CN115572165A - 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷 - Google Patents

一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷 Download PDF

Info

Publication number
CN115572165A
CN115572165A CN202110687042.7A CN202110687042A CN115572165A CN 115572165 A CN115572165 A CN 115572165A CN 202110687042 A CN202110687042 A CN 202110687042A CN 115572165 A CN115572165 A CN 115572165A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
potassium sodium
niobium
lead
copper iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110687042.7A
Other languages
English (en)
Other versions
CN115572165B (zh
Inventor
朱建国
谢一宁
邢洁
谭智
谢李旭
程原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan University
Original Assignee
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan University filed Critical Sichuan University
Priority to CN202110687042.7A priority Critical patent/CN115572165B/zh
Publication of CN115572165A publication Critical patent/CN115572165A/zh
Application granted granted Critical
Publication of CN115572165B publication Critical patent/CN115572165B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Abstract

本发明公开了一种铌锆酸铋钾钠铜铁无铅压电陶瓷材料,该压电陶瓷的通式为[(K0.45Na0.55)0.98‑x (Bi0.5Na0.5) x Cu0.01](Nb1‑ x Zr x Fe0.004)O3表示,其中0.3≤x≤0.5。采用固相反应法,经过原料混合,预烧,造粒,压片,排胶,烧结,烧银,极化等工艺制备陶瓷材料。结果表明,铌锆酸铋钾钠铜铁无铅压电陶瓷,其烧结特性好、损耗低、结构致密、压电性能优异:压电常数d 33:170~260 pC/N,机电耦合系数k p:0.42~0.47,机械品质因数Q m:250~370。

Description

一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷
技术领域
本发明属于材料科学与工程领域。涉及一种铌锆酸铋钾钠铜铁无铅压电陶瓷材料及其制备方法,具体来讲,在铌锆酸铋钾钠铜铁陶瓷材料的制备过程中通过特定的组分和制备方法,可以获得高机械品质因数,以及高压电性能的无铅压电陶瓷材料。
背景技术
压电陶瓷由于其独特的力电转换能力,以及其简单的制备工艺,低廉的成本,已经广泛应用于换能器,驱动器,传感器等许多电子元件中。而目前大批量生产的压电陶瓷以铅基压电陶瓷为主,铅的使用会对人体以及环境造成危害,不利于可持续发展。所以高性能的无铅压电陶瓷成为了近年来全球研究的热点。铌酸钾钠无铅压电陶瓷是目前最有望替代铅基压电陶瓷的无铅压电陶瓷材料,近年来学者们通过添加剂,调控相界,改善制备工艺,令其压电性能可以与铅基压电陶瓷相当,但是材料的温度稳定性会相应变差,机械品质因数降低,发热严重,还不满足大规模实际应用的条件。目前尚未有对具有高居里温度、高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷,低损耗,高压电性能,同时具有优良温度稳定性的报道。
发明内容
本发明针对现有技术的不足,目的是提供一种铌锆酸铋钾钠铜铁无铅压电陶瓷材料,其特点是引入Cu、Fe元素, 并且通过特定的制备工艺制备出的铌锆酸铋钾钠铜铁无铅压电陶瓷材料,该发明在提高了铌锆酸铋钾钠铜铁无铅压电陶瓷的压电性能的同时,保持了高居里温度(T C>360℃)提升了材料的机械品质因数,降低了材料工作时的介电损耗,并且具有良好的温度稳定性,可以适用于更大温度范围的应用。
本发明采用固相法制备陶瓷材料,包括以下步骤:
(1)固相法制备铌锆酸铋钾钠铜铁陶瓷粉体
将原料按化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3,其中x的范围0.03 ≤ x ≤ 0.05,进行称量配料,混合于球磨罐中。以无水乙醇为球磨介质,在行星式球磨机内按照转速150~250rpm进行8~12小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向步骤(1)所得的粉体中加入5~10wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10~20MPa下压制成片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将步骤(2)所得的KNN基无铅压电陶瓷的陶瓷片在850~950℃下排胶,然后在1000~1100℃下保温4~6个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 被银极化
将步骤(3)所得的烧结好KNN基无铅压电陶瓷陶瓷片表面涂覆5~15wt%的银浆,随后在700~800 °C下保温10~15分钟,冷却至室温后在硅油中进行极化,极化场强为3~5kV/mm,保压时间为15-30分钟,制成铌锆酸铋钾钠铜铁无铅压电陶瓷成品。
如上所述铌锆酸铋钾钠铜铁无铅压电陶瓷的制备方法制备得到的铌锆酸铋钾钠铜铁无铅压电陶瓷,其电学性能为:压电常数d 33: 170~260 pC/N,机电耦合系数k p: 0.42~0.47,机械品质因数Q m: 250~370,剩余极化强度P r: 16~20 μC/cm2,矫顽场E c: 9~10 kV/cm。
结构表征与性能测试:
1利用X射线衍射仪(XRD,DX-2700)对铌锆酸铋钾钠铜铁无铅压电陶瓷圆片进行物相结构分析;详见图1所示。结果表明:铌锆酸铋钾钠铜铁无铅压电陶瓷为单一钙钛矿结构,室温下呈现多相共存;
2利用d 33压电测试仪(ZJ-3A) 和阻抗分析仪(HP 4294A) 测试铌锆酸铋钾钠铜铁无铅压电陶瓷圆片的d 33k pQ m;详见图2所示。结果表明:铌锆酸铋钾钠铜铁无铅压电陶瓷具有较高的压电常数以及机电耦合系数,同时具有较高的机械品质因数;
3利用电子显微镜(SEM,JSM-5900),采用热腐蚀的方法,观察铌锆酸铋钾钠铜铁无铅压电陶瓷圆片的表面形貌;详见图3所示。结果表明:铌锆酸铋钾钠铜铁无铅压电陶瓷晶粒尺寸大小不一,晶粒较为致密;
4利用LCR分析仪(HP 4980,TH2816A)分别测试铌锆酸铋钾钠铜铁无铅压电陶瓷圆片的高温介温曲线和低温介温曲线;详见图4,图5所示。结果表明:铌锆酸铋钾钠铜铁无铅压电陶瓷具有较高的居里温度,温度稳定性优异,工作温度范围较大。该陶瓷在室温下即可构建出R-O-T相界,提高其压电性能;
5利用铁电工作站( Radiant Precision Work-station)测试铌锆酸铋钾钠铜铁无铅压电陶瓷圆片的电滞回线,详见图6所示。结果表明:铌锆酸铋钾钠铜铁无铅压电陶瓷具有较为优异的电滞回线,具有不错的剩余极化强度;
利用本发明制备的铌锆酸铋钾钠铜铁无铅压电陶瓷,陶瓷结构致密,烧结效果更好,在比正常铌酸钾钠(KNN)无铅压电陶瓷更低的烧结温度(~1060℃)下,可以烧结出质量更好的陶瓷。铌锆酸铋钾钠铜铁无铅压电陶瓷具有较高的综合电学性能,其d 33~220pC/N,Q m~360,同时其居里温度大于360℃。
本发明与现有的技术相比,具有如下优点:
1铌锆酸铋钾钠铜铁无铅压电陶瓷材料,在具有较高压电常数的同时,有效地提高了陶瓷的机械品质因数;
2铌锆酸铋钾钠铜铁无铅压电陶瓷具有较高的居里温度,在更大的温度范围内可以得到应用。
附图说明
图1为实施例1~4中具有不同含量的铌锆酸铋钾钠铜铁无铅压电陶瓷材料的X射线衍射图谱;
图2为实施例1~4具有不同含量的铌锆酸铋钾钠铜铁无铅压电陶瓷材料的d 33k pQ m
图3为实施例3样品的铌锆酸铋钾钠铜铁无铅压电陶瓷的热腐蚀后的扫描电镜照片(SEM);
图4为实施例1~3具有不同含量的铌锆酸铋钾钠铜铁无铅压电陶瓷材料的高温介温曲线;
图5为实施例1~3具有不同含量的铌锆酸铋钾钠铜铁无铅压电陶瓷材料的低温介温曲线;
图6为实施例2样品的铌锆酸铋钾钠铜铁无铅压电陶瓷材料的电滞回线图;
图7 为应用例1中,陶瓷片被银后接入引线的例图。
具体实施方式:
以下通过实施例对本发明进行更加具体的描述,有必要在此指出的是本实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,该领域的技术熟练人员可以根据上述本发明的内容做出一些非本质的改进和调整。
实施例1:
(1)固相法制备铌锆酸铋钾钠铜铁陶瓷粉体
将原料按化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3(x=0.03,编号1#)进行称量配料,混合于球磨罐中。以无水乙醇为球磨介质,在行星式球磨机内按照转速180rpm进行8小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向上述粉体中加入8wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10MPa下压制成直径10mm,厚度0.9mm的小圆片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将上述的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片在850℃下排胶,然后在1060℃下保温5个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 被银极化
将上述所得的烧结好铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片表面涂覆10wt%的银浆,随后在750 °C下保温10分钟,冷却至室温后在硅油中进行极化,极化场强为5kV/mm,保压时间为15分钟,制成1#铌锆酸铋钾钠铜铁无铅压电陶瓷成品。
实施例2:
(1)固相法制备铌锆酸铋钾钠铜铁陶瓷粉体
将原料按化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3 (x=0.0325,编号2#)进行称量配料,混合于球磨罐中。以无水乙醇为球磨介质,在行星式球磨机内按照转速180rpm进行8小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向上述粉体中加入8wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10MPa下压制成直径10mm,厚度0.9mm的小圆片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将上述的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片在850℃下排胶,然后在1060℃下保温5个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 被银极化
将上述所得的烧结好铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片表面涂覆10wt%的银浆,随后在750 °C下保温10分钟,冷却至室温后在硅油中进行极化,极化场强为5kV/mm,保压时间为15分钟,制成2#铌锆酸铋钾钠铜铁无铅压电陶瓷成品。
实施例3:
(1)固相法制备铌锆酸铋钾钠铜铁基陶瓷粉体
将原料按化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3 (x=0.035,编号3#)进行称量配料,混合于球磨罐中。以无水乙醇为球磨介质,在行星式球磨机内按照转速180rpm进行8小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向上述粉体中加入8wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10MPa下压制成直径10mm,厚度0.9mm的小圆片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将上述的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片在850℃下排胶,然后在1060℃下保温5个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 被银极化
将上述所得的烧结好铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片表面涂覆10wt%的银浆,随后在750 °C下保温10分钟,冷却至室温后在硅油中进行极化,极化场强为5kV/mm,保压时间为15分钟,制成3#铌锆酸铋钾钠铜铁无铅压电陶瓷成品。
实施例4:
(1)固相法制备铌锆酸铋钾钠铜铁陶瓷粉体
将原料按化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3 (x=0.0375,编号4#)进行称量配料,混合于球磨罐中。以无水乙醇为球磨介质,在行星式球磨机内按照转速180rpm进行8小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向上述粉体中加入8wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10MPa下压制成直径10mm,厚度0.9mm的小圆片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将上述的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片在850℃下排胶,然后在1060℃下保温5个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 被银极化
将上述所得的烧结好铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片表面涂覆10wt%的银浆,随后在750 °C下保温10分钟,冷却至室温后在硅油中进行极化,极化场强为5kV/mm,保压时间为15分钟,制成4#铌锆酸铋钾钠铜铁无铅压电陶瓷成品。
应用例1
将实施例3制备得到的铌锆酸铋钾钠铜铁无铅压电陶瓷材料制备成厚度1毫米,外径15mm,内径8mm的环片,置入超声雾化器中,实际应用效果如图7所示。

Claims (3)

1.一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷材料,其特征在于该压电陶瓷材料的通式为[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3,其中0.3≤x≤0.5。
2.如权利要求1所述铌锆酸铋钾钠铜铁无铅压电陶瓷的制备方法,通过该方法制备得到的压电陶瓷,其电学性能为:压电常数d 33: 170~260 pC/N,机电耦合系数k p: 0.42~0.47,机械品质因数Q m: 250~370,剩余极化强度P r: 16~20 μC/cm2,矫顽场E c: 9~10 kV/cm。
3.如权利要求1所述铌锆酸铋钾钠铜铁无铅压电陶瓷材料的制备方法,其特征在于该方法包括以下步骤:
(1)固相法制备铌锆酸铋钾钠铜铁无铅压电陶瓷粉体
将原料按照陶瓷的化学通式[(K0.45Na0.55)0.98-x (Bi0.5Na0.5) x Cu0.01](Nb1-x Zr x Fe0.004)O3,其中0.3≤x≤0.5,进行称量配料,混合于球磨罐中;以无水乙醇为球磨介质,在行星式球磨机内按照转速150~250rpm进行8~12小时的球磨,将原料混合均匀,随后在烤灯下烘干之后放于箱式马弗炉中升温至850℃保温6个小时,得到铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷粉体;
(2) 造粒压片
向步骤(1)所得的粉体中加入5~10wt%聚乙烯醇溶液混合后进行造粒,然后将所得粒料在10~20MPa下压制成片,得到成型的铌锆酸铋钾钠铜铁无铅压电陶瓷的陶瓷片;
(3) 排胶烧结
将步骤(2)所得的KNN基无铅压电陶瓷的陶瓷片在850~950℃下排胶,然后在1000~1100℃下保温4~6个小时进行烧结,得到烧结好的铌锆酸铋钾钠铜铁无铅压电陶瓷陶瓷片;
(4) 极化
将步骤(3)所得的烧结好KNN基无铅压电陶瓷陶瓷片表面涂覆5~15wt%的银浆,随后在700~800 °C下保温10~15分钟,冷却至室温后在硅油中进行极化,极化场强为3~5kV/mm,保压时间为15-30分钟,制成铌锆酸铋钾钠铜铁无铅压电陶瓷。
CN202110687042.7A 2021-06-21 2021-06-21 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷 Active CN115572165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110687042.7A CN115572165B (zh) 2021-06-21 2021-06-21 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110687042.7A CN115572165B (zh) 2021-06-21 2021-06-21 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷

Publications (2)

Publication Number Publication Date
CN115572165A true CN115572165A (zh) 2023-01-06
CN115572165B CN115572165B (zh) 2023-08-29

Family

ID=84578601

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110687042.7A Active CN115572165B (zh) 2021-06-21 2021-06-21 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷

Country Status (1)

Country Link
CN (1) CN115572165B (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
DE102007016854A1 (de) * 2007-04-10 2008-10-16 Robert Bosch Gmbh Piezoelektrische, bleifreie keramische Zusammensetzung, Verfahren zu deren Herstellung sowie ein dieses Material unfassendes piezoelektrisches Bauelement
DE102007046450A1 (de) * 2007-09-28 2009-04-02 Siemens Ag Bleifreier piezokeramischer Werkstoff des Kalium-Natrium-Niobat-Systems mit Eisen-Lanthan-Dotierung, Verfahren zum Herstellen eines Bauteils mit dem piezokeramischen Werkstoff und Verwendung des Bauteils
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN105198417A (zh) * 2015-09-08 2015-12-30 四川大学 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN105669188A (zh) * 2014-12-08 2016-06-15 三星电机株式会社 介电陶瓷组合物、其形成方法和包含其的多层陶瓷电容器
CN107268084A (zh) * 2016-04-08 2017-10-20 中国科学院上海硅酸盐研究所 铌酸钾钠-锆酸铋钠无铅压电单晶及其生长方法
CN108623303A (zh) * 2017-03-15 2018-10-09 清华大学 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN110713383A (zh) * 2019-10-25 2020-01-21 四川大学 一种压电陶瓷材料及制备方法
CN111908917A (zh) * 2019-05-07 2020-11-10 四川大学 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007022854A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp ニオブ酸カリウムナトリウム系無鉛圧電セラミック及びその製造方法
JP2007031219A (ja) * 2005-07-28 2007-02-08 Toyota Motor Corp チタン酸ビスマスナトリウム−ジルコニウムチタン酸バリウム系無鉛圧電セラミック及びその製造方法
DE102007016854A1 (de) * 2007-04-10 2008-10-16 Robert Bosch Gmbh Piezoelektrische, bleifreie keramische Zusammensetzung, Verfahren zu deren Herstellung sowie ein dieses Material unfassendes piezoelektrisches Bauelement
DE102007046450A1 (de) * 2007-09-28 2009-04-02 Siemens Ag Bleifreier piezokeramischer Werkstoff des Kalium-Natrium-Niobat-Systems mit Eisen-Lanthan-Dotierung, Verfahren zum Herstellen eines Bauteils mit dem piezokeramischen Werkstoff und Verwendung des Bauteils
CN103482977A (zh) * 2013-09-02 2014-01-01 四川大学 高压电常数铌锑酸钾钠-锆酸铋钠钾无铅压电陶瓷及制备方法
CN105669188A (zh) * 2014-12-08 2016-06-15 三星电机株式会社 介电陶瓷组合物、其形成方法和包含其的多层陶瓷电容器
CN105198417A (zh) * 2015-09-08 2015-12-30 四川大学 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN107268084A (zh) * 2016-04-08 2017-10-20 中国科学院上海硅酸盐研究所 铌酸钾钠-锆酸铋钠无铅压电单晶及其生长方法
CN108623303A (zh) * 2017-03-15 2018-10-09 清华大学 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN111908917A (zh) * 2019-05-07 2020-11-10 四川大学 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN110713383A (zh) * 2019-10-25 2020-01-21 四川大学 一种压电陶瓷材料及制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SHASHA FENG: ""Influence of K/Na ratio on phase structure and electrical properties of 0.96 (KxNa1−x) NbO3-0.04 (Bi0.5Na0.5) ZrO3 lead-free ceramics", Shasha Feng,《Journal of Electroceramics》,第34卷, 第142–149页", vol. 34, pages 142 *
ZHIHAO ZHAO: ""Ultrahigh electro-strain in acceptor-doped KNN lead-free piezoelectric ceramics via defect engineering",Zhihao Zhao,《Acta Materialia》,第200卷,第35–41页", vol. 200, pages 35 *
邢洁;谭智;郑婷;吴家刚;肖定全;朱建国;: "铌酸钾钠基无铅压电陶瓷的高压电活性研究进展", 物理学报, no. 12 *
黄涛;吴波;肖定全;吴家刚;刘超;朱建国;: "(0.995-x)K_(0.48)Na_(0.52)NbO_3-0.005BiCoO_(3-x)Bi_(0.5)Na_(0.5)ZrO_3无铅压电陶瓷相结构及电学性能的研究", 功能材料, no. 07 *

Also Published As

Publication number Publication date
CN115572165B (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
CN111205076B (zh) 一种铁酸铋-钛酸钡(BiFeO3-BaTiO3)压电陶瓷的制备方法
CN101591461B (zh) 无铅压电陶瓷-聚合物压电复合材料及其制备方法
CN111320468B (zh) 一种掺杂型铁酸铋-钛酸钡无铅压电陶瓷材料的制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN111908917A (zh) 一种锆酸铋钠锶掺杂铌酸钾钠基压电陶瓷材料及其制备方法
CN109180181B (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN113307619A (zh) 一种铁酸铋-钛酸铅-铌镁酸铋三元体系高温压电陶瓷的制备方法
CN112479708A (zh) 一种医用超声换能器用无铅压电陶瓷及其制备方法和应用
CN113979748B (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN110981469A (zh) 一种钛酸铋钠基高温压电陶瓷的制备方法
CN101337814A (zh) 低温烧结锑酸锂掺杂的五元系压电陶瓷材料及其制备方法
CN114133243A (zh) 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN113603482A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN109970443B (zh) 一种铷、铈共掺杂铌酸铋钙基高温压电陶瓷及其制备方法
CN110818410B (zh) 一种高温pin-pht压电陶瓷及其制备方法
CN114560698B (zh) 一种氧化物助烧结剂诱导织构增强铌酸钙铋高温压电陶瓷性能的方法
CN115572165A (zh) 一种高机械品质因数的铌锆酸铋钾钠铜铁无铅压电陶瓷
CN107253859B (zh) 高发光热稳定性的Eu-Bi共掺杂钨青铜结构发光铁电陶瓷材料及其制备方法
CN107311643B (zh) 宽工作温区高介电性能的无铅电子陶瓷材料及制备方法
CN115466117A (zh) 一种低温制备的具有超高压电常数的pzt基压电陶瓷
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN115959900A (zh) 一种铁钛钪锰酸铋钡钕无铅压电陶瓷材料及其制备方法
CN115385683B (zh) 一种兼具高居里温度和高压电系数的压电陶瓷材料及其制备方法
CN115894021B (zh) 一种高机械品质因数硬性压电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant