如下:
(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中的摩尔分数,0.03≤x≤0.06,0≤y≤1;M表示二价锰化合物。
上述的压电陶瓷中,所述二价锰化合物可为MnCO3、MnO或MnS。
所述抗还原铌酸钾钠基无铅压电陶瓷具体可为下述1)-7)中的任一种:
1)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,0.04≤x≤0.05,0≤y≤0.8;M表示二价锰化合物;
2)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.045,y=0.4;M表示二价锰化合物;
3)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.04,y=0;M表示二价锰化合物;
4)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.045,y=0.2;M表示二价锰化合物;
5)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.04,y=0.5;M表示二价锰化合物;
6)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.045,y=0.6;M表示二价锰化合物;
7)其化学式如下:(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示本压电陶瓷体系中摩尔分数,x=0.05,y=0.8;M表示二价锰化合物。
本发明进一步提供了上述抗还原铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:
(1)以Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和所述二价锰化合物为原料,按照所述化学式进行配料,然后依次进行球磨、烘干和煅烧;
(2)将步骤(1)中所述煅烧后得到的瓷料依次进行球磨、造粒、压制成型、排胶和烧结;
(3)将步骤(2)中所述烧结后得到的陶瓷片依次镀银电极和极化,即可得到所述抗还原铌酸钾钠基无铅压电陶瓷。
上述的制备方法中,步骤(1)中,所述原料均可为分析纯。
上述的制备方法中,步骤(1)中,所述球磨可以无水乙醇为介质,所述介质的质量可为原料总质量的13~15倍(如13倍、14倍);所述球磨的转速可为250~350转/分钟(如300转/分钟),时间可为20~30小时(如24小时)。所述球磨可为行星球磨。
上述的制备方法中,步骤(1)中,所述烘干的温度可为70~80℃(如80℃),时间可为3~5h(如4h)。
上述的制备方法中,步骤(1)中,所述煅烧的温度可为800~900℃(如900℃),时间可为3~6小时(如5小时)。
上述的制备方法中,步骤(2)中,所述球磨可以无水乙醇为介质,所述介质的质量可为所述原料总质量的13~15倍(如13倍、14倍);所述球磨的转速可为250~350转/分钟(如300转/分),球磨时间可为20~30小时(如24小时)。所述球磨可为行星球磨。
上述的制备方法中,步骤(2)中,所述造粒中所采用的粘合剂可为聚乙烯醇缩丁醛(PVB);所述粘合剂的质量可为物料总质量的5%~7%(如7%)。
上述的制备方法中,步骤(2)中,所述排胶的步骤如下:以180~200℃/h(如200℃/h)的升温速率升温到350~400℃并保温1~2h(如2h)。
上述的制备方法中,步骤(2)中,所述烧结的温度可为1120~1140℃(如1140℃),时间可为2~4h(如3h)。所述烧结之前的升温速率可为180~200℃/h(如200℃/h)。
上述的制备方法中,步骤(2)中,所述烧结在还原气氛中进行,所述还原气氛的氧分压Po2可为1×10-10~1×10-12atm(如1×10-10~1×10-11atm)。所述还原气氛可由体积分数为95%的H2和体积分数为5%的N2组成。
上述的制备方法中,步骤(3)中,所述镀银电极可采用烧渗的方法,所述烧渗的温度可为550~600℃(如600℃),时间可为20~30分钟(如30分钟);所述烧渗之前还可包括对所述陶瓷片进行打磨的步骤。
上述的制备方法中,步骤(3)中,所述极化可在硅油中进行,极化温度可为25~80℃,极化电场可为3~4kV/mm,极化时间可为20~30min(如30min)。
本发明进一步提供了一种上述抗还原铌酸钾钠基无铅压电陶瓷在制备多层压电陶瓷驱动器中的应用。如与贱金属Ni电极共烧制备得到多层压电驱动器。
本发明具有如下有益效果:
本发明的抗还原型铌酸钾钠基无铅压电陶瓷,具有优良的压电性能及综合性能。通过选择适当的x、y值及工艺参数,可使该体系的压电常数d33达310pC/N以上,平面机电耦合系数kp可达0.52,高场应变可达0.18%,最大高场压电常数d33 *达到440pm/V(E=20kV/cm),居里温度在340℃以上。
附图说明
图1为实施例1中制备得到的铌酸钾钠基无铅压电陶瓷单极应变与电场的关系图,其中,内嵌图为压电常数与电场的关系图。
图2为实施例4中制备得到的铌酸钾钠基无铅压电陶瓷介电常数与温度的关系图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3+0.4%MnO,按照如下步骤制备得到:
(1)湿磨、烘干和烧成:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和MnO为原料,按照上述化学式进行配料,以无水乙醇(约为150mL,即粉料质量的14倍)为介质进行行星球磨24小时(转速为300转/分),烘干(温度为80℃,时间为4h)后在900℃保温5小时进行煅烧;
(2)二次球磨、造粒、压制成型、排胶和烧结:
将步骤(1)中得到的瓷料再次以无水乙醇(约为150mL,即粉料质量的14倍)为介质进行行星球磨24小时(转速为300转/分),然后加瓷料质量的7%的PVB(聚乙烯醇缩丁醛)粘结剂造粒并压制成型。在气氛炉中以200℃/h的升温速率升温到400℃排胶,保温2h。以200℃/h的升温速率升温到1140℃进行烧结,并保温3h,该过程要通入N2/H2(体积分数:95%N2/5%H2),将氧分压控制在10-10~10-11atm范围内。
(3)打磨、披银和硅油中极化:
将步骤(2)中烧结后得到的陶瓷片的双面进行简单的磨平处理后被银,在600℃烧银30分钟后,在60℃的硅油中极化,极化电场为3kV/mm,极化时间为30min,即可得到抗还原铌酸钾钠基无铅压电陶瓷。
将上述制备得到的铌酸钾钠基无铅压电陶瓷样品在室温放置24小时后测试性能。实验结果如表1所示。其中,单极应变与电场的关系图如图1所示。
表1、实施例1铌酸钾钠基无铅压电陶瓷性能
实施例2、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.96K0.5Na0.5NbO3-0.04Bi0.5Na0.5ZrO3+0%MnCO3,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2和Bi2O3为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表2所示。
表2、实施例2铌酸钾钠基无铅压电陶瓷性能
实施例3、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3+0.2%MnCO3,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和MnCO3为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表3所示。
表3、实施例3铌酸钾钠基无铅压电陶瓷性能
实施例4、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.96K0.5Na0.5NbO3-0.04Bi0.5Na0.5ZrO3+0.5%MnO,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和MnO为原料,按照上述表达式进行配料,其余步骤同实施例1。其中,铌酸钾钠基无铅压电陶瓷介电常数与温度的关系图如图2所示。
实验结果如表4所示。
表4、实施例4铌酸钾钠基无铅压电陶瓷性能
实施例5、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.955K0.5Na0.5NbO3-0.045Bi0.5Na0.5ZrO3+0.6%MnS,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和MnS为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表5所示。
表5、实施例5铌酸钾钠基无铅压电陶瓷性能
实施例6、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.95K0.5Na0.5NbO3-0.05Bi0.5Na0.5ZrO3+0.8%MnS,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和MnS为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表6所示。
表6、实施例6铌酸钾钠基无铅压电陶瓷性能

Claims (10)

1.一种抗还原铌酸钾钠基无铅压电陶瓷,其特征在于:其化学式如下:
(1-x)K0.5Na0.5NbO3-xBi0.5Na0.5ZrO3+y%M;
其中,x、y表示压电陶瓷体系中的摩尔分数,0.03≤x≤0.06,0≤y≤1;M表示二价锰化合物。
2.根据权利要求1所述的压电陶瓷,其特征在于:所述二价锰化合物为MnCO3、MnO或MnS。
3.权利要求1或2所述的抗还原铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:
(1)以Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3和所述二价锰化合物为原料,按照所述化学式进行配料,然后依次进行球磨、烘干和煅烧;
(2)将步骤(1)中所述煅烧后得到的瓷料依次进行球磨、造粒、压制成型、排胶和烧结;
(3)将步骤(2)中所述烧结后得到的陶瓷片依次镀银电极和极化,即可得到所述铌酸钾钠基无铅压电陶瓷。
4.根据权利要求3所述的制备方法,其特征在于:步骤(1)中,所述球磨以无水乙醇为介质,所述介质的质量为原料总质量的13~15倍;所述球磨的转速为250~350转/分钟,球磨时间为20~30小时;和/或,
所述烘干的温度为70~80℃,时间为3~5h;和/或,
所述煅烧的温度为800~900℃,时间为3~6小时。
5.根据权利要求3或4所述的制备方法,其特征在于:步骤(2)中,所述球磨以无水乙醇为介质,所述介质的质量为瓷料总质量的13~15倍;所述球磨的转速为250~350转/分钟,球磨时间为20~30小时;和/或,
所述造粒中所采用的粘合剂为聚乙烯醇缩丁醛;所述粘合剂的质量为物料总质量的5%~7%。
6.根据权利要求3-5中任一项所述的制备方法,其特征在于:步骤(2)中,所述排胶的步骤如下:以180~200℃/h的升温速率升温到350~400℃并保温1~2h。
7.根据权利要求3-6中任一项所述的制备方法,其特征在于:步骤(2)中,所述烧结的温度为1120~1140℃,时间为2~4h。
8.根据权利要求3-7中任一项所述的制备方法,其特征在于:步骤(2)中,所述烧结在还原气氛中进行,所述还原气氛的氧分压Po2为1×10-10~1×10-12atm;和/或,所述还原气氛由体积分数为95%的H2和体积分数为5%的N2组成。
9.根据权利要求3-8中任一项所述的制备方法,其特征在于:步骤(3)中,所述镀银电极采用烧渗的方法,所述烧渗的温度为550~600℃,时间为20~30分钟;和/或,
所述极化在硅油中进行,极化温度为25~80℃,极化电场为3~4kV/mm,极化时间为20~30min。
10.权利要求1或2所述的抗还原铌酸钾钠基无铅压电陶瓷在制备多层压电陶瓷驱动器中的应用。
CN201710152676.6A 2017-03-15 2017-03-15 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 Pending CN108623303A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710152676.6A CN108623303A (zh) 2017-03-15 2017-03-15 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710152676.6A CN108623303A (zh) 2017-03-15 2017-03-15 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN108623303A true CN108623303A (zh) 2018-10-09

Family

ID=63686504

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710152676.6A Pending CN108623303A (zh) 2017-03-15 2017-03-15 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108623303A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503160A (zh) * 2018-11-12 2019-03-22 济南大学 一种可在还原气氛下烧结的铌酸钾钠基压电陶瓷及其制备方法
CN111393162A (zh) * 2019-01-03 2020-07-10 清华大学 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN111425885A (zh) * 2020-03-31 2020-07-17 宝应县荣泰电子有限公司 一种特种陶瓷点火装置的制备方法
CN111548157A (zh) * 2020-04-24 2020-08-18 成都信息工程大学 基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用
CN111908917A (zh) * 2019-05-07 2020-11-10 四川大学 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN115572165A (zh) * 2021-06-21 2023-01-06 四川大学 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503160A (zh) * 2018-11-12 2019-03-22 济南大学 一种可在还原气氛下烧结的铌酸钾钠基压电陶瓷及其制备方法
CN111393162A (zh) * 2019-01-03 2020-07-10 清华大学 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN111908917A (zh) * 2019-05-07 2020-11-10 四川大学 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN111425885A (zh) * 2020-03-31 2020-07-17 宝应县荣泰电子有限公司 一种特种陶瓷点火装置的制备方法
CN111548157A (zh) * 2020-04-24 2020-08-18 成都信息工程大学 基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用
CN111548157B (zh) * 2020-04-24 2022-06-03 成都信息工程大学 基于双位掺杂的铌酸钾钠基无铅电致伸缩陶瓷及其制备方法与应用
CN115572165A (zh) * 2021-06-21 2023-01-06 四川大学 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷
CN115572165B (zh) * 2021-06-21 2023-08-29 四川大学 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷

Similar Documents

Publication Publication Date Title
CN108623303A (zh) 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN102249659B (zh) 一种高居里温度铁酸铋基无铅压电陶瓷及其制备方法
CN110590352B (zh) 低极化场强产生高压电铁酸铋-钛酸钡基压电陶瓷及制备
JP5537931B2 (ja) 圧電磁器組成物及び圧電素子
CN102531638B (zh) 一种添加物及其降低压电陶瓷烧结温度的用途
CN109626988B (zh) 高压电响应和高居里温度的压电陶瓷材料及其制备方法
CN102180665A (zh) 一种钪酸铋—钛酸铅高温压电陶瓷材料及其制备方法
CN113213930B (zh) 一种多元素掺杂铌酸钾钠基压电陶瓷及其制备方法
CN105837205A (zh) 一种钛酸铋钠体系无铅压电陶瓷及其制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
EP3059748B1 (en) All-solid-state capacitor
CN109503160A (zh) 一种可在还原气氛下烧结的铌酸钾钠基压电陶瓷及其制备方法
CN113563075A (zh) 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN116553927A (zh) 一种无铅压电陶瓷及制备方法
CN113582667B (zh) 一种可低温共烧的高储能反铁电陶瓷材料及其制备方法和应用
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
JP4927378B2 (ja) 圧電磁器組成物および圧電素子
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN113582692A (zh) 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法
JP2005008516A (ja) 圧電磁器組成物及びこれを用いた圧電素子
US10886043B2 (en) Ceramic member
CN111548155B (zh) 一种高压电高居里点铌酸钾钠-锑酸钾钠系无铅压电陶瓷及其制备方法
WO2023063007A1 (ja) 積層型圧電素子
CN102285794A (zh) B位复合钙钛矿结构化合物组成的无铅压电陶瓷
CN111592352A (zh) 一种高性能铌酸钾钠系无铅电致伸缩陶瓷及其制备与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20181009

RJ01 Rejection of invention patent application after publication