CN111393162A - 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 - Google Patents

一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN111393162A
CN111393162A CN201910003934.3A CN201910003934A CN111393162A CN 111393162 A CN111393162 A CN 111393162A CN 201910003934 A CN201910003934 A CN 201910003934A CN 111393162 A CN111393162 A CN 111393162A
Authority
CN
China
Prior art keywords
equal
piezoelectric ceramic
sodium niobate
based lead
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910003934.3A
Other languages
English (en)
Inventor
王晓慧
岑侦勇
李龙土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910003934.3A priority Critical patent/CN111393162A/zh
Publication of CN111393162A publication Critical patent/CN111393162A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法。所述压电陶瓷的化学式如下:(1‑x)[(1‑y)K0.5Na0.5Nb1‑zTazO3‑yBi0.5(Na0.82K0.18)0.5ZrO3]‑xCaZrO3+k%M;其中,x、y、z和k表示摩尔分数,0≤x≤0.03,0.02≤y≤0.05,0≤z≤0.12,0.2≤k≤0.6,且x、y和z不同时为零;M表示锰化合物。本发明提供的抗还原型铌酸钾钠基无铅压电陶瓷,压电常数d33达275pC/N以上,平面机电耦合系数kp可达0.50,在50kV/cm电场下,陶瓷应变可达0.20%,最大逆压电常数d33 *达到500pm/V(E=25kV/cm)。在35kV/cm电场下,样品室温d33 *=460pm/V,并且在波动为±10%范围内,逆压电系数d33 *的温度稳定在Te=125℃之内。

Description

一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷 及其制备方法
技术领域
本发明涉及一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法,属于无铅压电陶瓷材料技术领域。
背景技术
在压电驱动器市场中,铅基压电材料占据主导地位,例如PZT基压电陶瓷。而由于铅基材料在生产和废弃过程中,都会对人体和环境导致危害,因此,许多国家和地区已经立法限制或者禁止铅基材料的使用。这就要求研制能够取代铅基压电材料的无铅压电材料。虽然,当前的无铅压电陶瓷的研究进展迅速,但是,其压电性能尚与铅基材料存在一些差距。在驱动器应用方面,主要问题是压电位移量不足和温度稳定性欠佳。
压电材料多层化技术是解决无铅压电材料应变不足的最佳手段,即通过多层结构设计可以提高压电材料的总位移量。对同等厚度的无铅基压电材料,施加同等压电时,多层结构设计的压电材料的应变量可成倍提高,即
总位移量S=层数(N)×单层(S)
随着科学技术的不断进步,电子信息技术产业也得到了飞速发展。压电陶瓷材料的应用研究逐渐深入各个领域之中,未来市场对电子元器件设计提出了新的要求,要做到小型化、功能化、低成本、高稳定性和多层化。多层化器件中的内电极通常使用银钯电极,这类电极的价格昂贵,不利于降低器件的成本。因此,采用廉价的贱金属内电极为最佳的方案。以镍电极为例,镍电极作为内电极的优势有:1、镍电极成本低,仅为常规的Pd30-Ag70电极的5%左右;2、镍原子的电迁移速度较Ag或Pd-Ag小,因而具有良好的电化学稳定性,可以提高多层压电陶瓷的可靠性;3、镍电极对焊料的耐腐蚀性和耐热性好,工艺稳定性好;4、Ni电极的抗氧化性要优于Ag电极;5、Ni电极具有很高的熔点,可达1300℃以上,可实现与陶瓷基体共烧。
由于镍金属电极在400℃以上发生氧化反应,这个氧化温度远低于陶瓷的烧结温度,因此,在多层陶瓷材料高温共烧时,必须提供还原气氛作为保护。因此,这对压电材料本身提出了新的要求,即还要具有良好的抗还原特性。因此需要提供一种抗还原无铅压电陶瓷。
发明内容
本发明的目的是提供一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法,该方法在还原气氛下烧结得到铌酸钾钠基无铅压电陶瓷,具有居里温度(Tc)高、压电性能优异、抗还原特性和高的逆压电系数d* 33的温度稳定性(Te)。
本发明所提供的抗还原铌酸钾钠基无铅压电陶瓷,其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z和k表示摩尔分数,0≤x≤0.03,0.02≤y≤0.05,0≤z≤0.12,0.2≤k≤0.6,且x、y和z不同时为零;M表示锰化合物,所述锰化合物为MnO、Mn2O3、MnCO3或MnO2
优选x、y和z均不为零。
本发明所述抗还原铌酸钾钠基无铅压电陶瓷具体可为下述1)-7)中的任一种:
1)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,0.01≤x≤0.02,y=0.04,0.01≤z≤0.06,0.2≤k≤0.4;M表示所述锰化合物;
2)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.01,y=0.04,z=0.02,k=0.3;M表示所述锰化合物;
3)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.013,y=0.04,z=0.04,k=0.4;M表示所述锰化合物;
4)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.015,y=0.04,z=0.01,k=0.4;M表示所述锰化合物;
5)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.01,y=0.04,z=0.05,k=0.4;M表示所述锰化合物;
6)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.02,y=0.04,z=0.03,k=0.2;M表示所述锰化合物;
7)其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z、k表示摩尔分数,x=0.011,y=0.04,z=0.06,k=0.2;M表示所述锰化合物。
本发明进一步提供了上述具有良好抗还原特性和温度稳定性的铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:
(1)Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和所述锰化合物按照所述抗还原铌酸钾钠基无铅压电陶瓷的化学式中的化学计量比混合,然后依次进行球磨、烘干和煅烧得到瓷料;
(2)将所述瓷料依次进行球磨、造粒、压制成型、排胶和烧结,即得所述抗还原铌酸钾钠基无铅压电陶瓷;
所述烧结在还原气氛中进行。
上述的制备方法中,步骤(1)中,各原料可为分析纯;
所述球磨以无水乙醇为介质,所述介质的质量为原料总质量的13~15倍;
可采用行星球磨;
所述原料为所述Na2CO3、所述K2CO3、所述Nb2O5、所述ZrO2、所述Bi2O3、所述Ta2O5、CaCO3和所述锰化合物;
所述球磨的转速为250~350转/分钟,时间为20~30小时;和/或,
所述烘干的温度为70~80℃,时间为3~5小时;和/或,
所述煅烧的温度为800~900℃,时间为3~6小时。
上述的制备方法中,步骤(2)中,所述球磨以无水乙醇为介质,所述介质的质量为所述瓷料总质量的13~15倍;
所述球磨的转速为250~350转/分钟,球磨时间为20~30小时,可采用行星球磨;和/或,
所述造粒采用的粘合剂为聚乙烯醇缩丁醛;
所述粘合剂的质量为所述瓷料总质量的5%~7%。
上述的制备方法中,步骤(2)中,所述排胶的步骤如下:以180~200℃/h的升温速率升温到350~400℃并保温1~2h。
上述的制备方法中,步骤(2)中,所述烧结的温度为1150~1180℃,时间为2~4h。
上述的制备方法中,所述还原气氛由体积分数为95~90%的N2和体积分数为1~5%的H2组成;
所述还原气氛的氧分压Po2为1×10-9~1×10-11atm。
上述的制备方法中,步骤(2)中,所述烧结之前的升温速率可为150~200℃/h(如200℃/h);所述烧结之后可以150~200℃/h(如200℃/h)的降温速率降低到400℃,过程中控制还原气氛的氧分压为10-6~10-8atm。
上述的制备方法中,步骤(2)中,所述烧结步骤之后所述方法还包括依次进行的被金电极和极化的步骤;
所述被金电极采用磁控溅射的方法;
所述极化在硅油中进行,所述极化的调节如下:
极化温度为25~80℃,极化电场为3~4kV/mm,极化时间为20~30min。
本发明进一步提供了一种上述具有良好抗还原特性和高温度稳定性的铌酸钾钠基无铅压电陶瓷在制备多层压电陶瓷驱动器中的应用;具体可与贱金属Ni电极共烧制备得到多层压电驱动器。
本发明具有如下有益效果:
本发明提供的抗还原型铌酸钾钠基无铅压电陶瓷,具有优良的压电性能及综合性能。通过选择适当的x、y、z、k值及工艺参数,可使该体系的压电常数d33达275pC/N以上,平面机电耦合系数kp可达0.50,在50kV/cm电场下,陶瓷应变可达0.20%,最大高场压电常数d33 *达到500pm/V(E=25kV/cm)。在35kV/cm电场下,样品室温d33 *=460pm/V,并且在波动为±10%范围内,逆压电系数d33 *的温度稳定在Te=125℃之内。
附图说明
图1为本发明实施例1制备的铌酸钾钠基无铅压电陶瓷单极应变与电场的关系图,其中,内嵌图为逆压电系数d33 *与电场的关系图。
图2为本发明实施例4制备的铌酸钾钠基无铅压电陶瓷逆压电系数d33 *与与温度的关系图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:
0.99[0.96K0.5Na0.5Nb0.98Ta0.02O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.01CaZrO3+0.3%MnC O3;按照如下步骤制备得到:
(1)湿磨、烘干和烧成:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和MnCO3为原料,按照上述化学式进行配料,以无水乙醇(约为150mL,即粉料质量的14倍)为介质进行行星球磨24小时(转速为300转/分),烘干(温度为80℃,时间为4h)后在850℃保温5小时进行煅烧;
(2)二次球磨、造粒、压制成型、排胶和烧结:
将步骤(1)中得到的瓷料再次以无水乙醇(约为150mL,即粉料质量的14倍)为介质进行行星球磨24小时(转速为300转/分),然后加瓷料质量的5%的PVB(聚乙烯醇缩丁醛)粘结剂造粒并压制成型。在气氛炉中以200℃/h的升温速率升温到400℃排胶,保温2h。以200℃/h的升温速率升温到1150~1180℃进行烧结,并保温2h,该过程要通入N2/H2(体积分数:95%N2/5%H2),将氧分压控制在10-10~10-11atm范围内,再以200℃/h的降温速率降温到400℃,其中氧分压控制在10-6~10-8atm范围内。
(3)打磨、披金和硅油中极化:
将步骤(2)中烧结后得到的陶瓷片的双面进行简单的磨平处理后被金,采用磁控溅射的方法被~2μm厚度的金电极,在60℃的硅油中极化,极化电场为3kV/mm,极化时间为30min,即可得到良好抗还原特性和高温度稳定性的铌酸钾钠基无铅压电陶瓷。
将上述制备得到的铌酸钾钠基无铅压电陶瓷样品在室温放置24小时后测试性能。实验结果如表1所示。其中,单极应变与电场的关系图如图1所示。
表1实施例1铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000051
实施例2、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.987[0.96K0.5Na0.5Nb0.96Ta0.04O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.013CaZrO3+0.4%MnO2按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和MnO2为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表2所示。
表2实施例2铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000052
Figure BDA0001934700360000061
实施例3、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.985[0.96K0.5Na0.5Nb0.99Ta0.01O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.015CaZrO3+0.4%MnO,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和MnO为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表3所示。
表3实施例3铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000062
实施例4、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.99[0.96K0.5Na0.5Nb0.95Ta0.05O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.01CaZrO3+0.4%Mn2O3,按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和Mn2O3为原料,按照上述表达式进行配料,其余步骤同实施例1。其中,铌酸钾钠基无铅压电陶瓷介电常数与温度的关系图如图2所示。
实验结果如表4所示。
表4实施例4铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000063
实施例5、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.98[0.96K0.5Na0.5Nb0.97Ta0.03O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.02CaZrO3+0.2%MnCO3按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和MnCO3为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表5所示。
表5实施例5铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000071
实施例6、制备铌酸钾钠基无铅压电陶瓷
本实施例中铌酸钾钠基无铅压电陶瓷的成分表达式如下:0.989[0.96K0.5Na0.5Nb0.94Ta0.06O3-0.04Bi0.5(Na0.82K0.18)0.5ZrO3]-0.011CaZrO3+0.2%MnO2按照如下步骤制备得到:
以分析纯Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和MnO2为原料,按照上述表达式进行配料,其余步骤同实施例1。
实验结果如表6所示。
表6实施例6铌酸钾钠基无铅压电陶瓷性能
Figure BDA0001934700360000072

Claims (10)

1.一种抗还原铌酸钾钠基无铅压电陶瓷,其化学式如下:
(1-x)[(1-y)K0.5Na0.5Nb1-zTazO3-yBi0.5(Na0.82K0.18)0.5ZrO3]-xCaZrO3+k%M;
其中,x、y、z和k表示摩尔分数,0≤x≤0.03,0.02≤y≤0.05,0≤z≤0.12,0.2≤k≤0.6,且x、y和z不同时为零;M表示锰化合物,所述锰化合物为MnO、Mn2O3、MnCO3或MnO2
2.权利要求1所述的抗还原铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:
(1)Na2CO3、K2CO3、Nb2O5、ZrO2、Bi2O3、Ta2O5、CaCO3和所述锰化合物按照所述抗还原铌酸钾钠基无铅压电陶瓷的化学式中的化学计量比混合,然后依次进行球磨、烘干和煅烧得到瓷料;
(2)将所述瓷料依次进行球磨、造粒、压制成型、排胶和烧结,即得所述抗还原铌酸钾钠基无铅压电陶瓷;
所述烧结在还原气氛中进行。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)中,所述球磨以无水乙醇为介质,所述介质的质量为原料总质量的13~15倍;
所述原料为所述Na2CO3、所述K2CO3、所述Nb2O5、所述ZrO2、所述Bi2O3、所述Ta2O5、CaCO3和所述锰化合物;
所述球磨的转速为250~350转/分钟,时间为20~30小时;和/或,
所述烘干的温度为70~80℃,时间为3~5小时;和/或,
所述煅烧的温度为800~900℃,时间为3~6小时。
4.根据权利要求2或3所述的制备方法,其特征在于:步骤(2)中,所述球磨以无水乙醇为介质,所述介质的质量为所述瓷料总质量的13~15倍;
所述球磨的转速为250~350转/分钟,球磨时间为20~30小时;和/或,
所述造粒采用的粘合剂为聚乙烯醇缩丁醛;
所述粘合剂的质量为所述瓷料总质量的5%~7%。
5.根据权利要求2-4中任一项所述的制备方法,其特征在于:步骤(2)中,所述排胶的步骤如下:以180~200℃/h的升温速率升温到350~400℃并保温1~2h。
6.根据权利要求2-5中任一项所述的制备方法,其特征在于:步骤(2)中,所述烧结的温度为1150~1180℃,时间为2~4h。
7.根据权利要求1-6中任一项所述的制备方法,其特征在于:所述还原气氛由体积分数为95~90%的N2和体积分数为1~5%的H2组成;
所述还原气氛的氧分压Po2为1×10-9~1×10-11atm。
8.根据权利要求2-7中任一项所述的制备方法,其特征在于:步骤(2)中,所述烧结步骤之后所述方法还包括依次进行的被金电极和极化的步骤;
所述被金电极采用磁控溅射的方法;
所述极化在硅油中进行,所述极化的调节如下:
极化温度为25~80℃,极化电场为3~4kV/mm,极化时间为20~30min。
9.一种多层压电陶瓷驱动器,其由权利要求1所述抗还原铌酸钾钠基无铅压电陶瓷和Ni电极共烧制备得到。
10.权利要求1所述抗还原铌酸钾钠基无铅压电陶瓷在制备多层压电陶瓷驱动器中的应用。
CN201910003934.3A 2019-01-03 2019-01-03 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法 Pending CN111393162A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910003934.3A CN111393162A (zh) 2019-01-03 2019-01-03 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910003934.3A CN111393162A (zh) 2019-01-03 2019-01-03 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN111393162A true CN111393162A (zh) 2020-07-10

Family

ID=71426350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910003934.3A Pending CN111393162A (zh) 2019-01-03 2019-01-03 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111393162A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151667A (zh) * 2020-09-10 2020-12-29 广州凯立达电子股份有限公司 一种贱金属电极高压电常数无铅多层压电陶瓷片
CN113548892A (zh) * 2021-08-31 2021-10-26 同济大学 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113735581A (zh) * 2021-09-16 2021-12-03 湖南省美程陶瓷科技有限公司 一种无铅压电陶瓷材料及其制备方法
CN114436653A (zh) * 2020-11-06 2022-05-06 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN114835489A (zh) * 2022-05-11 2022-08-02 国网智能电网研究院有限公司 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN115504783A (zh) * 2022-10-25 2022-12-23 湖南一众电子陶瓷科技有限公司 一种knn基无铅压电陶瓷及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364852A2 (en) * 2010-03-12 2011-09-14 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus using the same, and piezoelectric element
CN103436963A (zh) * 2013-08-13 2013-12-11 哈尔滨工业大学 一种高机电耦合性能的钽掺杂铌酸钾钠无铅压电单晶的制备方法
CN108623303A (zh) * 2017-03-15 2018-10-09 清华大学 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2364852A2 (en) * 2010-03-12 2011-09-14 Seiko Epson Corporation Liquid ejecting head, liquid ejecting apparatus using the same, and piezoelectric element
CN103436963A (zh) * 2013-08-13 2013-12-11 哈尔滨工业大学 一种高机电耦合性能的钽掺杂铌酸钾钠无铅压电单晶的制备方法
CN108623303A (zh) * 2017-03-15 2018-10-09 清华大学 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ZHENYONG CEN ET AL.: "A high temperature stable piezoelectric strain of KNN-based ceramics", 《J. MATER. CHEM. A》 *
ZHENYONG CEN ET AL.: "Design on improving piezoelectric strain and temperature stability of KNN‐based ceramics", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *
ZHENYONG CEN ET AL.: "Temperature stability and electrical properties of MnO‐doped KNN‐based ceramics sintered in reducing atmosphere", 《JOURNAL OF THE AMERICAN CERAMIC SOCIETY》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151667A (zh) * 2020-09-10 2020-12-29 广州凯立达电子股份有限公司 一种贱金属电极高压电常数无铅多层压电陶瓷片
CN114436653A (zh) * 2020-11-06 2022-05-06 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN114436653B (zh) * 2020-11-06 2022-11-01 清华大学 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN113548892A (zh) * 2021-08-31 2021-10-26 同济大学 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113548892B (zh) * 2021-08-31 2023-02-10 同济大学 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113735581A (zh) * 2021-09-16 2021-12-03 湖南省美程陶瓷科技有限公司 一种无铅压电陶瓷材料及其制备方法
CN113735581B (zh) * 2021-09-16 2022-07-15 湖南省美程陶瓷科技有限公司 一种无铅压电陶瓷材料及其制备方法
CN114835489A (zh) * 2022-05-11 2022-08-02 国网智能电网研究院有限公司 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN114835489B (zh) * 2022-05-11 2023-04-28 国网智能电网研究院有限公司 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN115504783A (zh) * 2022-10-25 2022-12-23 湖南一众电子陶瓷科技有限公司 一种knn基无铅压电陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN111393162A (zh) 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
KR101730184B1 (ko) 도전성 페이스트 조성물 및 이를 이용한 적층 세라믹 콘덴서의 제조방법
WO2021131142A1 (ja) 電気熱量効果素子
TWI813665B (zh) 積層陶瓷電容器及其製造方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
JP2004517024A (ja) 圧電セラミック材料、その製造法および電気セラミック多層構造部材
CN105826073A (zh) 层叠型陶瓷电子部件
CN108623303A (zh) 一种抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN110310826A (zh) 层叠陶瓷电子部件
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
JPH0222806A (ja) 積層セラミックコンデンサ
Joseph et al. Low temperature sintering lead‐free dielectric x BiScO3‐(1‐x) BaTiO3 for energy storage applications
JP4640092B2 (ja) 積層型圧電素子及びその製造方法
EP3778530A1 (en) Dielectric ceramic composition and ceramic electronic component
JP2007258301A (ja) 積層型圧電素子及びその製造方法
CN111417608A (zh) 陶瓷构件
JP4462438B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
CN114436653B (zh) 耐疲劳、高逆压电和高稳定性能的抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
JP6362883B2 (ja) 固体イオンキャパシタおよび固体イオンキャパシタの製造方法
WO2022102617A1 (ja) 電気熱量効果素子
JP4930676B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
JPH1022166A (ja) 多層セラミックコンデンサーの製造方法
JP2024048975A (ja) 誘電体組成物および電子部品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200710