CN113582692A - 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法 - Google Patents

低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN113582692A
CN113582692A CN202110967677.2A CN202110967677A CN113582692A CN 113582692 A CN113582692 A CN 113582692A CN 202110967677 A CN202110967677 A CN 202110967677A CN 113582692 A CN113582692 A CN 113582692A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
low
ceramic material
sodium niobate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202110967677.2A
Other languages
English (en)
Inventor
郭金明
邹龙军
顾威
彭雪文
邓丹江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Jingti Technology Co ltd
Hubei University
Original Assignee
Shenzhen Jingti Technology Co ltd
Hubei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Jingti Technology Co ltd, Hubei University filed Critical Shenzhen Jingti Technology Co ltd
Priority to CN202110967677.2A priority Critical patent/CN113582692A/zh
Publication of CN113582692A publication Critical patent/CN113582692A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3294Antimony oxides, antimonates, antimonites or oxide forming salts thereof, indium antimonate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于无铅压电陶瓷材料技术领域,具体涉及低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法。本发明公开了低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm;其中:x值为0~0.6;XnOm为金属氧化物。还公开了其低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法。本发明通过Li+对A位Na+、K+和Ta5+、Sb5+对B位Nb5+复合取代以及金属氧化物掺杂三种方式协同改性的特殊方法,制备出压电性能良好的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其具有良好的压电性能。本发明提供的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其具有烧结温度较低,工艺简单、重复性、稳定性好的效果,因此具有实际应用的价值。

Description

低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法
技术领域
本发明属于无铅压电陶瓷材料技术领域,具体涉及低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法。
背景技术
压电陶瓷是一种具有压电效应并且可实现机械能与电能的相互转换的功能陶瓷。压电陶瓷有着制造方便、设备简单和成本低廉等突出优点,在航天、通讯、超声技术、精密测量、红外技术等领域均得到广泛应用,是当代高新技术中一种重要的功能材料。
传统的铁电压电陶瓷材料主要是以锆钛酸铅(PZT)为基的二元系、三元系铅基陶瓷,因其一系列优异的电学性能而被广泛研究。传统铅基陶瓷的主要组分就是氧化铅,占总体铅基陶瓷材料原料总量的70%,铅基陶瓷材料在生产、使用和废气后处理的过程中都会给环境及人体带来严重危害,处理不当会造成严重的后果,这显然有悖于人类发展和环境保护的要求。因此开发环境友好型的无铅压电陶瓷材料就显得尤为重要及迫切。在压电材料无铅化的研究与开发上世界各国均进行了不少工作,并取得了阶段性的进展。在无铅压电陶瓷材料体系中,(K0.5Na0.5)NbO3(KNN)基陶瓷材料因其较高的压电铁电性能和较高的居里温度而被公认为最有发展前途的材料。近年来,KNN基陶瓷已成为了陶瓷材料领域的研究热点之一,但是KNN基无铅压电陶瓷的烧结温度过高,导致其碱金属组分挥发严重,影响化学计量比,最终弱化了KNN基压电陶瓷材料的压电性能,很大程度上阻碍了KNN基压电陶瓷材料的实际应用。所以,研究KNN基压电陶瓷材料的低温烧结是必要的。
发明内容
针对上述背景技术所提出的问题,本发明的目的是:旨在提供低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法。
为实现上述技术目的,本发明采用的技术方案如下:
低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:
[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中:x值为0~0.6;XnOm为金属氧化物。
作为本发明的一种优选方案,所述XnOm为CuO,x值为0.2~0.3。
作为本发明的一种优选方案,所述XnOm为Bi2O3,x值为0.4~0.5。
低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,包含以下步骤,
S1:按计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、XnOm,放入球磨罐内,加入无水乙醇,混合并球磨;
S2:将球磨后的混合料烘干后,在900~910℃预烧3~4h后,放入球磨罐内,再次加入无水乙醇,进行细磨;
S3:细磨后的瓷料烘干后,加入粘合剂置于模具中,压制成所需要的陶瓷坯片;
S4:将陶瓷坯片梯度升温至1000℃~1100℃保温3~5h进行烧结后,随炉自然降温至室温;
S5:将降温后的陶瓷片上银电极,在硅油中进行极化后即制备得具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料。
作为本发明的一种优选方案,所述S1中无水乙醇的用量为Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、XnOm原料总重量的80~90%,球磨时的转速为200~240r/min,球磨时间为2~3h。
作为本发明的一种优选方案,所述S2中球磨后的混合料的烘干温度为100~120℃。
作为本发明的一种优选方案,所述S2中无水乙醇的用量为预烧合成后粉料总重量的80~90%,球磨时的转速为200~240r/min,球磨时间为3~5h。
作为本发明的一种优选方案,所述S3中粘合剂的用量为球磨后粉料总重量的5~8%,粘合剂为重量百分含量为5%PVA的水溶液。
作为本发明的一种优选方案,所述S4中梯度升温时的速率为180~200℃/h;所述中烧结时的温度较佳值为1020~1050℃,保温3~5h。
作为本发明的一种优选方案,所述S5中烧结后的陶瓷片上银电极后,在70~80℃的硅油中,在电场强度为4~6kV/mm的直流电场下极化10~12min。
本发明的有益效果:
1、本发明通过Li+对A位Na+、K+和Ta5+、Sb5+对B位Nb5+复合取代以及金属氧化物掺杂三种方式协同改性的特殊方法,制备出压电性能良好的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其具有良好的压电性能,典型性能参数为:kp=43.0%~47.7%,d33=235~286pC/N,
Figure BDA0003224521440000021
tanδ=0.0260~0.0360,ρ=4.30~4.80g/cm3
2、本发明提供的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其具有烧结温度较低,工艺简单、重复性、稳定性好的效果,因此具有实际应用的价值。
附图说明
本发明可以通过附图给出的非限定性实施例进一步说明;
图1为本发明实施例1的陶瓷样品表面SEM图;
图2为本发明实施例2的陶瓷样品表面SEM图;
具体实施方式
为了使本领域的技术人员可以更好地理解本发明,下面结合附图和实施例对本发明技术方案进一步说明。
实施例1
本实施例提供的具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中XnOm为CuO,x=0.2;
其制备方法为,
S1:从市面采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和CuO作为原料,按照比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以200r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在100℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以200r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在100℃烘干,加适量粘合剂后置于模具中,压制成所需要的陶瓷坯片,其中粘合剂为重量百分含量为5%的PVA的水溶液,其用量为球磨后粉料总重的8%;
S4:将陶瓷坯片按200℃/h升温到1060℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:kp=44.3%,d33=253pC/N,
Figure BDA0003224521440000031
tanδ=0.029,ρ=4.56g/cm3
实施例2
本实施例提供的具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中XnOm为CuO,x=0.4;
其制备方法为,
S1:从市面采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5和CuO作为原料,按照比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以200r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在100℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以200r/min转速磨细4h;
S4:将磨细过的预烧合成粉料在100℃烘干,加适量粘合剂后置于模具中,压制成所需要的陶瓷坯片,其中粘合剂为重量百分含量为5%的PVA的水溶液,其用量为球磨后粉料总重的8%;
S4:将陶瓷坯片按200℃/h升温到1030℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:kp=45.6%,d33=275pC/N,
Figure BDA0003224521440000041
tanδ=0.0280,ρ=4.70g/cm3
实施例3
本实施例提供的具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中XnOm为Bi2O3,x=0.3;
其制备方法为,
S1:从市面采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、和Bi2O3作为原料,按照比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以200r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在100℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以200r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在100℃烘干,加适量粘合剂后置于模具中,压制成所需要的陶瓷坯片,其中粘合剂为重量百分含量为5%的PVA的水溶液,其用量为球磨后粉料总重的8%;
S4:将陶瓷坯片按200℃/h升温到1030℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:,kp=45.3%,
Figure BDA0003224521440000051
tanδ=0.031,ρ=4.59g/cm3
实施例4
本实施例提供的具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其化学式为:[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中XnOm为Bi2O3,x=0.3;
其制备方法为,
S1:从市面采购化学纯的Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、和Bi2O3作为原料,按比例将称量好的原料放入球磨罐内,加入占上述原料总重量80%的无水乙醇后,在行星球磨机上以200r/min的转速混合并磨细2h;
S2:将经过球磨的混合料在100℃烘干后放于坩埚内,在900℃预烧,保温时间3h;预烧合成后的粉料加入占粉料总重量80%的无水乙醇后,以200r/min转速磨细4h;
S3:将磨细过的预烧合成粉料在100℃烘干,加适量粘合剂后置于模具中,压制成所需要的陶瓷坯片,其中粘合剂为重量百分含量为5%的PVA的水溶液,其用量为球磨后粉料总重的8%;
S4:将陶瓷坯片按200℃/h升温到1050℃保温4h烧结,随炉自然降温至室温;
S5:将烧结后的陶瓷片上银电极,在80℃的硅油中,在电场强度为5kV/mm的直流电场下极化10min,得到铌酸钾钠基无铅压电陶瓷材料。
按照上述方法制备的铌酸钾钠基无铅压电陶瓷材料的性能参数如下:kp=43.8%,d33=240pC/N,
Figure BDA0003224521440000052
tanδ=0.033,ρ=4.68g/cm3
各实施例中得到的陶瓷材料的电学性能,如下表1所示:
表1各陶瓷样品的电学性能
Figure BDA0003224521440000053
从表1可以看出,本发明的压电性能良好,其制备后的数据稳定,说明制备工艺重复性、稳定性好,并且本发明的制备工艺简单,因此具有实际应用的价值。
图1为本发明实施例1的陶瓷样品表面SEM图;
图2为本发明实施例2的陶瓷样品表面SEM图;
从图1、图2中可以看出,本发明的铌酸盐无铅压电陶瓷材料晶粒大小均匀,晶界清晰,气孔少,结构均匀致密。
上述实施例仅示例性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (10)

1.低温烧结的铌酸钾钠基无铅压电陶瓷材料,其特征在于:其化学式为:
[(K0.43Na0.57)0.97Li0.03][(Nb0.9Sb0.1)0.91Ta0.09]O3+x mol%XnOm
其中:x值为0~0.6;XnOm为金属氧化物。
2.根据权利要求1所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其特征在于:所述XnOm为CuO,x值为0.2~0.3。
3.根据权利要求1所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料,其特征在于:所述XnOm为Bi2O3,x值为0.4~0.5。
4.如权利要求1~3任意一项所述低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:包含以下步骤,
S1:按计量比称取原料Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、XnOm,放入球磨罐内,加入无水乙醇,混合并球磨;
S2:将球磨后的混合料烘干后,在900~910℃预烧3~4h后,放入球磨罐内,再次加入无水乙醇,进行细磨;
S3:细磨后的瓷料烘干后,加入粘合剂置于模具中,压制成所需要的陶瓷坯片;
S4:将陶瓷坯片梯度升温至1000℃~1100℃保温3~5h进行烧结后,随炉自然降温至室温;
S5:将降温后的陶瓷片上银电极,在硅油中进行极化后即制备得具有良好压电性能的低温烧结的铌酸钾钠基无铅压电陶瓷材料。
5.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S1中无水乙醇的用量为Na2CO3、K2CO3、Li2CO3、Nb2O5、Sb2O3、Ta2O5、XnOm原料总重量的80~90%,球磨时的转速为200~240r/min,球磨时间为2~3h。
6.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S2中球磨后的混合料的烘干温度为100~120℃。
7.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S2中无水乙醇的用量为预烧合成后粉料总重量的80~90%,球磨时的转速为200~240r/min,球磨时间为3~5h。
8.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S3中粘合剂的用量为球磨后粉料总重量的5~8%,粘合剂为重量百分含量为5%PVA的水溶液。
9.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S4中梯度升温时的速率为180~200℃/h;所述中烧结时的温度较佳值为1020~1050℃,保温3~5h。
10.根据权利要求4所述的低温烧结的铌酸钾钠基无铅压电陶瓷材料的制备方法,其特征在于:所述S5中烧结后的陶瓷片上银电极后,在70~80℃的硅油中,在电场强度为4~6kV/mm的直流电场下极化10~12min。
CN202110967677.2A 2021-08-23 2021-08-23 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法 Withdrawn CN113582692A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110967677.2A CN113582692A (zh) 2021-08-23 2021-08-23 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110967677.2A CN113582692A (zh) 2021-08-23 2021-08-23 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Publications (1)

Publication Number Publication Date
CN113582692A true CN113582692A (zh) 2021-11-02

Family

ID=78238967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110967677.2A Withdrawn CN113582692A (zh) 2021-08-23 2021-08-23 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113582692A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478006A (zh) * 2021-12-31 2022-05-13 中南大学 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN116813339A (zh) * 2023-05-12 2023-09-29 广东奥迪威传感科技股份有限公司 一种无铅压电陶瓷及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114478006A (zh) * 2021-12-31 2022-05-13 中南大学 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN116813339A (zh) * 2023-05-12 2023-09-29 广东奥迪威传感科技股份有限公司 一种无铅压电陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN102503413B (zh) 一种织构化的(1-x-y)BNT-xBKT-yKNN陶瓷材料及其制备方法
CN102531638B (zh) 一种添加物及其降低压电陶瓷烧结温度的用途
CN113582692A (zh) 低温烧结的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN110981468B (zh) 一种钛酸铋钠基压电陶瓷的制备方法
CN101186502A (zh) 一种铌酸钾钠基无铅压电陶瓷的制备方法
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN108147813B (zh) 一种高压电系数钛酸铋钠基无铅压电陶瓷及其制备方法
CN108623303A (zh) 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN101429027A (zh) 一种铌酸钾钠基无铅压电陶瓷及其低温烧结制备方法
CN113563075A (zh) 超低介电损耗的铌酸钾钠基无铅压电陶瓷材料及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN106145933A (zh) 一种高居里温度(Tc > 190℃)低铅PTCR陶瓷材料制备方法
CN113979748B (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN107903055B (zh) 一种梯度掺杂钛酸铋钠基多层无铅压电陶瓷
CN110550953A (zh) 一种钛酸铋钠基无铅压电陶瓷及其制备方法
CN113603482A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN106587989B (zh) 一种高介电性能晶界层陶瓷电容器介质
CN110981477B (zh) 一种氧化钕掺杂铌酸银陶瓷的制备方法
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN115536392A (zh) 高温叠层压电驱动器用压电陶瓷片及其制备方法
CN111217604A (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷及制备方法
CN111704461B (zh) 一种高居里点低温共烧压电陶瓷配方及制备方法
CN103172377B (zh) 反应固相生长制备高性能压电陶瓷的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20211102