CN113563075A - 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法 - Google Patents

超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113563075A
CN113563075A CN202110968898.1A CN202110968898A CN113563075A CN 113563075 A CN113563075 A CN 113563075A CN 202110968898 A CN202110968898 A CN 202110968898A CN 113563075 A CN113563075 A CN 113563075A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
ceramic material
dielectric loss
sodium niobate
potassium sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110968898.1A
Other languages
English (en)
Inventor
郭金明
杨滨
邹龙军
何云斌
周桃生
尚勋忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jingti Technology Co ltd
Hubei University
Original Assignee
Shenzhen Jingti Technology Co ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jingti Technology Co ltd, Hubei University filed Critical Shenzhen Jingti Technology Co ltd
Priority to CN202110968898.1A priority Critical patent/CN113563075A/zh
Publication of CN113563075A publication Critical patent/CN113563075A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于无铅铁电压电陶瓷材料技术领域,具体涉及超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法。本发明公开了超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学表达式为:[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM;其中TM为MnO2、Fe2O3、Ni2O3或CuO中的一种;x值为0.1~0.75。还公开了超低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法。本发明通过Li+对A位Na+、K+和Ta5+、Sb5+对B位Nb5+复合取代、金属氧化物掺杂三种方式协同改性的特殊方法,解决了纯KNN陶瓷可烧结性差的缺点,实现用传统烧结工艺制备出不仅具有优良电学性能的铌酸盐无铅压电陶瓷材料,而且其介电损耗大幅优于目前报道的KNN基陶瓷;本发明的制备方法,其具有工艺简单、重复性、稳定性好的效果,因此具有实际应用的价值。

Description

超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法
技术领域
本发明属于无铅铁电压电陶瓷材料技术领域,具体涉及超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法。
背景技术
压电陶瓷是一种可实现机械能与电能的相互转换的信息功能陶瓷材料,被广泛应用于传感器、驱动器、超声换能器、谐振器、蜂鸣器等众多电子元器件领域。长期以来,目前大量使用的压电陶瓷主要是以Pb(Zr,Ti)O3(简称PZT)或Pb(Mg1/3Nb2/3)O3-PbTiO3(简称PMN-PT)等为主,然而在这些压电陶瓷材料中PbO(或Pb3O4)的含量约占60%左右。铅的毒性使得铅基压电陶瓷在制备、使用及废弃处理过程中都会散播有毒物质,对人类及生态环境带来严重危害,这与人类可持续发展战略相矛盾。因此研究和开发环境友好型的无铅压电陶瓷是一项有重大现实意义的课题,尤其是具有超低介电损耗性能的无铅陶瓷材料就显得尤为重要。在压电材料无铅化的研究与开发上世界各国均进行了不少工作,并取得了阶段性的进展。至今为止,主要的无铅压电陶瓷体系包括:BaTiO3(BT)、Bi0.5Na0.5TiO3(BNT)、(K,Na)NbO3(KNN)、Ba(Ti,Zr)O3-(Ba,Ca)TiO3(BZT-BCT)等。在这些体系中,(K0.5Na0.5)NbO3(KNN)基陶瓷很可能是目前最有发展前途的材料,由于它的制备工艺简单,具有较高的压电铁电性能及较高的居里温度等。例如Zhuang Liu等研究了Ce和Mn共掺杂的BS-PTC-BZT-MnO2陶瓷的介电损耗和高压电常数。采用固相烧结方法制备了MnO2掺杂的0.99(0.36BiScO3-0.64PbTi1-xCexO3)-0.01Bi(Zn0.5Ti0.5)O3(BS-PTC-BZT-MnO2)陶瓷,首次报道了Ce元素可以降低介电损耗(tanδ),同时抑制压电常数(d33)的下降。当x=0.02时,该压电材料同时具有低介电损耗(tanδ=1.36%,1kHz)和高压电常数(d33=360pC/N),优于大多数报道的BS-PT。此外,报道了优异的综合性能,包括高居里温度(Tc=422℃)、高介电常数(εr=1324)和剩余极化(Pr=35.1uC/cm2),分析了降低介电损耗的原因,即不对称的S-E和P-E磁滞回线表明,缺陷和氧空位是由多价元素(Ce和Mn)引起的。
本发明通过Li+对A位Na+、K+和Ta5+、Sb5+对B位Nb5+复合取代、多种金属氧化物掺杂2种方式协同改性的特殊方法,解决了纯KNN陶瓷可烧结性差的缺点,实现用传统烧结工艺制备出不仅具有优良电学性能的铌酸盐无铅压电陶瓷材料,而且其介电损耗大幅优于目前报道的KNN基陶瓷。本发明公开了具有低损耗的铌酸盐无铅压电陶瓷材料,以及该材料的制备方法。
本发明公开的具有低损耗的铌酸钾钠基无铅压电陶瓷材料兼具环境友好、电学性能优良、低介电损耗三大优点;且本发明公开的材料工艺路线简单,重复、稳定性好,可在要求低损耗的电子元器件领域使用。
发明内容
针对上述背景技术所提出的问题,本发明的目的是:旨在提供。
为实现上述技术目的,本发明采用的技术方案如下:
超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学表达式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM;
其中TM为MnO2、Fe2O3、Ni2O3或CuO中的一种;
x值为0.1~0.75。
超低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,包含以下步骤,
S1:按化学式[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM的化学计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和TM,放入球磨罐内,加入无水乙醇,混合并球磨;
S2:将球磨后的混合料烘干后,在900~930℃预烧3h后,放入球磨罐内,再次加入无水乙醇,进行细磨;
S3:细磨后的瓷料烘干后,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;
S4:将陶瓷坯片梯度升温至1100~1140℃保温4h进行烧结后,随炉自然降温至室温。
S5:将降温后的陶瓷片上银电极,在硅油中进行极化后即制备得具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料。
作为本发明发一种优选方案,所述S1中无水乙醇的用量为Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和TM原料总重量的80%,球磨时的转速为250r/min,球磨时间为2h。
作为本发明发一种优选方案,所述S2中球磨后混合料的烘干温度为110℃。
5、根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S2中无水乙醇的用量为预烧合成后粉料总重量的80%,球磨时的转速为250r/min,球磨时间为4h。
作为本发明发一种优选方案,所述S3中粘合剂的用量为球磨后粉料总重量的6~8%,粘合剂为重量百分含量为6%PVA的水溶液。
作为本发明发一种优选方案,所述S4中梯度升温时的速率为150℃/h。
作为本发明发一种优选方案,所述S4中烧结时的温度较佳值为1100℃,保温时间为4h。
作为本发明发一种优选方案,所述S5中烧结后的陶瓷片上银电极后,在80℃的硅油中,在电场强度为5~6kV/mm的直流电场下极化10min。
本发明发有益效果:
本发明通过Li+对A位Na+、K+和Ta5+、Sb5+对B位Nb5+复合取代、金属氧化物掺杂三种方式协同改性的特殊方法,解决了纯KNN陶瓷可烧结性差的缺点,实现用传统烧结工艺制备出不仅具有优良电学性能的铌酸盐无铅压电陶瓷材料,而且其介电损耗大幅优于目前报道的KNN基陶瓷;
本发明公开的铌酸盐无铅压电陶瓷材料具有优良的综合电学性能,其中d33=240~280pC/N,kp=43.0%~44.8%,
Figure BDA0003224913550000031
ρ=4.50~4.80g/cm3;对于烧结良好、结构致密的铌酸盐无铅压电陶瓷材料,具有低的介电损耗(tanδ=0.0034~0.014,1kHz);
本发明提供的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其具有工艺简单、重复性、稳定性好的效果,因此具有实际应用的价值。
附图说明
本发明可以通过附图给出的非限定性实施例进一步说明;
图1为本发明实施例1的陶瓷样品表面SEM图;
图2为本发明实施例2的陶瓷样品表面SEM图;
具体实施方式
为了使本领域的技术人员可以更好地理解本发明,下面结合附图和实施例对本发明技术方案进一步说明。
实施例1
本实施例提供的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM,
其中TM为Fe2O3,x=0.15;
其制备方法包括以下步骤:
S1:从国药集团采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和Fe2O3作为原料,按照比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以250r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在110℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以250r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在110℃烘干,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;其中粘合剂为重量百分含量为6%的PVA的水溶液,其用量为球磨后粉料总重的7%;
S4:将陶瓷坯片按150℃/h升温到1100℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:d33=251pC/N,kp=44.6%,
Figure BDA0003224913550000041
ρ=4.38g/cm3。对于烧结良好、结构致密的铌酸盐无铅压电陶瓷材料,具有低的介电损耗(tanδ=0.0082,1kHz)。
实施例2
本实施例提供的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM,
其中TM为Ni2O3,x=0.1;
其制备方法包括以下步骤:
S1:从国药集团采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和Ni2O3作为原料,按照比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以250r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在110℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以250r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在110℃烘干,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;其中粘合剂为重量百分含量为6%的PVA的水溶液,其用量为球磨后粉料总重的7%;
S4:将陶瓷坯片按150℃/h升温到1100℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:d33=270pC/N,kp=43.5%,
Figure BDA0003224913550000042
ρ=4.51g/cm3。对于烧结良好、结构致密的铌酸盐无铅压电陶瓷材料,具有低的介电损耗(tanδ=0.0044,1kHz)。
实施例3
本实施例提供的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM,
其中TM为CuO,x=0.75;
其制备方法包括以下步骤:
S1:从国药集团采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和CuO作为原料,按照比例称取原料;将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以250r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在110℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以250r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在110℃烘干,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;其中粘合剂为重量百分含量为6%的PVA的水溶液,其用量为球磨后粉料总重的7%;
S4:将陶瓷坯片按150℃/h升温到1100℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:d33=260pC/N,kp=43.4%,
Figure BDA0003224913550000051
ρ=4.78g/cm3。对于烧结良好、结构致密的铌酸盐无铅压电陶瓷材料,具有低的介电损耗(tanδ=0.013,1kHz)。
实施例4
本实施例提供的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其化学式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM,
其中TM为MnO2,x=0.2;
其制备方法包括以下步骤:
S1:从国药集团采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和MnO2作为原料,按照比例称取原料;将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以250r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在110℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以250r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在110℃烘干,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;其中粘合剂为重量百分含量为6%的PVA的水溶液,其用量为球磨后粉料总重的7%;
S4:将陶瓷坯片按150℃/h升温到1100℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:d33=244pC/N,kp=43.9%,
Figure BDA0003224913550000061
ρ=4.71g/cm3。对于烧结良好、结构致密的铌酸盐无铅压电陶瓷材料,具有低的介电损耗(tanδ=0.0094,1kHz)。
各实施例中得到的陶瓷材料的电学性能,如下表1所示:
表1 各陶瓷样品的电学性能
Figure BDA0003224913550000062
从表1可以看出,本发明的压电性能良好,其制备后的数据稳定,说明制备工艺重复性、稳定性好,并且本发明的制备工艺简单,因此具有实际应用的价值。
图1为本发明实施例1的陶瓷样品表面SEM图;
图2为本发明实施例2的陶瓷样品表面SEM图;
从图1、图2中可以看出,本发明的铌酸钾钠基无铅压电陶瓷材料晶粒大小均匀,晶界清晰,气孔少,结构均匀致密。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (9)

1.超低介电损耗的铌酸钾钠基无铅压电陶瓷材料,其特征在于:其化学表达式为:
[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM;
其中TM为MnO2、Fe2O3、Ni2O3或CuO中的一种;
x值为0.1~0.75。
2.如权利要求1所述超低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:包含以下步骤,
S1:按化学式[(Na0.1K0.9)0.23Li0.77][(Nb0.15Sb0.85)0.41Ta0.59]O3+xmol%TM的化学计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和TM,放入球磨罐内,加入无水乙醇,混合并球磨;
S2:将球磨后的混合料烘干后,在900~930℃预烧3h后,放入球磨罐内,再次加入无水乙醇,进行细磨;
S3:细磨后的瓷料烘干后,加入一定量的PVA粘合剂混合,压制成所需要的陶瓷坯片;
S4:将陶瓷坯片梯度升温至1100~1140℃保温4h进行烧结后,随炉自然降温至室温。
S5:将降温后的陶瓷片上银电极,在硅油中进行极化后即制备得具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料。
3.根据权利要求2所述的超低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S1中无水乙醇的用量为Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和TM原料总重量的80%,球磨时的转速为250r/min,球磨时间为2h。
4.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S2中球磨后混合料的烘干温度为110℃。
5.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S2中无水乙醇的用量为预烧合成后粉料总重量的80%,球磨时的转速为250r/min,球磨时间为4h。
6.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S3中粘合剂的用量为球磨后粉料总重量的6~8%,粘合剂为重量百分含量为6%PVA的水溶液。
7.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S4中梯度升温时的速率为150℃/h。
8.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S4中烧结时的温度较佳值为1100℃,保温时间为4h。
9.根据权利要求2所述的具有低介电损耗的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S5中烧结后的陶瓷片上银电极后,在80℃的硅油中,在电场强度为5~6kV/mm的直流电场下极化10min。
CN202110968898.1A 2021-08-23 2021-08-23 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法 Withdrawn CN113563075A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110968898.1A CN113563075A (zh) 2021-08-23 2021-08-23 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110968898.1A CN113563075A (zh) 2021-08-23 2021-08-23 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113563075A true CN113563075A (zh) 2021-10-29

Family

ID=78172512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110968898.1A Withdrawn CN113563075A (zh) 2021-08-23 2021-08-23 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113563075A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231921A (zh) * 2022-07-27 2022-10-25 贵州大学 一种铁磁耦合材料及其制备方法
CN116496083A (zh) * 2023-04-11 2023-07-28 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116813339A (zh) * 2023-05-12 2023-09-29 广东奥迪威传感科技股份有限公司 一种无铅压电陶瓷及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231921A (zh) * 2022-07-27 2022-10-25 贵州大学 一种铁磁耦合材料及其制备方法
CN116496083A (zh) * 2023-04-11 2023-07-28 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116496083B (zh) * 2023-04-11 2024-03-12 四川大学 一种核壳结构硬化铌酸钾钠基无铅压电陶瓷及其制备方法
CN116813339A (zh) * 2023-05-12 2023-09-29 广东奥迪威传感科技股份有限公司 一种无铅压电陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
EP1382588B9 (en) Piezoelectric ceramic composition and method of production of same
CN113563075A (zh) 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法
Fan et al. Effects of Li2CO3 and Sm2O3 additives on low-temperature sintering and piezoelectric properties of PZN-PZT ceramics
JP5414433B2 (ja) 強誘電セラミック材料
CN103771855B (zh) 铌酸钾钠基无铅压电陶瓷材料
JP5710077B2 (ja) 圧電セラミックスの製造方法、圧電セラミックス、および圧電素子
EP3370271B1 (en) Piezoelectric composition and piezoelectric device
EP3367453B1 (en) Piezoelectric composition and piezoelectric device
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
JP5537931B2 (ja) 圧電磁器組成物及び圧電素子
CN111548156A (zh) 一类高储能密度和温度稳定性的铌酸银基无铅反铁电陶瓷材料及其制备方法
CN108623303A (zh) 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
Ichikawa et al. Fabrication and characterization of (100),(001)-oriented reduction-resistant lead-free piezoelectric (Ba, Ca) TiO3 ceramics using platelike seed crystals
Li et al. Middle-low temperature sintering and piezoelectric properties of CuO and Bi2O3 doped PMS-PZT based ceramics for ultrasonic motors
KR101333792B1 (ko) 비스무스 기반의 무연 압전 세라믹스 및 그 제조방법
Liu et al. Structural, electrical and photoluminescence properties of Er 3+-doped SrBi 4 Ti 4 O 15—Bi 4 Ti 3 O 12 inter-growth ceramics
CN113582692A (zh) 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN102320831B (zh) 锌铋基钙钛矿-钛酸铅-铅基弛豫铁电体三元系压电陶瓷及其制备方法
CN107162585A (zh) 一种钛酸铋钠基电致伸缩陶瓷及其制备方法和应用
Dong et al. Lowering of sintering temperature of Pb (Zr, Ti) O3 ceramics by the addition of BiFeO3 and Ba (Cu0. 5W0. 5) O3
Yang et al. Low temperature sintering of PMN ceramics by doping with SrO
Park et al. Piezoelectric and Dielectric Properties of Nonstoichiometric (Na 0.5 K 0.5) 0.97 (Nb 0.90 Ta 0.1) O 3 Ceramics Doped with MnO 2
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN112759385B (zh) 一种钙钛矿陶瓷材料及其制备方法与应用
KR101219353B1 (ko) 비스무스계 무연 압전 세라믹스 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211029