WO2022102617A1 - 電気熱量効果素子 - Google Patents

電気熱量効果素子 Download PDF

Info

Publication number
WO2022102617A1
WO2022102617A1 PCT/JP2021/041202 JP2021041202W WO2022102617A1 WO 2022102617 A1 WO2022102617 A1 WO 2022102617A1 JP 2021041202 W JP2021041202 W JP 2021041202W WO 2022102617 A1 WO2022102617 A1 WO 2022102617A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic layer
effect element
effect
temperature
electric
Prior art date
Application number
PCT/JP2021/041202
Other languages
English (en)
French (fr)
Inventor
左京 廣瀬
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2022561937A priority Critical patent/JP7439954B2/ja
Publication of WO2022102617A1 publication Critical patent/WO2022102617A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • C04B35/497Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates based on solid solutions with lead oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect
    • H10N15/10Thermoelectric devices using thermal change of the dielectric constant, e.g. working above and below the Curie point

Definitions

  • This disclosure relates to an electrocaloric effect element.
  • the above PST shows an electric heat effect, but in order to obtain a larger electric heat effect: (1) It has a high withstand voltage and can apply a large electric field. (2) Sc and Ta, which are cations of the B site of PST, are required to show a high degree of order. That is, since the adiabatic temperature change ⁇ T, which is one of the performance indexes of the electric calorific value effect, depends on the applied electric field strength, a sufficient electric field should be applied if the ceramic itself or the element does not have a high withstand voltage. It is not possible to obtain a large change in adiabatic temperature.
  • the electric calorific value effect is affected by the order degree of the B site of PST, and the higher the order degree of the B site, the better the ferroelectric characteristic can be obtained, and a large electric heat quantity effect (change in adiabatic temperature) can be obtained. can.
  • the above PST when used for a solid cooling element, it exhibits a large electric heat effect at a temperature (for example, 4 ° C or lower in a refrigerator, -18 ° C or lower in a freezer) according to its application (for example, a refrigerator, a freezer, etc.). Is required.
  • a temperature for example, 4 ° C or lower in a refrigerator, -18 ° C or lower in a freezer
  • its application for example, a refrigerator, a freezer, etc.
  • the conventional PST shows a large electric heat effect at 20 ° C. or higher, but the electric heat effect is significantly reduced at a low temperature, and there is a problem in using it as a solid cooling element at a low temperature.
  • the present disclosure is an electrocaloric effect element having a laminated body in which electrode layers whose main component is Pt and PST ceramic layers are alternately laminated, and the withstand voltage and order degree of the PST ceramic layers are high and at low temperature. It is an object of the present invention to provide an electric heat quantity effect element exhibiting a large electric heat quantity effect.
  • the present inventors have a perovskite structure in the ceramic layer, and ceramics containing Na in addition to Pb, Sc and Ta: (Pb 1-x Na x ) m (Sc 0.5-x / 2-y Ta 0.5 + x / 2 + y ) O 3 [During the ceremony, x satisfies 0.01 ⁇ x ⁇ 0.08. y satisfies ⁇ 0.03 ⁇ y ⁇ 0.03. m satisfies 0.97 ⁇ m ⁇ 1.03.
  • An electric calorific value effect device having a laminate in which an electrode layer whose main component is Pt and a ceramic layer are laminated, and the ceramic layer has a perovskite structure and has a formula: (Pb 1-x Na x ) m (Sc 0.5-x / 2-y Ta 0.5 + x / 2 + y ) O 3 [During the ceremony, x satisfies 0.01 ⁇ x ⁇ 0.08. y satisfies ⁇ 0.03 ⁇ y ⁇ 0.03. m satisfies 0.97 ⁇ m ⁇ 1.03. ] An electric calorific value effect element whose main component is ceramics represented by.
  • an electric heat quantity effect element having a high withstand voltage and order degree of the PST ceramic layer and exhibiting a large electric heat quantity effect at a low temperature.
  • FIG. 1 is a schematic cross-sectional view of an electrocaloric effect element according to an embodiment of the present disclosure.
  • FIG. 2 is a diagram for explaining a measurement sequence of the electric calorific value effect.
  • FIG. 3 is a diagram showing the measurement results of the electric calorific value effect of the samples of sample numbers 1, 2 and 5 in the example.
  • the electrocaloric effect element of the present disclosure has a laminated body in which Pt electrode layers and ceramic layers are alternately laminated.
  • the Pt electrode layers 2a and 2b (hereinafter collectively referred to as “Pt electrode layer 2”) and the ceramic layer 4 are alternately arranged. It has an external electrode 8a, 8b (hereinafter, collectively referred to as “external electrode 8”) connected to the laminated body 6 and the Pt electrode layer 2.
  • the Pt electrode layers 2a and 2b are electrically connected to the external electrodes 8a and 8b arranged on the end faces of the laminated body 6, respectively.
  • a voltage is applied from the external electrodes 8a and 8b, an electric field is formed between the Pt electrode layers 2a and 2b. Due to this electric field, the ceramic layer 4 generates heat due to the effect of the amount of electric heat. Further, when the voltage is removed, the electric field disappears, and as a result, the ceramic layer 4 absorbs heat due to the electric heat quantity effect.
  • the Pt electrode layer 2 is a so-called internal electrode.
  • the Pt electrode layer 2 may have a function of transferring an amount of heat between the ceramic layer 4 and the outside in addition to the function of applying an electric field to the ceramic layer 4.
  • the Pt electrode layer means an electrode layer whose main component is Pt.
  • the "main component" in the electrode layer means that the electrode layer is composed of 80% by mass or more of Pt, and for example, 95% by mass or more of the electrode layer, more preferably 98% by mass or more, still more preferable. Means that 99% or more, more preferably 99.5% by mass or more, and particularly preferably 99.9% by mass or more is Pt.
  • the effect of the present invention is that the Pt electrode layer is an alloy or mixture of Pt and other elements (for example, Ag, Pd, Rh, Au, etc.) from the viewpoint of improving chemical durability and / or cost. May be good.
  • the Pt electrode layer is composed of these alloys or mixtures. It may also contain other elements that can be mixed as impurities, especially unavoidable elements (for example, Fe, Al 2 O 3 , etc.). In this case as well, the same effect can be obtained.
  • the thickness of the Pt electrode layer 2 is preferably 0.2 ⁇ m or more and 10 ⁇ m or less, more preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less, for example, 2.0 ⁇ m or more and 5.0 ⁇ m or less, or 2.0 ⁇ m or more and 4.0 ⁇ m or less. obtain.
  • the thickness of the Pt electrode layer By setting the thickness of the Pt electrode layer to 0.5 ⁇ m or more, the resistance of the Pt electrode layer can be reduced and the heat transport efficiency can be improved.
  • the thickness of the Pt electrode layer to 10 ⁇ m or less, the thickness (and thus the volume) of the ceramic layer can be increased, and the amount of heat that can be handled by the electric heat quantity effect of the entire element can be further increased. Moreover, the element can be made smaller.
  • the ceramic layer 4 is a layer containing ceramics containing Pb, Na, Sc and Ta as a main component.
  • the ceramic has a perovskite structure, contains Pb, Na, Sc and Ta, and when the Na content ratio is "x", the Pb content ratio is "1-x” and the Sc content ratio.
  • the Ta content ratio is "0.5 + x / 2-y”
  • the range of x is 0.01 ⁇ x ⁇ 0.08, and y
  • the range is ⁇ 0.03 ⁇ y ⁇ 0.03, and when the ratio of the total of Pb and Na to the total of Sc and Ta is “m”, the range of m is 0.97 ⁇ m ⁇ 1.03. Is.
  • the above ratios are all molar ratios.
  • a high withstand voltage for example, 15 MV / m or more
  • a high order degree of B site for example, 75% or more
  • a large temperature at low temperature are obtained.
  • An electric heat effect for example, ⁇ Ta of 1K or more
  • a high degree of order can be obtained and the productivity is further improved. ..
  • a high degree of order can be obtained, and the degree of freedom in element design is improved.
  • the ceramic layer 4 has a perovskite structure and has the formula: (Pb 1-x Na x ) m (Sc 0.5-x / 2-y Ta 0.5 + x / 2 + y ) O 3 [During the ceremony, x satisfies 0.01 ⁇ x ⁇ 0.08. y satisfies ⁇ 0.03 ⁇ y ⁇ 0.03. m satisfies 0.97 ⁇ m ⁇ 1.03. ]
  • the main component is ceramics represented by.
  • a high withstand voltage for example, 15 MV / m or more
  • a high B-site order degree for example, 75% or more
  • a large electric heat effect at low temperature for example.
  • the Pt electrode layer sandwiching the ceramic layer hinders the diffusion of oxygen, Pb, etc., so that the diffusion coefficient of the cations constituting the B site is lowered and it is difficult to obtain a high degree of order. Further, for the same reason, internal defects tend to remain, and the withstand voltage tends to vary widely.
  • the ceramics used in the present disclosure by substituting a part of Pb with Na and further setting the ratio of Pb, Na, Sc and Ta within the composition range of the present disclosure, both the A site and the B site of perovskite are moderately unsuitable. It is presumed that homogenization was performed and the diffusion of elements was promoted, making it easier for B-site orders to occur. Further, it is considered that the diffusion of the elements is promoted, so that the sintering proceeds more easily than the conventional PST, and the withstand voltage is also improved.
  • y is 0 and m is 1. That is, the formula expressed by (Pb 1-x Na x ) m (Sc 0.5-x / 2-y Ta 0.5 + x / 2 + y ) O 3 is (Pb 1-x Na x ) (Sc 0. 5-x / 2 Ta 0.5 + x / 2 ) O3.
  • the ceramic layer 4 may contain one type of ceramic as a main component or two or more types of ceramic as a main component.
  • the "main component" in the ceramic layer means that the ceramic layer is substantially composed of the target ceramic, for example, 90% by mass or more, more preferably 95% or more, still more preferably. It means that 98% by mass or more, more preferably 99% by mass or more, and particularly preferably 99.5% by mass or more is the target ceramic.
  • Other components may be a crystal phase having a pyrochlore structure different from that of the perovskite structure, other elements mixed as impurities, and particularly unavoidable elements (for example, Zr, C, etc.).
  • the composition of the ceramic layer 4 can be obtained by a high frequency inductively coupled plasma emission spectroscopic analysis method, a fluorescent X-ray analysis method, or the like. Further, the structure of the ceramic layer 4 can be obtained by powder X-ray diffraction.
  • the thickness of the ceramic layer 4 may be preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 5 ⁇ m or more and 50 ⁇ m or less, still more preferably 10 ⁇ m or more and 50 ⁇ m or less, still more preferably 20 ⁇ m or more and 50 ⁇ m or less, and particularly preferably 20 ⁇ m or more and 40 ⁇ m or less. ..
  • the thickness of the ceramic layer By increasing the thickness of the ceramic layer, the amount of heat that can be handled by the element can be increased. By making the thickness of the ceramic layer thinner, the withstand voltage can be improved and a higher ⁇ T can be obtained.
  • the degree of order of the B site of the ceramic layer 4 may be preferably 75% or more, more preferably 76% or more, still more preferably 77% or more. By increasing the order of the B site, a larger electric heat effect can be obtained. The higher the order of the B site of the ceramic layer is, the more preferable it is, but the upper limit thereof may be, for example, 99% or less, 90% or less, or 85% or less. By lowering the order degree of the B site, the annealing treatment time at the time of manufacturing can be shortened, and the productivity is improved.
  • the order degree of the B site of the ceramic layer 4 is calculated from the measured values obtained by measuring the intensities of 111 and 200 diffractions of the perovskite structure by powder X-ray diffraction and the structure completely ordered by the B site. It can be obtained from the value based on the following formula.
  • S 2 111 represents the degree of order.
  • I 111 and I 200 represent the intensities of 111 and 200 diffraction, respectively. observed represents the measured value calculated represents the calculated value.
  • the withstand voltage of the ceramic layer 4 can be preferably 15 MV / m or more, more preferably 20 MV / m or more, still more preferably 25 MV / m or more. By increasing the withstand voltage of the ceramic layer, a larger electric field can be applied and a larger ⁇ T can be obtained.
  • the material constituting the pair of external electrodes 8a and 8b is not particularly limited, and examples thereof include Ag, Cu, Pt, Ni, Al, Pd, Au, and alloys thereof (for example, Ag-Pd and the like). It may be an electrode composed of metal and glass, or an electrode composed of metal and resin. Among the metals, Ag is preferable.
  • the number of laminated Pt electrode layers and the ceramic layer is not particularly limited. Further, all the internal electrodes may not be connected to the external electrodes, and may include internal electrodes that are not connected to the external electrodes, if necessary for heat transfer, piezoelectricity, stress relaxation due to electric strain, and the like.
  • the lower limit of the number of laminated ceramic layers may be 1 or more, preferably 5 or more, for example, 10 or more or 20 or more, respectively.
  • the upper limit of the number of laminated ceramics may be several hundreds or less, preferably 300 or less, more preferably 100 or less, for example, 50 or less.
  • the internal electrode and the ceramic layer are substantially in contact with each other on substantially the entire surface, but the electric heat quantity effect element of the present disclosure is not limited to such a structure, and an electric field can be applied to the ceramic layer.
  • the structure is not particularly limited.
  • the electric heat effect element 1 has a rectangular parallelepiped block shape, but the shape of the electric heat effect element of the present disclosure is not limited to this, and may be, for example, a cylindrical shape or a sheet shape, and further uneven or through holes. Etc. may be possessed.
  • the internal electrodes may be exposed on the surface for heat transfer and heat exchange with the outside.
  • the electrocaloric effect element of the present embodiment described above is manufactured, for example, as follows.
  • High-purity lead oxide (Pb 3 O 4 ), tantalum pentoxide (Ta 2 O 5 ), scandium oxide (Sc 2 O 3 ) and sodium carbonate (Na 2 CO 3 ) are used as raw materials to obtain the desired composition ratio after firing. Weigh as in.
  • the above raw materials are pulverized and mixed with partially stabilized zirconia (PSZ) balls, pure water, a dispersant and the like in a ball mill. Then, the pulverized and mixed slurry is dried and sized, and then calcined in the air at 800 ° C. to 900 ° C. for example.
  • PSZ partially stabilized zirconia
  • the obtained calcined powder is mixed with PSZ balls, ethanol, toluene, a dispersant and the like, and pulverized.
  • a binder solution dissolved in the obtained pulverized powder is added and mixed to prepare a slurry for sheet molding.
  • the prepared slurry is formed into a sheet on the support, and the Pt electrode paste is printed.
  • a printed sheet and an unprinted sheet are laminated so as to have a desired structure, and then pressure-bonded at a pressure of 100 MPa to 200 MPa and cut to produce a green chip.
  • the green chips are debindered by heat-treating at 500 ° C to 600 ° C in the atmosphere.
  • the debindered chips are calcined at 1300 ° C. to 1500 ° C.
  • the chips and PbZrO3 powder can be heat-treated again at about 1000 ° C. for a predetermined time to adjust the structure.
  • the end face of the chip is polished with sandpaper, an external electrode paste is applied, and a baking process is performed at a predetermined temperature to obtain an electric calorific value effect element as shown in FIG.
  • the electric heat quantity effect element of the present invention exhibits an excellent electric heat quantity effect, it can be used as a heat management element, particularly a cooling element (including an air conditioner such as an air conditioner, a refrigerator, and a cooling / heat pump element of a freezer).
  • a cooling element including an air conditioner such as an air conditioner, a refrigerator, and a cooling / heat pump element of a freezer.
  • the present disclosure also provides an electronic component comprising the electrocaloric effect element of the present disclosure, as well as an electronic device comprising the electrocaloric effect element or the electronic component of the present disclosure.
  • the electronic components are not particularly limited, but are, for example, electronic components used in air conditioners, refrigerators or freezers; central processing devices (CPUs), hard disks (HDDs), power management ICs (PMICs), power amplifiers (PAs). , Transceiver ICs, integrated circuits (ICs) such as voltage regulators (VRs), light emitting diodes (LEDs), incandescent bulbs, light emitting elements such as semiconductor lasers, components that can be heat sources such as electric field effect transistors (FETs), and other components. Examples include components commonly used in electronic devices such as lithium ion batteries, substrates, heat sinks, and housings.
  • CPUs central processing devices
  • HDDs hard disks
  • PMICs power management ICs
  • PAs power amplifiers
  • Transceiver ICs integrated circuits (ICs) such as voltage regulators (VRs), light emitting diodes (LEDs), incandescent bulbs, light emitting elements such as semiconductor lasers, components that can be heat sources such as electric
  • the electronic device is not particularly limited, and examples thereof include small electronic devices such as air conditioners, refrigerators or freezers; mobile phones, smartphones, personal computers (PCs), tablet terminals, hard disk drives, and data servers.
  • small electronic devices such as air conditioners, refrigerators or freezers
  • mobile phones smartphones, personal computers (PCs), tablet terminals, hard disk drives, and data servers.
  • PCs personal computers
  • tablet terminals hard disk drives, and data servers.
  • High-purity lead oxide (Pb 3 O 4 ), tantalum pentoxide (Ta 2 O 5 ), scandium oxide (Sc 2 O 3 ) and sodium carbonate (Na 2 CO 3 ) were prepared as raw materials. After firing, these raw materials were weighed so as to have a predetermined composition ratio as shown in Tables 1 to 7, and a partially stabilized zirconia (PSZ) ball having a diameter of 2 mm, pure water and a dispersant were used in a ball mill for 16 hours. Grinding and mixing was performed. Then, the pulverized and mixed slurry was dried on a hot plate, sized, and then calcined in the air at 850 ° C. for 2 hours.
  • PSZ partially stabilized zirconia
  • the obtained calcined powder was mixed with PSZ balls having a diameter of 5 mm, ethanol, toluene and a dispersant for 16 hours, and pulverized.
  • a dissolved binder solution was added to the obtained pulverized powder and mixed for 4 hours to prepare a slurry for sheet molding.
  • the prepared slurry was formed into a sheet on a pet film by a doctor blade method with a thickness corresponding to the thickness of a predetermined ceramic layer, cut into strips, and then screen-printed with a platinum internal electrode paste.
  • the sheet thickness of the laminated element to be manufactured was controlled by changing the gap of the doctor blade used at the time of sheet forming.
  • a predetermined number of printed sheets and unprinted sheets were laminated, then pressure-bonded at a pressure of 150 MPa and cut to produce a green chip.
  • the green chips were heat-treated in the air at 550 ° C. for 24 hours to remove the binder.
  • the green chips were sealed in an alumina-made hermetic sheath together with PbZrO3 powder for creating a Pb atmosphere, and fired at 1350 to 1400 ° C. for 4 hours. Only sample No. 2 was fired, and then the chips and PbZrO3 powder were added again in a hermetically sealed pod and heat-treated (annealed) at a temperature of 1000 ° C. for 1000 hours.
  • the size of the obtained element was about L10.2 mm ⁇ W7.2 mm ⁇ T0.88 for the element having a ceramic layer thickness of 40 ⁇ m.
  • the ceramic layer sandwiched between the internal electrode layers was 19 layers, the electrode area was 49 mm 2 / layer, and the total electrode area was 49 mm 2 ⁇ 19 layers.
  • the thickness of the ceramic layer of the element obtained above was confirmed by using a scanning electron microscope after polishing the cross section of the element.
  • composition The ceramic composition of the obtained device was confirmed by using high frequency inductively coupled plasma emission spectroscopy and fluorescent X-ray analysis.
  • Crystal structure and degree of order (Crystal structure)
  • powder X-ray diffraction measurement was performed. One element was randomly selected from each lot, crushed in a mortar, and then an X-ray diffraction profile was obtained. From the obtained X-ray diffraction profile, it was confirmed whether the crystal structure of the ceramic was a perovskite structure, and the presence / absence and abundance ratio of the impurity phase (mainly the pyrochlore phase) were estimated from the intensity ratio.
  • the abundance ratio of the perovskite structure is 0.9 or more, the main component is considered to have a perovskite structure, and when it is smaller than 0.9, it is judged that there is a heterogeneous phase.
  • I 111 and I 200 are the intensities of 111 and 200 diffractions of the perovskite structure, respectively, and the order degree of the B site was obtained from the measured value and the calculated value obtained from the structure completely ordered by the B site. Good products with an order degree of 75% or more were judged as Go. The results are shown in Tables 1-7.
  • the electrocaloric effect was evaluated by applying a voltage to the sample in the sequence shown in the upper graph of FIG. That is, first, a voltage was applied to the sample, the voltage was held as it was, then the applied voltage was removed and held as it was, and this operation was repeated to measure the change in the electric calorific value effect.
  • a voltage is applied in such a sequence, in the step of applying the voltage, the sample temperature rises at the same time as the application, and in the step of maintaining the applied state, the heat is gradually diffused and the sample temperature is the same as before the voltage is applied.
  • the sample temperature drops at the same time as the removal, and in the step of maintaining the non-applied state, the sample temperature gradually rises to the original temperature.
  • the adiabatic temperature change ⁇ T is obtained from the temperature change when the voltage as described above is applied and removed.
  • the temperature is measured by holding it in a state where it is applied for 50 seconds, and then after removing the voltage, it is held in a state where it is not applied for 50 seconds and measuring the temperature. bottom.
  • This sequence was repeated 3 times.
  • the temperature of the element was constantly measured, and the adiabatic temperature change ⁇ T was obtained from the temperature change (in this embodiment, the temperature change when the voltage is applied, that is, the degree of temperature rise is determined. ( ⁇ T).
  • This measurement was performed in the temperature range of ⁇ 90 ° C to 160 ° C.
  • the results of sample numbers 1, 2 and 5 are shown in FIG.
  • the adiabatic temperature change ⁇ T at ⁇ 5 ° C. and 0 ° C. was 1.5K or more and 1K or more, respectively, it was judged as Go.
  • the results are shown in Table 1 and Tables 3-7.
  • the withstand voltage was measured by changing only the element thickness of the ceramics without changing the number of layers.
  • the voltage was applied to the element in the same manner as in the measurement of the electric calorific value effect, and the presence or absence of dielectric breakdown at that time was investigated. Specifically, the applied voltage was increased from 10 MV / m in steps of 5 MV / m, and the electric field strength immediately before the voltage at which dielectric breakdown occurred was defined as the withstand voltage. The results are shown in Table 2.
  • sample numbers 3 to 6 which are within the scope of the present invention, have an order degree exceeding 0.75 even without annealing treatment. That is, a sample within the scope of the present invention can obtain a high degree of order without heat treatment for a long time. This means that it is extremely productive. Although not shown above, a higher order degree, for example, an order degree exceeding 0.80, can be obtained by performing an annealing treatment for a relatively short time of 300 hours.
  • the samples of sample numbers 1 and 2 outside the scope of the present invention have a maximum adiabatic temperature change in the vicinity of 20 to 30 ° C., and the adiabatic temperature change is 0 ° C. It is getting smaller in the vicinity. This is because in the sample having the composition of the conventional PbSc 0.5 Ta 0.5 O 3 , the ferroelectric temperature transition is in the vicinity of 0 to 15 ° C., and a large adiabatic temperature change is realized above the transition temperature. Derived from.
  • the sample of sample number 1 having a low order degree shows a higher adiabatic temperature change at 0 ° C.
  • the maximum value of the adiabatic temperature change is smaller than that of the samples of sample numbers 1 and 2, but the peak is broad over a wide temperature range, and the temperature is around -10 ° C.
  • a larger adiabatic temperature change than sample numbers 1 and 2 could be realized. It is considered that this is because the ferroelectric transition temperature could be controlled to the low temperature side and a high order degree could be realized without annealing treatment.
  • the thickness of the ceramic layer is reduced, the absolute number of existing defects is reduced, or the sintering behavior of the ceramics is changed and the number of defects is reduced.
  • structural defects for example, smoothness of internal electrodes
  • the withstand voltage is slightly lowered.
  • the electric heat effect element of the present disclosure can exhibit a high electric heat effect, it can be used as a heat management element in, for example, an air conditioner, a refrigerator or a freezer, and various electronic devices such as heat countermeasures can be used. It can be used as a cooling device for small electronic devices such as mobile phones, for which problems are becoming more prominent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本発明は、主成分がPtで構成される電極層とセラミックス層が積層された積層体を有する電気熱量効果素子であって、前記セラミックス層は、ペロブスカイト構造を有し、式:(Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)O[式中、xは、0.01≦x≦0.08を満たし、yは、-0.03≦y≦0.03を満たし、mは、0.97≦m≦1.03を満たす。]で表されるセラミックスを主成分とする電気熱量効果素子を提供する。

Description

電気熱量効果素子
 本開示は、電気熱量効果素子に関する。
 近年、冷却素子として、電気熱量効果を利用する新しい固体冷却素子及び冷却システムが注目されており、その研究開発が盛んに行われている。温室効果ガスである冷媒を使った既存の冷却システムと比較して、冷媒を必要とせず高効率及び低消費電力という利点があり、また、コンプレッサーを使用しないため静かであるという利点もある。優れた電気熱量効果を得るためには、所望の温度域で一次相転移を示し、大きな電界を印加することが可能である強誘電体である必要があり、PbSc0.5Ta0.5(以下、Pb、Sc及びTaを含むセラミックスを「PST」ともいう)が最も有望な材料として知られている。例えば、非特許文献1~3は、PbSc0.5Ta0.5が大きな電気熱量効果を示すことを報告している。
Nature volume 575, pages468-472(2019) Ferroelectrics, 184, 239 (1996) J. Am. Ceram. Soc, 78 [71] 1947-52 (1995)
 上記PSTは、電気熱量効果を示すが、より大きな電気熱量効果を得るために:
(1)耐電圧が高く、大きな電界を印可可能であること、
(2)PSTのBサイトのカチオンであるSc及びTaが高オーダー度を示すこと
が求められる。即ち、電気熱量効果の性能指標の一つである断熱温度変化ΔTは、印可する電界強度に依存するので、セラミックス自体又は素子が高い耐電圧を有していなければ、十分な電界を印可することができず、大きな断熱温度変化を得ることができない。また、電気熱量効果は、PSTのBサイトのオーダー度に影響を受け、Bサイトのオーダー度が高いほど優れた強誘電体特性が得られ、大きな電気熱量効果(断熱温度変化)を得ることができる。
 さらに、上記PSTを固体冷却素子に用いる場合、その用途(例えば、冷蔵庫、冷凍庫等)に応じた温度(例えば、冷蔵庫の4℃以下、冷凍庫の-18℃以下)で大きな電気熱量効果を示すことが求められる。
 しかしながら、従来のPSTは、20℃以上では大きな電気熱量効果を示すが、低温においては著しく電気熱量効果が低下し、固体冷却素子として低温での使用に問題がある。
 従って、本開示は、主成分がPtである電極層とPSTセラミックス層が交互に積層された積層体を有する電気熱量効果素子であって、PSTセラミックス層の耐電圧及びオーダー度が高く、低温で大きな電気熱量効果を示す電気熱量効果素子を提供することを目的とする。
 本発明者らは、鋭意検討した結果、セラミックス層において、ペロブスカイト構造を有し、Pb、Sc及びTaに加え、Naを含むセラミックス:
(Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)O
[式中、
 xは、0.01≦x≦0.08を満たし、
 yは、-0.03≦y≦0.03を満たし、
 mは、0.97≦m≦1.03を満たす。]
で表されるセラミックスを用いることにより、PSTセラミックス層の耐電圧及びオーダー度が高く、低温で大きな電気熱量効果を示す電気熱量効果素子を得ることができることを見出し、本発明を完成するに至った。
 本開示は、以下の態様を含む。
[1] 主成分がPtで構成される電極層とセラミックス層が積層された積層体を有する電気熱量効果素子であって、前記セラミックス層は、ペロブスカイト構造を有し、式:
 (Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)O
[式中、
 xは、0.01≦x≦0.08を満たし、
 yは、-0.03≦y≦0.03を満たし、
 mは、0.97≦m≦1.03を満たす。]
で表されるセラミックスを主成分とする、電気熱量効果素子。
[2] yは0であり、mは1である、上記[1]に記載の電気熱量効果素子。
[3] 前記積層体におけるセラミックス層の厚みは、50μm以下である、上記[1]又は[2]に記載の電気熱量効果素子。
[4] 前記積層体におけるセラミックス層の厚みは、10μm以上50μm以下である、上記[1]~[3]のいずれか1項に記載の電気熱量効果素子。
[5] 上記[1]~[4]のいずれか1項に記載の電気熱量効果素子を有してなる電子部品。
 本発明によれば、PSTセラミックス層の耐電圧及びオーダー度が高く、低温で大きな電気熱量効果を示す電気熱量効果素子を提供することができる。
図1は、本開示の一の実施形態である電気熱量効果素子の概略断面図である。 図2は、電気熱量効果の測定シーケンスを説明するための図である。 図3は、実施例における試料番号1、2及び5の試料の電気熱量効果の測定結果を示す図である。
 以下、本開示の電気熱量効果素子について、図面を参照しながら詳細に説明する。但し、本実施形態の電気熱量効果素子及び各構成要素の形状及び配置等は、図示する例に限定されない。
 本開示の電気熱量効果素子は、Pt電極層とセラミックス層が交互に積層された積層体を有する。
 図1に示すように、本開示の一の実施形態の電気熱量効果素子1は、Pt電極層2a,2b(以下、まとめて「Pt電極層2」ともいう)とセラミックス層4とが交互に積層された積層体6、及びPt電極層2に接続された外部電極8a,8b(以下、まとめて「外部電極8」ともいう)を有する。Pt電極層2a及び2bは、それぞれ、積層体6の端面に配置される外部電極8a及び8bに、電気的に接続されている。外部電極8a及び8bから電圧を印加すると、Pt電極層2a及び2b間に電場が形成される。この電場によりセラミックス層4は電気熱量効果により発熱する。また、電圧が除去されると、電場が消失し、その結果、電気熱量効果によりセラミックス層4は吸熱する。
 上記Pt電極層2は、いわゆる内部電極である。Pt電極層2は、セラミックス層4に電場を与える機能に加え、セラミックス層4と外部との間で熱量を搬送する機能をも有し得る。
 上記Pt電極層は、主成分がPtで構成される電極層を意味する。ここに、上記電極層における「主成分」とは、電極層が80質量%以上のPtからなることを意味し、例えば、電極層の95質量%以上、より好ましくは98質量%以上、さらに好ましくは99%以上、さらにより好ましくは99.5質量%以上、特に好ましくは99.9質量%以上がPtであることを意味する。ただし、本発明の効果は化学耐久性の改善及び/又はコストの観点から、上記Pt電極層は、Ptと他の元素(例えば、Ag、Pd、Rh、Au等)の合金又は混合物であってもよい。上記Pt電極層がこれらの合金又は混合物で構成されても同様の効果を得ることができる。また不純物として混入し得る他の元素、特に不可避な元素(例えば、Fe、Al、など)を含んでいてもよい。この場合も、同様の効果を得ることができる。
 上記Pt電極層2の厚みは、好ましくは0.2μm以上10μm以下、より好ましくは1.0μm以上5.0μm以下、例えば2.0μm以上5.0μm以下又は2.0μm以上4.0μm以下であり得る。Pt電極層の厚みを0.5μm以上とすることにより、Pt電極層の抵抗を小さくすることができ、また、熱輸送効率を上げることができる。また、Pt電極層の厚みを10μm以下とすることにより、セラミックス層の厚み(ひいては体積)を大きくすることができ、素子全体としての電気熱量効果により扱える熱量をより大きくすることができる。また、素子をより小さくすることができる。
 一の態様において、上記セラミックス層4は、Pb、Na、Sc及びTaを含むセラミックスを主成分とする層である。上記セラミックスは、ペロブスカイト構造を有し、Pb、Na、Sc及びTaを含み、Naの含有比率を「x」とした場合に、Pbの含有比率は「1-x」であり、Scの含有比率は「0.5-x/2-y」であり、Taの含有比率は「0.5+x/2-y」であり、xの範囲は0.01≦x≦0.08であり、yの範囲は-0.03≦y≦0.03であり、ScとTaの合計に対するPbとNaの合計の比率を「m」とした場合に、mの範囲は0.97≦m≦1.03である。なお、上記比率はすべてモル比である。上記セラミックス層4を構成するセラミックにおいて、上記の範囲の組成にすることにより、高い耐電圧(例えば、15MV/m以上)、高いBサイトのオーダー度(例えば、75%以上)、低温での大きな電気熱量効果(例えば、1K以上のΔTa)を得ることができる。さらに、アニール処理を行わない場合にも、あるいはアニール処理時間を短くした場合(例えば、100~500時間のアニール処理)にも、高いオーダー度を得ることが可能になり、生産性がより向上する。さらに、素子の厚みを薄くしたとしても、高いオーダー度が得られるようになり、素子設計の自由度が向上する。
 別の態様において、上記セラミックス層4は、ペロブスカイト構造を有し、かつ、式:
 (Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)O
[式中、
 xは、0.01≦x≦0.08を満たし、
 yは、-0.03≦y≦0.03を満たし、
 mは、0.97≦m≦1.03を満たす。]
で表されるセラミックスを主成分とする。x、y及びmを、上記の範囲にすることにより、高い耐電圧(例えば、15MV/m以上)、高いBサイトのオーダー度(例えば、75%以上)、低温での大きな電気熱量効果(例えば、1K以上のΔTa)を得ることができる。
 本開示はいかなる理論にも拘束されないが、上記のような効果が得られるメカニズムは、以下のように考えられる。
 PSTの単板試料に関する従来技術では、PSTが難焼結物質であることから1500℃以上の高い温度で焼成したり(例えば、非特許文献3)、圧力下で焼成できるホットプレス法を用いて焼結性を向上させたりしているが、本開示のような積層型の素子の場合は1450℃以上の温度ではPtの共焼結が困難であり、また、素子構造が壊れるため圧力下での焼成も困難である。従って、積層型の素子の場合は、理想より少し低い温度で焼結が行われている。更にセラミックス層を挟むPt電極層が酸素やPbなどの拡散を妨げることにより、Bサイトを構成するカチオンの拡散係数が低下し高いオーダー度を得ることが困難となっていると推察される。また、同様の理由から、内在する欠陥も残りやすくなり、耐電圧のばらつきが大きくなり易い。本開示で用いられるセラミックスでは、Pbの一部をNaに置換し、さらにPb、Na、Sc及びTaの比率を本開示の組成範囲にすることにより、ペロブスカイトのAサイト及びBサイトともに適度に不均質化がなされ元素の拡散が促進されてBサイトのオーダーが起きやすくなったと推察される。また、元素の拡散が促進されたことにより従来のPSTより焼結が進みやすくなり、耐電圧も向上すると考えられる。
 好ましい態様において、上記yは0であり、mは1である。即ち、(Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)Oで表される式は、(Pb1-xNa)(Sc0.5-x/2Ta0.5+x/2)Oとなる。
 上記セラミックス層4は、1種のセラミックスを主成分としてもよく、2種以上のセラミックスを主成分としてもよい。
 ここに、上記セラミックス層における「主成分」とは、セラミックス層が実質的に対象のセラミックスからなることを意味し、例えば、セラミックス層の90質量%以上、より好ましくは95%以上、さらに好ましくは98質量%以上、さらにより好ましくは99質量%以上、特に好ましくは99.5質量%以上が対象のセラミックスであることを意味する。他の成分としては、パイロクロア構造というペロブスカイト構造とは異なる構造を有する結晶相、不純物として混入する他の元素、特に不可避な元素(例えば、Zr、Cなど)であり得る。
 上記セラミックス層4の組成は、高周波誘導結合プラズマ発光分光分析法、蛍光X線分析法等により求めることができる。また、セラミックス層4の構造は、粉末X線回折により求めることができる。
 上記セラミックス層4の厚みは、好ましくは5μm以上100μm以下、より好ましくは5μm以上50μm以下、さらに好ましくは10μm以上50μm以下、さらにより好ましくは20μm以上50μm以下、特に好ましくは20μm以上40μm以下であり得る。セラミックス層の厚みをより厚くすることにより、素子の取り扱える熱量を大きくすることができる。セラミックス層の厚みをより薄くすることにより、耐電圧を向上でき、より高いΔTを得ることができる。
 上記セラミックス層4のBサイトのオーダー度は、好ましくは75%以上、より好ましくは76%以上、さらに好ましくは77%以上であり得る。Bサイトのオーダー度をより高くすることにより、より大きな電気熱量効果を得ることができる。セラミックス層のBサイトのオーダー度は、高いほど好ましいが、その上限は、例えば、99%以下、90%以下、又は85%以下であってもよい。Bサイトのオーダー度をより低くすることにより、製造時のアニール処理時間を短くすることができ、生産性が向上する。
 上記セラミックス層4のBサイトのオーダー度は、粉末X線回折により、ペロブスカイト構造の111と200回折の強度を測定し、得られた測定値と、Bサイトが完全にオーダーした構造から求めた計算値とから、下記式に基づいて、求めることができる。
Figure JPOXMLDOC01-appb-M000001
[式中、S 111は、オーダー度を表し、
 I111及びI200は、それぞれ、111と200回折の強度を表し、
 observedは、測定値を表し、
 calculatedは、計算値を表す。]
 上記セラミックス層4の耐電圧は、好ましくは15MV/m以上、より好ましくは20MV/m以上、さらに好ましくは25MV/m以上であり得る。セラミックス層の耐電圧をより高くすることにより、より大きな電界が印可可能になり、より大きなΔTを得ることができる。
 一対の外部電極8a,8bを構成する材料としては、特に限定されないが、Ag、Cu、Pt、Ni、Al、Pd、Au、又はこれらの合金(例えば、Ag-Pd等)が挙げられ、それら金属とガラスで構成される電極であっても、金属と樹脂で構成される電極であっても良い。金属は中でも、Agが好ましい。
 上記電気熱量効果素子1は、Pt電極層2とセラミックス層4が、交互に積層されているが、本開示の上記電気熱量効果素子において、Pt電極層及びセラミックス層の積層枚数は特に限定されない。また内部電極はすべて外部電極と接続されていなくてもよく、熱の搬送や圧電、電歪による応力緩和のためなどに必要に応じ、外部電極に接続しない内部電極を含んでも良い。例えば、セラミックス層の積層数の下限は、それぞれ、1以上、好ましくは5以上、例えば10以上又は20以上であってもよい。また、セラミックスの積層数の上限は、数百以下、好ましくは300以下、より好ましくは100以下、例えば50以下であってもよい。
 上記電気熱量効果素子1は、内部電極とセラミック層が、実質的に全面で接触しているが、本開示の電気熱量効果素子はこのような構造に限定されず、セラミック層に電場を印加できる構造であれば特に限定されない。また、電気熱量効果素子1は、直方体のブロック形状であるが、本開示の電気熱量効果素子の形状はこれに限定されず、例えば円筒状、シート状であってもよく、さらに凹凸又は貫通孔等を有していてもよい。また熱の搬送や、外部との熱交換のために表面に内部電極が露出していても良い。
 上記した本実施形態の電気熱量効果素子は、例えば、以下のようにして製造される。
 原料として高純度の酸化鉛(Pb)、酸化タンタル(Ta)、酸化スカンジウム(Sc)及び炭酸ナトリウム(NaCO)を、焼成後に所望の組成比率になるように秤量する。上記の原料を、部分安定化ジルコニア(PSZ)ボール、純水、分散剤等とボールミルで粉砕混合を行う。その後、粉砕混合したスラリーを乾燥、整粒した後に、例えば大気中800℃~900℃の条件で仮焼する。得られた仮焼粉を、PSZボール、エタノール、トルエン、分散剤等と混合し、粉砕する。次いで、得られた粉砕粉に溶解させたバインダー溶液を添加し、混合して、シート成型用のスラリーを作成する。作成したスラリーを、支持体上にシート状に成形し、Pt電極ペーストを印刷する。印刷したシートと印刷していないシートを所望の構造になるように積層したのち、100MPa~200MPaの圧力で圧着し、カットすることでグリーンチップを作成する。グリーンチップは、大気中500℃~600℃で熱処理することで脱バインダー処理を行う。次いで、脱バインダーしたチップを、例えばアルミナ製の密閉さやを用い、Pb雰囲気を作成するためのPbZrO粉と一緒に、1300℃~1500℃で焼成を行う。焼成後、必要に応じて、再度チップとPbZrO粉を約1000℃で所定時間熱処理し、構造の調整を行うことができる。その後、チップの端面をサンドペーパーで磨き、外部電極ペーストを塗布し、所定温度で焼き付け処理を行い、図1に示すような電気熱量効果素子を得ることができる。
 本発明の電気熱量効果素子は、優れた電気熱量効果を示すことから、熱マネジメント素子、特に冷却素子(エアコンなどの空調装置、冷蔵庫、冷凍庫の冷却/ヒートポンプ素子を含む)として用いることができる。
 本開示はまた、本開示の電気熱量効果素子を有して成る電子部品、ならびに本開示の電気熱量効果素子又は電子部品を有して成る電子機器をも提供する。
 電子部品としては、特に限定するものではないが、例えば、空調、冷蔵庫又は冷凍庫に用いられる電子部品;中央処理装置(CPU)、ハードディスク(HDD)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、及び、その他の部品、例えば、リチウムイオンバッテリー、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。
 電子機器としては、特に限定するものではないが、例えば、空調、冷蔵庫又は冷凍庫;携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末、ハードディスクドライブ、データサーバー等の小型電子機器が挙げられる。
<電気熱量効果素子の作製>
 原料として高純度の酸化鉛(Pb)、酸化タンタル(Ta)、酸化スカンジウム(Sc)及び炭酸ナトリウム(NaCO)を準備した。これらの原料を、焼成後に表1~7に示すような所定の組成比率になるように秤量し、直径2mmの部分安定化ジルコニア(PSZ)ボール、純水及び分散剤と、ボールミルで16時間、粉砕混合を行った。その後、粉砕混合したスラリーを、ホットプレートで乾燥し、整粒した後に大気中850℃の条件で2時間仮焼を行った。
 得られた仮焼粉を、直径5mmのPSZボール、エタノール、トルエン及び分散剤と、16時間混合し、粉砕した。次いで、得られた粉砕粉に、溶解させたバインダー溶液を添加し、4時間混合してシート成型用のスラリーを作成した。作成したスラリーを、ドクターブレード法によりペットフィルム上に、所定のセラミックス層の厚みに応じた厚みで、シート状に成形し、短冊カットした後、白金内部電極ペーストをスクリーン印刷した。尚、作製する積層素子のシート厚みは、シート成形時に用いるドクターブレードのギャップを変えることで制御した。
 印刷したシートと印刷していないシートを所定枚数積層した後、150MPaの圧力で圧着し、カットすることでグリーンチップを作成した。グリーンチップは、大気中550℃で24時間熱処理することで脱バインダー処理を行った。次いで、グリーンチップを、アルミナ製の密閉さやに、Pb雰囲気作成用のPbZrO粉と一緒に封入し、1350~1400℃で4時間焼成した。試料番号2のみ、焼成後、再度密閉さやでチップとPbZrO粉を入れて1000℃の温度で1000時間熱処理(アニール処理)を行った。
 その後、チップの端面をサンドペーパーで磨き、Ag外部電極ペーストを塗布し、750℃の温度で焼き付け処理を行い、図1に示すような電気熱量効果素子を得た。
 得られた素子の大きさは、セラミックス層の厚みが40μmである素子については、約L10.2mm×W7.2mm×T0.88であった。また、内部電極層に挟まれたセラミックス層は19層であり、電極面積は49mm/層であり、総電極面積は49mm×19層であった。なお、上記で得られた素子のセラミックス層の厚みは、素子の断面研磨した後、走査電子顕微鏡を用いて確認した。
<評価>
(組成)
 得られた素子のセラミックス組成を、高周波誘導結合プラズマ発光分光分析法、及び蛍光X線分析法を用いて確認した。
[結晶構造及びオーダー度]
(結晶構造)
 得られた素子の結晶構造及びオーダー度(S111)を評価するために、粉末X線回折測定を行った。各ロットから無作為に素子を1つ選び、乳鉢で粉砕してからX線回折プロファイルを取得した。得られたX線回折プロファイルから、セラミックスの結晶構造がペロブスカイト構造であるかを確認し、また、不純物相(主にパイロクロア相)の有無と存在比率を強度比から見積もった。ペロブスカイト構造の存在比が0.9以上の場合を主成分はペロブスカイト構造を有しているとし、0.9より小さい場合は異相があると判断した。
(オーダー度)
 下記計算式から、Bサイトのオーダー度を見積もった。
Figure JPOXMLDOC01-appb-M000002
 上記式中、I111及びI200は、それぞれペロブスカイト構造の111と200回折の強度であり、測定値とBサイトが完全にオーダーした構造から求めた計算値からBサイトのオーダー度を求めた。オーダー度が75%以上を良品とし、Go判定とした。結果を表1~7に示す。
[耐電圧及び電気熱量効果]
 直径50μmの極細K熱電対をカプトンテープで素子表面の中央部に張り付け温度を常時モニターし、外部電極両端にAgペーストで電圧印加用のワイヤーを接着し、高電圧発生装置を用いて電圧を印加した。
(電気熱量効果)
 電気熱量効果は、図2の上段のグラフに示すようなシーケンスで試料に電圧を印加することにより評価した。即ち、まず、試料に電圧を印加し、そのまま電圧を保持し、次いで、印加電圧を除去し、そのまま保持し、この操作を繰り返して、電気熱量効果の変化を測定した。このようなシーケンスで電圧を印加した場合、電圧を印加する工程では、印加と同時に試料温度は上昇し、印加状態を保持する工程では、徐々に熱が拡散されて試料温度は電圧印加前と同じ温度まで低下し、印加電圧を除去する工程では、除去と同時に試料温度は低下し、非印加状態を保持する工程では、試料温度は徐々に元の温度まで上昇する。これは電圧印加、除去により強誘電体ドメインが揃ったり乱れたりすることに由来し、エントロピーが変化することでこのような吸発熱効果(電気熱量効果)が得られる。断熱温度変化ΔTは、上記のような電圧を印加及び除去した際の温度変化から求められる。具体的には、本実施例においては、15MV/mの電圧印加後に50秒間印加した状態で保持して温度を測定し、次いで、電圧除去後に50秒間印加なしの状態で保持して温度を測定した。このシーケンスを3回繰り返した。電圧印加及び電圧除去のシーケンス中は、常時素子の温度を測定し、その温度変化から断熱温度変化ΔTを求めた(本実施例では電圧を印加した際の温度変化、即ち、温度の上昇度をΔTとした)。この測定を、-90℃から160℃の温度範囲で行った。代表として、試料番号1、2及び5の結果を図3に示す。また、-5℃及び0℃における断熱温度変化ΔTが、それぞれ1.5K以上及び1K以上のものをGo判定とした。結果を表1及び表3~7に示す。
(耐電圧)
 積層数を変えずにセラミックスの素子厚みのみを変え、耐電圧を測定した。耐電圧は上記電気熱量効果の測定と同様に電圧を素子に印可しその際の絶縁破壊の発生の有無について調べた。具体的には印可する電圧を10MV/mから5MV/mステップで大きくしていき、絶縁破壊が発生した電圧の一つ手前の電界強度を耐電圧と規定した。結果を表2に示す。
 以下、上記の評価結果を示す。なお、表中「*」を付した試料は比較例であり、その他の試料は実施例である。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
(オーダー度とアニール処理の関係)
 表1に示されるように、従来のPSTセラミックスであるPbSc0.5Ta0.5の組成を有する試料番号1及び2の試料では、アニール処理を行っていない試料番号1のオーダー度は0.63であったのに対し、1000時間アニール処理を行った試料番号2ではオーダー度が0.82と改善した。かかる結果から、PSTセラミックスのオーダー度は熱処理時間に強く依存し、高いオーダー度を得るためには1000時間という長時間の熱処理が必要であることが確認された。なお、上記では示していないが、従来のPSTセラミックスを用いたPt内部電極を有する積層体素子では、オーダー度は作製ロット間でばらつく問題がある。
 一方、本発明の範囲内である試料番号3~6は、アニール処理を行わなくてもオーダー度が0.75を上回る。即ち、本発明の範囲内である試料は、長時間の熱処理を行わなくても高いオーダー度を得ることができる。これは、極めて生産性が高いことを意味する。なお、上記では示していないが、比較的短い300時間のアニール処理をすることで、さらに高いオーダー度、例えば0.80を超えるオーダー度を得ることもできる。
(電気熱量効果と温度の関係)
 電気熱量効果と温度との関係を示した図3に示されるように、本発明の範囲外である試料番号1及び2の試料は、20~30℃付近で断熱温度変化が極大となり、0℃付近では小さくなっている。これは、従来のPbSc0.5Ta0.5の組成を有する試料では、強誘電体温度転移が0~15℃付近にあり、その転移温度以上で大きな断熱温度変化が実現されることに由来する。この転移温度はオーダー度が低くなると低温にシフトするため、オーダー度の低い試料番号1の試料の方が、0℃で高い断熱温度変化を示す。一方、本発明の範囲内である試料番号5の試料は、断熱温度変化の最大値は、試料番号1及び2の試料よりも小さいが、広い温度範囲にわたってピークがブロードであり、-10℃付近で極大となり、0℃及び-10℃といった低温では、試料番号1及び2よりも大きな断熱温度変化を実現できた。これは、強誘電体転移温度を低温側に制御できたこと、アニール処理なしで高いオーダー度を実現できたためであると考えられる。
(耐電圧とセラミックス層の厚みの関係)
 表2に示されるように、本発明の範囲内である試料番号8~13のすべての試料で、15MV/m以上の耐電圧を実現できた。特に、セラミックス層の厚みを50μm以下、特に20μm以上50μm以下にした場合に、より高い耐電圧を示すことが確認された。これは、本発明に用いられるセラミックスの耐電圧は、BaTOと比較すると低い傾向にあり、焼成時にPbなどの欠損により欠陥が残りやすい可能性があり、この残留した欠陥が耐電圧に影響していると考えられる。従って、セラミックス層の厚みが薄くなると、その分存在する欠陥の絶対数が少なくなること、あるいはセラミックスの焼結挙動が変化しそれにより欠陥数が減ったことによるものと推察される。ただし、セラミックス層の厚みが薄くなりすぎると、セラミックス自体の欠陥以上に、構造欠陥(例えば、内部電極の平滑性等)が支配的になり、耐電圧が少し低下すると考えられる。
(セラミックスの組成範囲)
 表3~7に示されるように、本発明の範囲内と範囲外の組成で、結晶構造、オーダー度、断熱温度変化を比較すると、本発明の範囲内の試料は、アニール処理を行わなくても75%以上のBサイトオーダー度を実現でき、さらに0℃及び-10℃で、それぞれ1.5K及び1K以上の断熱温度変化を実現できることが確認された。本発明の範囲外の試料では、異相が多く出たり、オーダー度が不十分であったり、特に-10℃での断熱温度変化が小さく(1K未満)となった。
 なお、上記の効果は、例えばNaの代わりにKやLaなどを用いた場合には得ることはできなかった。
 本開示の電気熱量効果素子は、高い電気熱量効果を発現することができるので、例えば、空調、冷蔵庫又は冷凍庫などにおける熱マネジメント素子として用いることができ、また、種々の電子機器、例えば、熱対策問題が顕著化している携帯電話などの小型電子機器の冷却デバイスとして利用することができる。
  1…電気熱量効果素子
  2a,2b…Pt電極層
  4…セラミックス層
  6…積層体
  8a,8b…外部電極

Claims (5)

  1.  主成分がPtで構成される電極層とセラミックス層が積層された積層体を有する電気熱量効果素子であって、前記セラミックス層は、ペロブスカイト構造を有し、式:
     (Pb1-xNa(Sc0.5-x/2-yTa0.5+x/2+y)O
    [式中、
     xは、0.01≦x≦0.08を満たし、
     yは、-0.03≦y≦0.03を満たし、
     mは、0.97≦m≦1.03を満たす。]
    で表されるセラミックスを主成分とする、電気熱量効果素子。
  2.  yは0であり、mは1である、請求項1に記載の電気熱量効果素子。
  3.  前記積層体におけるセラミックス層の厚みは、50μm以下である、請求項1又は2に記載の電気熱量効果素子。
  4.  前記積層体におけるセラミックス層の厚みは、10μm以上50μm以下である、請求項1~3のいずれか1項に記載の電気熱量効果素子。
  5.  請求項1~4のいずれか1項に記載の電気熱量効果素子を有してなる電子部品。
PCT/JP2021/041202 2020-11-10 2021-11-09 電気熱量効果素子 WO2022102617A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022561937A JP7439954B2 (ja) 2020-11-10 2021-11-09 電気熱量効果素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020187259 2020-11-10
JP2020-187259 2020-11-10

Publications (1)

Publication Number Publication Date
WO2022102617A1 true WO2022102617A1 (ja) 2022-05-19

Family

ID=81601172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041202 WO2022102617A1 (ja) 2020-11-10 2021-11-09 電気熱量効果素子

Country Status (2)

Country Link
JP (1) JP7439954B2 (ja)
WO (1) WO2022102617A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194700A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 冷却デバイス
JP2017110838A (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 熱搬送デバイス
JP2017117910A (ja) * 2015-12-24 2017-06-29 ダイハツ工業株式会社 発電材料、発電素子および発電システム
WO2021131142A1 (ja) * 2019-12-23 2021-07-01 株式会社村田製作所 電気熱量効果素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016194700A1 (ja) * 2015-06-04 2016-12-08 株式会社村田製作所 冷却デバイス
JP2017110838A (ja) * 2015-12-15 2017-06-22 株式会社村田製作所 熱搬送デバイス
JP2017117910A (ja) * 2015-12-24 2017-06-29 ダイハツ工業株式会社 発電材料、発電素子および発電システム
WO2021131142A1 (ja) * 2019-12-23 2021-07-01 株式会社村田製作所 電気熱量効果素子

Also Published As

Publication number Publication date
JPWO2022102617A1 (ja) 2022-05-19
JP7439954B2 (ja) 2024-02-28

Similar Documents

Publication Publication Date Title
JP7272467B2 (ja) 電気熱量効果素子
JP4400754B2 (ja) 圧電体磁器組成物、及び圧電セラミック電子部品
JP5862983B2 (ja) 圧電セラミック電子部品、及び圧電セラミック電子部品の製造方法
JP5714819B2 (ja) 圧電磁器組成物及びこれを用いた圧電素子
CN105849836A (zh) 层叠型陶瓷电子部件
JPWO2006117990A1 (ja) 圧電体磁器組成物、及び該圧電体磁器組成物の製造方法、並びに圧電セラミック電子部品
US8194392B2 (en) Ceramic material and electronic device
US8035474B2 (en) Semi-conductive ceramic material and NTC thermistor using the same
EP2610233B1 (en) Piezoelectric ceramic and piezoelectric device
CN110330332B (zh) 一种无烧结助剂低温烧结压电陶瓷材料及其制备方法
EP2138473B1 (en) Piezoelectric ceramic composition and piezoelectric device
Gurdal et al. Low temperature co-fired multilayer piezoelectric transformers for high power applications
CN113582689B (zh) 一种用于叠层致动器低温共烧压电陶瓷材料及其制备方法
JP6693113B2 (ja) 熱搬送デバイス
WO2022102617A1 (ja) 電気熱量効果素子
WO2023190437A1 (ja) セラミックス
WO2014156301A1 (ja) 誘電体磁器組成物、および誘電体素子
WO2023190558A1 (ja) セラミックス
JP4462438B2 (ja) 圧電磁器組成物、積層型圧電素子及び積層型圧電素子の製造方法
CN112334432A (zh) 陶瓷构件及电子元件
EP2871649B1 (en) Dielectric composition, dielectric film, and electronic component
CN108610040A (zh) 一种降低钛锡酸钡体系在还原气氛下介电损耗的方法
WO2017135030A1 (ja) 磁気組成物
JP2022013670A (ja) セラミック電子部品
JP2003277142A (ja) 圧電セラミックスおよび圧電アクチュエータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21891863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022561937

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21891863

Country of ref document: EP

Kind code of ref document: A1