WO2017135030A1 - 磁気組成物 - Google Patents

磁気組成物 Download PDF

Info

Publication number
WO2017135030A1
WO2017135030A1 PCT/JP2017/001463 JP2017001463W WO2017135030A1 WO 2017135030 A1 WO2017135030 A1 WO 2017135030A1 JP 2017001463 W JP2017001463 W JP 2017001463W WO 2017135030 A1 WO2017135030 A1 WO 2017135030A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
magnetic composition
heat transfer
transfer device
present
Prior art date
Application number
PCT/JP2017/001463
Other languages
English (en)
French (fr)
Inventor
智靖 薄井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2017565461A priority Critical patent/JP6424972B2/ja
Publication of WO2017135030A1 publication Critical patent/WO2017135030A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • C04B35/488Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Definitions

  • the present invention relates to a magnetic composition, specifically a magnetic composition exhibiting an electrocaloric effect, and a heat transfer device using the same.
  • Non-Patent Document 1 reports Pb 0.8 Ba 0.2 ZrO 3 as a material having an electrocaloric effect (hereinafter also referred to as “EC effect”).
  • this Pb 0.8 Ba 0.2 ZrO 3 is formed into a thin film by a sol-gel method, and the EC effect is measured.
  • the Pb 0.8 Ba 0.2 ZrO 3 thin film described in Non-Patent Document 1 exhibits a large EC effect at 290 K near room temperature.
  • the electrocaloric effect is an endothermic phenomenon caused by a change in entropy when the electric dipole moment in a substance is aligned or disturbed by a change in electric field.
  • a large electronic device can obtain a sufficient cooling effect by the air-conditioning equipment as described above, but has a problem that power consumption is very high due to a very large power consumption.
  • the present inventor has focused on the above-mentioned electrocaloric effect and has come to consider using a magnetic composition such as a Pb—Ba—Zr composite oxide exhibiting this electrocaloric effect for a heat transport device. In this phenomenon, a control voltage is required.
  • the above complex oxide is a highly insulating ferroelectric material, power consumption is very low, power cost is low, and even small portable devices with limited power capacity are used. It can be used.
  • Non-Patent Document 1 when the magnetic composition as described in Non-Patent Document 1 is used for thermal management of a large-sized electronic device such as a server that needs to handle a larger amount of heat, a higher electric field is applied to the magnetic composition, which is higher. It is necessary to obtain an EC effect.
  • the magnetic composition as described in Non-Patent Document 1 has a problem that leakage current may occur when a high voltage is applied. This problem is particularly noticeable in a high-temperature environment because the magnetic composition generally decreases in insulation properties as the temperature rises.
  • An object of the present invention is to provide a magnetic composition exhibiting a large electrocaloric effect and having a high insulating property, and a heat transfer device using this magnetic composition.
  • the present inventor prepared a specific amount of Pb in the Pb—Ba—Zr composite oxide, and further, trivalent, pentavalent, or hexavalent.
  • the present inventors have found that a magnetic composition exhibiting a large electrocaloric effect and having a high insulating property can be obtained by doping the above metal.
  • the following formula 100 ⁇ (Pb (1-x ) y Ba x) ZrO 3 ⁇ ⁇ ⁇ M1 [Wherein M1 is at least one element selected from La, Bi, V, Nb, Ta, Sb, Mo and W; x is 0.15 or more and 0.30 or less, y is 0.94 or more and 1.01 or less, ⁇ is 0.1 or more and 1.0 or less. ]
  • M1 is at least one element selected from La, Bi, V, Nb, Ta, Sb, Mo and W; x is 0.15 or more and 0.30 or less, y is 0.94 or more and 1.01 or less, ⁇ is 0.1 or more and 1.0 or less.
  • the magnetic composition which has as a main component the complex oxide represented by these is provided.
  • a heat transfer device comprising at least two electrodes and a dielectric portion made of the magnetic composition located between the electrodes.
  • an electronic component having the above heat transfer device.
  • an electronic apparatus having the above heat transfer device or the above electronic component.
  • a magnetic composition having a specific composition such as 100 ⁇ (Pb (1-x) y Ba x ) ZrO 3 ⁇ . ⁇ M1
  • M1 is at least one selected from La, Bi, V, Nb, Ta, Sb, Mo and W
  • x is 0.15 or more and 0.30 or less
  • y is 0.94 or more and 1.01 or less
  • is 0.1 or more and 1.0 or less.
  • FIG. 1 is a schematic cross-sectional view of a heat transfer device according to the first embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of a heat transfer device according to the second embodiment of the present invention.
  • FIG. 3 is a temperature- ⁇ T diagram (10 MV / m) for samples 95 and 101 in the example.
  • the magnetic composition of the present invention contains a composite oxide represented by the following formula as a main component. 100 ⁇ (Pb (1-x ) y Ba x) ZrO 3 ⁇ ⁇ ⁇ M1
  • main component means a component that is contained most in the magnetic composition, for example, a component that is contained by 50% by mass or more.
  • the main component is 80% by mass or more, preferably 90% by mass or more, more preferably 95% by mass or more, even more preferably 98% by mass or more, for example, a component contained in 98.0 to 99.8% by mass, or It means a component that is substantially 100% contained.
  • y is greater than 1.00 and 1.01 or less, preferably 1.001 or more and 1.010 or less, for example 1.005 or more and 1.010 or less.
  • the magnetic composition of the present invention is a composite oxide containing Pb, Ba, Zr and M2, M2 is at least one selected from La, Bi, V, Nb, Ta, Sb, Mo and W;
  • the content mole part of Ba with respect to Zr100 mole part is p mole part,
  • the molar content of Pb with respect to 100 mol of Zr is q mol, p is 15 or more and 30 or less, q is (100 ⁇ p) ⁇ r (wherein r is 0.94 or more and 1.01 or less)
  • the main component is a magnetic composition containing as a main component a composite oxide, wherein the M2 molar content relative to 100 mol of Zr is 0.1 mol part or more and 1.0 mol part or less.
  • the composite oxide may correspond to the formula 100 ⁇ (Pb (1-x ) y Ba x) ZrO 3 ⁇ composite oxide represented by ⁇ Arufaemu1 described above.
  • r is greater than 1.00 and 1.01 or less, preferably 1.001 or more and 1.010 or less, for example 1.005 or more and 1.010 or less.
  • the content mole part of M2 with respect to Zr100 mole part is 0.1 or more and 1.0 or less, preferably 0.5 or more and 1.0 or less.
  • the above complex oxide of the present invention exhibits an EC effect that generates heat when an electric field is applied and absorbs heat when the electric field is removed.
  • the above complex oxide may be a perovskite type.
  • the magnetic composition of the present invention exhibits high insulation properties, for example, 1 ⁇ 10 8 ⁇ ⁇ cm or more, 1 ⁇ 10 14 ⁇ ⁇ cm or less, preferably 1 ⁇ 10 9 ⁇ ⁇ cm or more, 1 ⁇ 10 12 ⁇ or more. It has a specific resistance of not more than cm, more preferably not less than 1 ⁇ 10 9 ⁇ ⁇ cm and not more than 1 ⁇ 10 11 ⁇ ⁇ cm.
  • the magnetic composition of the present invention exhibits a ⁇ T of 0.7 K or more, preferably 1.0 K or more when an electric field of 20 MV / m is applied.
  • the shape of the dielectric portion 6 is not particularly limited, and can be formed into, for example, a sheet shape, a block shape, and other various shapes.
  • the molding method is not particularly limited, and compression, sintering, or the like can be used. Moreover, you may mix and shape
  • the material constituting the electrodes 2 and 4 is not particularly limited, and examples thereof include Ag, Cu, Pt, Ni, Al, Pd, Au, and alloys thereof (for example, Ag—Pd). Among these, Pt, Ag, Pd, or Ag—Pd is preferable.
  • the shape of the electrodes 2 and 4 is not particularly limited, but a shape that covers the entire surface of the dielectric portion 6 is preferable from the viewpoint of heat transfer.
  • the magnetic composition of the present invention exhibits a very high insulating property. Therefore, the dielectric layer of the heat transfer device of the present invention has a high withstand voltage, and a high voltage can be applied between the electrodes, so that the change in electric field can be increased. As a result, it becomes possible to increase the temperature change ( ⁇ T) due to the change of the electric field.
  • a heat transfer device 1b as shown in FIG.
  • the plurality of internal electrodes 12a and 12b and the plurality of dielectric portions 14 are alternately stacked.
  • the internal electrodes 12a and 12b are electrically connected to external electrodes 16a and 16b disposed on the end face of the heat transfer device 1b, respectively.
  • an electric field is formed between the internal electrodes 14a and 14b. Due to this electric field, the dielectric portion 14 generates heat.
  • the dielectric portion 14 absorbs heat.
  • the laminated dielectric parts 14 may all have the same composition, or one or more dielectric parts having different compositions may be laminated.
  • the electrode and the dielectric portion are substantially in contact with each other, but the present invention is not limited to such a structure, and an electric field can be applied to the dielectric portion. Any structure can be used.
  • the heat transfer devices 1a and 1b have a rectangular parallelepiped block shape, but the shape of the heat transfer device of the present invention is not limited thereto, and may be, for example, a cylindrical shape or a sheet shape. Etc. may be included.
  • the heat transfer device of the present invention absorbs heat generated by the heat source mainly when the electric field is released and absorbs heat, or when the temperature of the heat transfer device decreases due to this heat absorption.
  • the heat transfer device of the present invention releases absorbed heat to the outside mainly when an electric field is applied to dissipate heat. Therefore, the heat transfer device of the present invention can be used as a cooling device.
  • the present invention also provides an electronic component having the heat transfer device of the present invention and an electronic apparatus having the heat transfer device or electronic component of the present invention.
  • the electronic device is not particularly limited, and examples thereof include a mobile phone, a smartphone, a personal computer (PC), a tablet terminal, a hard disk drive, and a data server.
  • the Ta 2 O 5 raw material was weighed so as to have the composition shown in the following table, and pulverized and mixed with partially stabilized zirconia (PSZ) balls. After drying, it was calcined at 1000 ° C. for 4 hours, and an organic solvent and a binder were added to the calcined powder and pulverized and mixed to form a slurry. A green sheet (thickness: 40 ⁇ m) was formed from the obtained slurry by a doctor blade method.
  • PSZ partially stabilized zirconia
  • a Pt paste was screen printed on the green sheet.
  • the green sheet on which the Pt paste was printed was pressure-bonded so as to have a layer structure as shown in FIG. 2, stacked, and then cut to produce a green chip (5 mm ⁇ 7 mm ⁇ 0.5 mm).
  • the judgment criteria are as follows. When the following (a) to (c) were satisfied, it was determined as “G”, and when none was satisfied, it was determined as “NG”.
  • “ ⁇ ” indicates that Joule heat is generated, and “ ⁇ ” indicates that measurement is not performed.
  • FIG. 3 shows a temperature- ⁇ T diagram when measured by.
  • samples within the scope of the present invention have high insulation and large ⁇ T at operating temperatures suitable for use in electronic equipment, and can maintain insulation even in an electric field of 30 MV / m. confirmed.
  • ⁇ T when an electric field of 20 MV / m is applied is 1.0 K or more, and it has been confirmed that the characteristics are further improved.
  • FIG. 3 it was confirmed that the sample 101 of the present invention doped with M1 has an overall ⁇ T higher than that of the sample 95 not doped with M1, and has a wide usable area.
  • the heat transfer device of the present invention can be used as a cooling device for various electronic devices, for example, small electronic devices such as mobile phones in which the problem of countermeasures against heat has become prominent.

Abstract

本発明は、100{(Pb(1-x)yBa)ZrO}・αM1[式中、M1は、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種であり、xは、0.15以上0.34以下であり、yは、0.94以上1.02以下であり、αは、0.1以上1.9以下である。]で表される複合酸化物を主成分とする磁気組成物を提供する。

Description

磁気組成物
 本発明は、磁気組成物、具体的には電気熱量効果を示す磁気組成物およびそれを利用した熱搬送デバイスに関する。
 近年、小型携帯機器(スマートフォン、タブレットPC)、さらにはデータサーバー等の電子機器においては、中央処理装置(CPU)やハードディスク(HDD)等の発熱による、機器のパフォーマンスの低下、電子機器の寿命の短命化、故障といった問題が顕在化している。このような問題に対しては、電子機器における熱マネージメントが重要である。しかしながら、スマートフォン等の小型電子機器では、その電源容量が小さく、また、大きな冷却デバイスを設置可能なスペースを有していない。したがって、このような小型電子機器では、現状、温度の制御は、筺体を介する放熱による手段しかなく、熱源と筺体をサーマルシートなどで熱結合し熱を逃がしている。一方、サーバーなどの大型電子機器では、電源容量およびスペースが十分にあるので、エアコンディショナーなどの空調設備、ペルチェ式冷却デバイス等が用いられている。
 一方、非特許文献1は、電気熱量効果(Electrocaloric effect:以下、「EC効果」ともいう)を奏する材料として、Pb0.8Ba0.2ZrOを報告している。非特許文献1では、このPb0.8Ba0.2ZrOをゾル-ゲル法により薄膜状に形成し、EC効果の測定を行っている。その結果、非特許文献1に記載のPb0.8Ba0.2ZrO薄膜は、室温近傍の290Kで大きなEC効果を示すことが記載されている。尚、電気熱量効果とは、電場の変化によって物質内の電気双極子モーメントが揃うまたは乱れる際のエントロピーの変化に起因する吸発熱現象である。
A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0.2ZrO3 Thin Film at Room Temperature, Biaolin Peng, Huiqing Fan, and Qi Zhang, Advanced Functional Materials, Volume 23, Issue 23, pages 2987-2992, June 20, 2013
 小型電子機器において、上記のような筺体を介する放熱は、筺体の表面積が限られていることから限界がある。したがって、各熱源の温度を測定し、温度が所定の温度以上になった場合に、CPUなどのパフォーマンスを制限する(発熱自体を抑制する)ことで対応している。即ち、筺体の温度上昇が、CPU等のパフォーマンスの妨げになっていることがある。
 また、大型電子機器では、上記のような空調設備等により十分な冷却効果を得ることはできるが、消費電力が非常に大きいため熱マネージメントのために電力コストがかかる問題がある。
 そこで、本発明者は、上記の電気熱量効果に着目し、この電気熱量効果を示すPb-Ba-Zr複合酸化物のような磁気組成物を熱搬送デバイスに利用することに思い至った。本現象では制御電圧が必要であるが、上記複合酸化物は、絶縁性の高い強誘電体であるために消費電力は非常に小さく、電力コストが低く、電源容量の限られた小型携帯機器でも使用可能である。
 一方、非特許文献1に記載のような磁気組成物を、より大きな熱量を取り扱う必要があるサーバーなどの大型電子機器の熱マネージメントに用いる場合、より高い電場を磁気組成物に印加し、より高いEC効果を得る必要がある。しかしながら、非特許文献1に記載のような磁気組成物は、高い電圧を印加するとリーク電流が生じ得るという問題がある。磁気組成物は、一般に温度が上昇すると絶縁性が低下することから、この問題は特に高温環境下において顕著である。
 本発明の目的は、大きな電気熱量効果を示し、かつ、絶縁性の高い磁気組成物、およびこの磁気組成物を用いた熱搬送デバイスを提供することを目的とする。
 本発明者は、上記の課題を解決するために鋭意検討した結果、Pb-Ba-Zr複合酸化物において、Pbの含有量を特定の量に調製し、さらに、3価、5価または6価の金属をドープすることにより、大きな電気熱量効果を示し、かつ絶縁性の高い磁気組成物が得られることを見出し、本発明に至った。
 本発明の第1の要旨によれば、下記式:
  100{(Pb(1-x)yBa)ZrO}・αM1
[式中、M1は、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種の元素であり、
 xは、0.15以上0.30以下であり、
 yは、0.94以上1.01以下であり、
 αは、0.1以上1.0以下である。]
で表される複合酸化物を主成分とする磁気組成物が提供される。
 本発明の第2の要旨によれば、Pb、Ba、ZrおよびM2を含む複合酸化物であって、
 M2が、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種の元素であり、
 Zr100モル部に対するBaの含有モル部がpモル部であり、
 Zr100モル部に対するPbの含有モル部がqモル部であり、
 pが15以上30以下であり、
 qが、(100-p)×r(式中、rは、0.94以上1.01以下である)であり、
 Zr100モル部に対するM2の含有モル部が、0.1モル部以上1.0モル部以下である
ことを特徴とする複合酸化物を主成分とする磁気組成物が提供される。
 本発明の第3の要旨によれば、少なくとも2つの電極と、電極の間に位置する上記の磁気組成物から構成される誘電体部とを有して成る熱搬送デバイスが提供される。
 本発明の第4の要旨によれば、上記の熱搬送デバイスを有してなる電子部品が提供される。
 本発明の第5の要旨によれば、上記の熱搬送デバイスまたは上記の電子部品を有してなる電子機器が提供される。
 本発明によれば、特定の組成を有する磁気組成物、例えば
   100{(Pb(1-x)yBa)ZrO}・αM1
[式中、M1は、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種であり、
 xは、0.15以上0.30以下であり、
 yは、0.94以上1.01以下であり、
 αは、0.1以上1.0以下である。]
で示される材料を用いることにより、電気熱量効果が大きく、絶縁性が高い磁気組成物を提供することができる。
図1は、本発明の第1の実施形態における熱搬送デバイスの概略断面図である。 図2は、本発明の第2の実施形態における熱搬送デバイスの概略断面図である。 図3は、実施例における試料95および101についての温度-ΔT図(10MV/m)である。
 以下、本発明の磁気組成物について説明する。
 一の態様において、本発明の磁気組成物は、下記式で表される複合酸化物を主成分とする。
   100{(Pb(1-x)yBa)ZrO}・αM1
 上記「主成分」とは、磁気組成物中に最も多く含まれる成分を意味し、例えば、50質量%以上含まれる成分を意味する。特に、主成分とは80質量%以上、好ましくは90質量%以上、より好ましくは95質量%以上、さらにより好ましくは98質量%以上、例えば98.0~99.8質量%含まれる成分、あるいは実質的に100%含まれる成分を意味する。
 上記式中、xは、0.15以上0.30以下であり、好ましくは0.20以上0.30以下であり、より好ましくは0.20以上0.25以下である。このような範囲のx値とすることにより、より大きな絶縁性およびEC効果を得ることができる。また、xの値を変化させることにより、電場の変化による温度変化(以下、「ΔT」ともいう)がピーク値を示す温度を調整することができる。
 上記式中、yは、0.94以上1.01以下である。
 一の態様において、yは、0.94以上1.00未満であり、例えば0.94以上0.999以下、0.95以上0.999以下、0.965以上0.999以下、または0.98以上0.99以下であり得る。yを1.00未満とすることにより、粒成長が起こりにくく、緻密な磁気組成物が得られ、絶縁性が向上し、より大きな電場を印加することが可能になる。
 別の態様において、yは、1.00よりも大きく1.01以下であり、好ましくは、1.001以上1.010以下、例えば1.005以上1.010以下であり得る。yを1.00より大きくすることにより、ΔTの値をより大きくすることができる。
 上記式中、M1は、少なくとも1種のドープ元素であり、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される。これらのドープ元素のうち、LaおよびBiは、3価(即ち、La3+およびBi3+)、V、Nb、TaおよびSbは、5価(即ち、V5+、Nb5+、Ta5+およびSb5+)であり、MoおよびWは6価(即ち、Mo6+およびW6+)である。
 上記式中、αは、0.1以上1.0以下であり、好ましくは0.5以上1.0以下である。αを0.1以上1.0以下の範囲とすることにより、複合酸化物の絶縁性が向上する。
 一の態様において、本発明の磁気組成物は、Pb、Ba、ZrおよびM2を含む複合酸化物であって、
 M2が、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種であり、
 Zr100モル部に対するBaの含有モル部がpモル部であり、
 Zr100モル部に対するPbの含有モル部がqモル部であり、
 pが15以上30以下であり、
 qが、(100-p)×r(式中、rは、0.94以上1.01以下である)であり、
 Zr100モル部に対するM2の含有モル部が、0.1モル部以上1.0モル部以下である
ことを特徴とする複合酸化物を主成分とする磁気組成物を主成分とする。当該複合酸化物は、上記した式100{(Pb(1-x)yBa)ZrO}・αM1で表される複合酸化物に対応し得る。
 上記式中、pは、15以上30以下であり、好ましくは20以上30以下であり、より好ましくは20以上25以下である。pをこのような範囲とすることにより、より大きな絶縁性およびEC効果を得ることができる。また、pの値を変化させることにより、ΔTがピーク値を示す温度を調整することができる。
 一の態様において、rは、0.94以上1.00未満であり、例えば0.94以上0.999以下、0.95以上0.999以下、0.965以上0.999以下、または0.98以上0.99以下であり得る。rを1.00未満とすることにより、粒成長が起こりにくく、緻密な磁気組成物が得られ、絶縁性が向上し、より大きな電場を印加することが可能になる。
 別の態様において、rは、1.00よりも大きく1.01以下であり、好ましくは、1.001以上1.010以下、例えば1.005以上1.010以下であり得る。rを1.00より大きくすることにより、ΔTの値をより大きくすることができる。
 上記式中、M2は、少なくとも1種のドープ元素であり、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される。これらのドープ元素のうち、LaおよびBiは、3価(即ち、La3+およびBi3+)、5価(即ち、V5+、Nb5+、Ta5+およびSb5+)であり、MoおよびWは6価(即ち、Mo6+およびW6+)である。
 Zr100モル部に対するM2の含有モル部は、0.1以上1.0以下であり、好ましくは0.5以上1.0以下である。Zr100モル部に対するM2の含有モル部を0.1以上1.0以下の範囲とすることにより、複合酸化物の絶縁性が向上する。
 上記の本発明の複合酸化物は、電場を印加した場合に発熱し、除去した場合に吸熱するEC効果を示す。
 上記の複合酸化物は、ペロブスカイト型であり得る。
 本発明の磁気組成物は、M1またはM2を有することにより、比較的広い鉛組成領域(即ち、比較的広範囲のyまたはr)で大きなEC効果を示す。本発明は、いかなる理論にも拘束されないが、その理由は以下のように考えられる。Pbを含むペロブスカイト構造を持つ強誘電体セラミックスでは、焼成中にPbOの高い蒸気圧によりセラミックスのPbが揮発することで焼成後の最終組成においてPbの欠損がおきると考えられる。高温でのEC特性はこのPbの欠損に影響を受けやすく、有効なEC効果が得られる鉛組成領域が非常に狭くなると考えられる。本発明においては、ドナーとなるイオン(M1またはM2)が添加されているので、このPb欠損のEC効果への影響が、小さくなっていると考えられる。
 一の態様において、本発明の磁気組成物の平均粒径は、好ましくは0.5μm以上、より好ましくは0.5μm以上10μm以下、さらに好ましくは1μm以上5μm以下であり得る。このような粒径を有することにより、誘電体部の耐電圧、電気熱量効果をより大きくすることができる。上記平均粒径は、電子走査顕微鏡を用いて測定することができる。
 本発明の磁気組成物は、特に323K~453K(50℃~180℃)において、大きなEC効果を示す。また、本発明の磁気組成物は、非常に高い絶縁性を示す。即ち、高い電圧を印加することができる。従って、本発明の磁気組成物を用いることにより、高い電気熱量効果を得ることができる。
 大きなEC効果を示す温度範囲は、Pb-Ba-Zr複合酸化物におけるPbおよびBaの含有量、特にBaの含有量を変更することにより、調整することができる。
 本発明の磁気組成物は、高い絶縁性を示し、例えば、1×10Ω・cm以上、1×1014Ω・cm以下、好ましくは1×10Ω・cm以上、1×1012Ω・cm以下、より好ましくは1×10Ω・cm以上、1×1011Ω・cm以下の比抵抗を有する。
 本発明の磁気組成物は、20MV/mの電場を印加した場合、0.7K以上、好ましくは1.0K以上のΔTを示す。
 本発明の磁気組成物は、30MV/mの電場を印加した場合、1.0K以上、好ましくは1.5K以上、より好ましくは2.0K以上のΔTを示す。
 本発明の磁気組成物は、20MV/m以上、好ましくは30MV/m以上の耐電圧を示す。
 本発明の磁気組成物は、例えば、Pb、Ba、ZrおよびM1またはM2の酸化物または塩を混合し、焼成することにより得ることができる。Pb、Ba、ZrおよびM1またはM2が所定の割合となるように混合し、焼成の際、雰囲気中のPb濃度を調整することにより、得られる複合酸化物中のPb含有量を調整することができる。
 次に、本発明の熱搬送デバイスについて、図面を参照しながら説明する。但し、下記する実施形態の熱搬送デバイスおよび各構成要素の形状および配置等は、図示する例に限定されない。
 図1に示すように、本発明の第1の実施形態の熱搬送デバイス1aは、一対の電極2,4と、該一対の電極の間に位置する本発明の磁気組成物から構成される誘電体部6とを有して成る。電極2,4間に電圧が印加されると、誘電体部6に電場が印加される。その結果、誘電体部6は発熱する。また、電極2,4間の電圧が除去されると、誘電体部6に印加された電場が消失する。その結果、誘電体部6は吸熱する。
 誘電体部6の形状は、特に限定されず、例えばシート状、ブロック状、その他種々の形状に成形することができる。成形方法は、特に限定されず、圧縮、焼結等を用いることができる。また、樹脂またはガラス等のバインダーと混合して成形してもよい。
 電極2,4を構成する材料としては、特に限定されないが、Ag、Cu、Pt、Ni、Al、Pd、Au、またはこれらの合金(例えば、Ag-Pd等)が挙げられる。中でも、Pt、Ag、PdまたはAg-Pdが好ましい。
 電極2,4は、誘電体部に電場を与える機能に加え、誘電体部の熱量を搬送する機能をも有し得る。従って、熱搬送の観点からは、電極を構成する材料は、熱伝導率が高い材料、例えばAgが好ましい。
 電極2,4の形状は、特に限定されないが、熱搬送の観点からは、誘電体部6の一の表面全体を覆うような形状が好ましい。
 本発明の熱搬送デバイスは、特に323K~453K(50℃~180℃)において、大きなEC効果を示す材料から構成される誘電体部を用いている。従って、本発明の熱搬送デバイスは、発熱時の温度が323K~453Kであるスマートフォン、タブレットPC、およびデータサーバー等の電子機器において、熱搬送デバイス、代表的には冷却デバイスとして好適に用いることができる。
 上記したように、本発明の磁気組成物は、非常に高い絶縁性を示す。従って、本発明の熱搬送デバイスの誘電体層は、耐電圧が高く、電極間に高い電圧を印加することができるので、電場の変化を大きくすることができる。その結果、電場の変化による温度変化(ΔT)を大きくすることが可能になる。
 以上、本発明の第1の実施形態における熱搬送デバイスを説明したが、本発明は、上記の実施態様に限定されるものではなく、種々の改変が可能である。
 例えば、図2に示すような熱搬送デバイス1bとすることができる。本発明の第2の実施形態の熱搬送デバイス1bにおいて、複数の内部電極12a,12bと、複数の誘電体部14が交互に積層されている。内部電極12aおよび12bは、それぞれ、熱搬送デバイス1bの端面に配置される外部電極16aおよび16bに、電気的に接続されている。外部電極16aおよび16bから電圧を印加すると、内部電極14aおよび14b間に電場が形成される。この電場により誘電体部14は発熱する。また、電圧が除去されると、電場が消失し、その結果、誘電体部14は吸熱する。
 一の態様において、積層される誘電体部14は、すべて同じ組成であってもよく、異なる組成を有する1またはそれ以上誘電体部を積層してもよい。
 このような構造とすることにより、誘電体部14により強い電場を印加することが可能になり、より大きなΔTを得ることができる。また、内部電極が、誘電体部内部への熱の伝搬経路としても機能することから、効率のよい熱マネージメントを可能にする。
 以上で説明した熱搬送デバイス1aおよび1bは、電極と誘電体部が、実質的に全面で接触しているが、本発明はこのような構造に限定されず、誘電体部に電場を印加できる構造であればよい。また、熱搬送デバイス1aおよび1bは、直方体のブロック状であるが、本発明の熱搬送デバイスの形状はこれに限定されず、例えば円筒状、シート状であってもよく、さらに凹凸または貫通孔等を有していてもよい。
 本発明の熱搬送デバイスは、主に電場が解除されて吸熱する際に、またはこの吸熱により熱搬送デバイスの温度が低下した際に、発熱源で生じた熱を吸収する。また、本発明の熱搬送デバイスは、主に電場が印加されて放熱する際に、吸収した熱を外部に放出する。従って、本発明の熱搬送デバイスは、冷却デバイスとして利用することができる。
 本発明はまた、本発明の熱搬送デバイスを有して成る電子部品、ならびに本発明の熱搬送デバイスまたは電子部品を有して成る電子機器をも提供する。
 電子部品としては、特に限定するものではないが、例えば、中央処理装置(CPU)、ハードディスク(HDD)、パワーマネージメントIC(PMIC)、パワーアンプ(PA)、トランシーバーIC、ボルテージレギュレータ(VR)などの集積回路(IC)、発光ダイオード(LED)、白熱電球、半導体レーザーなどの発光素子、電界効果トランジスタ(FET)などの熱源となり得る部品、および、その他の部品、例えば、リチウムイオンバッテリー、基板、ヒートシンク、筐体等の電子機器に一般的に用いられる部品が挙げられる。
 電子機器としては、特に限定するものではないが、例えば、携帯電話、スマートフォン、パーソナルコンピュータ(PC)、タブレット型端末、ハードディスクドライブ、データサーバー等が挙げられる。
・熱搬送デバイスの調製
 100{(Pb(1-x)yBa)ZrO}・αM1で表される複合酸化物の調製において、Pb、BaCO、ZrOおよびNbまたはTa原料を、下記表の組成となるように秤量し、部分安定化ジルコニア(PSZ:Partial Stabilized Zirconia)ボールとともに粉砕混合を行った。乾燥後、1000℃で4時間仮焼し、仮焼後の粉体に有機溶剤とバインダーを加えて粉砕混合することでスラリーを形成した。得られたスラリーから、ドクターブレード法により、グリーンシート(厚み40μm)を形成した。このグリーンシート上に、Ptペーストをスクリーン印刷した。Ptペーストを印刷したグリーンシートを、図2のような層構造となるように圧着して、積層し、その後カットして、グリーンチップ(5mm×7mm×0.5mm)を作製した。
 グリーンチップ(2g)を、450℃~550℃で脱脂した後、アルミナ密閉鞘に10gのPbZrO粉末とともに封入し、1300℃で4時間焼成して、積層体チップを作製した。得られた積層体チップの両端にAgペーストを塗布し、焼き付けを行い、外部電極を形成して、図2に示す構造を有する試料(熱搬送デバイス)を製造した。尚、試料の組成は、ICP(誘導結合プラズマ発光分光分析)およびXRF(蛍光X線測定)を併用して確認した。
(評価)
・電気熱量効果の評価(ΔT評価)
 極細熱電対を試料に直接はりつけ、電場印加時・除去時の温度変化(ΔT)を測定した。結果を下記表に示す。
・動作温度
 上記で測定したΔTの値が最大となる温度を動作温度として決定した。結果を下記表に示す。
 判定基準は下記の通りである。
 下記(a)~(c)を満たす場合、「G」と判定し、1つでも満たさない場合、「NG」と判定した。
(a)ΔTが最大となる温度が、50℃~180℃の範囲にある。
(b)20MV/mの電場印加が可能で、かつ、ΔTが0.7Kより大きい。
(c)30MV/mの電場が印加可能である。
 また、「×」は、ジュール熱が生じたことを示し、「-」は、測定していないことを示す。
 代表として、xが0.3であり、yが0.97であり、M1がNbであり、αが0.1である試料番号101およびM1を含まない試料番号95を、10MV/mの電場で測定した場合の、温度-ΔT図を図3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 上記の結果から、本発明の範囲にある試料は、電子機器での利用に適した動作温度において、高い絶縁性と、大きなΔTを有し、30MV/mの電場でも絶縁性を維持することが確認された。特に、xが0.25以下である場合、20MV/mの電場印加でのΔTが1.0K以上であり、より特性が向上することが確認された。また、図3に示されるように、M1をドープした本発明の試料101は、M1をドープしていない試料95よりもΔTが全体的に高く、使用可能領域が広いことが確認された。
 本発明の熱搬送デバイスは、種々の電子機器、例えば、熱対策問題が顕著化している携帯電話などの小型電子機器の冷却デバイスとして利用することができる。
  1a,1b…熱搬送デバイス
  2,4…電極
  6…誘電体部
  12a,12b…内部電極
  14…誘電体部
  16a,16b…外部電極

Claims (11)

  1.  下記式:
      100{(Pb(1-x)yBa)ZrO}・αM1
    [式中、M1は、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種であり、
     xは、0.15以上0.30以下であり、
     yは、0.94以上1.01以下であり、
     αは、0.1以上1.0以下である。]
    で表される複合酸化物を主成分とする磁気組成物。
  2.  M1が、NbおよびTaから選択される少なくとも1種であることを特徴とする、請求項1に記載の磁気組成物。
  3.  yが、0.965以上0.999以下であることを特徴とする、請求項1または2に記載の磁気組成物。
  4.  Pb、Ba、ZrおよびM2を含む複合酸化物であって、
     M2が、La、Bi、V、Nb、Ta、Sb、MoおよびWから選択される少なくとも1種であり、
     Zr100モル部に対するBaの含有モル部がpモル部であり、
     Zr100モル部に対するPbの含有モル部がqモル部であり、
     pが15以上30以下であり、
     qが、(100-p)×r(式中、rは、0.94以上1.01以下である)であり、
     Zr100モル部に対するM2の含有モル部が、0.1モル部以上1.0モル部以下である
    ことを特徴とする複合酸化物を主成分とする磁気組成物。
  5.  M2が、NbおよびTaから選択される少なくとも1種であることを特徴とする、請求項4に記載の磁気組成物。
  6.  rが、0.965以上0.999以下であることを特徴とする、請求項4または5に記載の磁気組成物。
  7.  少なくとも2つの電極と、電極の間に位置する請求項1~6のいずれか1項に記載の磁気組成物から構成される誘電体部とを有して成る熱搬送デバイス。
  8.  複数の電極と、複数の誘電体部とが交互に積層されていることを特徴とする、請求項7に記載の熱搬送デバイス。
  9.  冷却デバイスである、請求項7または8に記載の熱搬送デバイス。
  10.  請求項7~9のいずれか1項に記載の熱搬送デバイスを有してなる電子部品。
  11.  請求項7~9のいずれか1項に記載の熱搬送デバイスまたは請求項10に記載の電子部品を有してなる電子機器。
PCT/JP2017/001463 2016-02-05 2017-01-18 磁気組成物 WO2017135030A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017565461A JP6424972B2 (ja) 2016-02-05 2017-01-18 磁気組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016021133 2016-02-05
JP2016-021133 2016-02-05

Publications (1)

Publication Number Publication Date
WO2017135030A1 true WO2017135030A1 (ja) 2017-08-10

Family

ID=59499564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001463 WO2017135030A1 (ja) 2016-02-05 2017-01-18 磁気組成物

Country Status (2)

Country Link
JP (1) JP6424972B2 (ja)
WO (1) WO2017135030A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379299A (en) * 1976-12-24 1978-07-13 Nippon Telegr & Teleph Corp <Ntt> Porcelain composition of high inductivity
JPH05190376A (ja) * 1991-07-19 1993-07-30 Toshiba Corp セラミックコンデンサ
JP2015094552A (ja) * 2013-11-13 2015-05-18 株式会社デンソー 冷却装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5379299A (en) * 1976-12-24 1978-07-13 Nippon Telegr & Teleph Corp <Ntt> Porcelain composition of high inductivity
JPH05190376A (ja) * 1991-07-19 1993-07-30 Toshiba Corp セラミックコンデンサ
JP2015094552A (ja) * 2013-11-13 2015-05-18 株式会社デンソー 冷却装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BARBARA FRAYGOLA ET AL.: "Effects of Nb doping in lead barium zirconate ceramics", 2013 JOINT UFFC, EFTF AND PFM SYMPOSIUM, February 2014 (2014-02-01), pages 89 - 92, XP032571839 *
BIAOLIN PENG ET AL.: "A Giant Electrocaloric Effect in Nanoscale Antiferroelectric and Ferroelectric Phases Coexisting in a Relaxor Pb0.8Ba0. 2Zr03 Thin Film at Room Temperature", ADVANCED FUNCTIONAL MATERIALS, vol. 23, January 2013 (2013-01-01), pages 2987 - 2992 *
CHENG-LUNG HUNG ET AL.: "Effects of Nb doping on highly fatigue-resistant thin films of (Pb0.8Ba0.2)Zr03 for ferroelectric memory application", JOURNAL OF CRYSTAL GROWTH, vol. 274, no. 3-4, February 2005 (2005-02-01), pages 402 - 406, XP029032727 *
XIHONG HAO ET AL.: "Enhanced dielectric properties of lead barium zirconate thin films by manganese doping", APPLIED SURFACE SCIENCE, vol. 256, March 2010 (2010-03-01), pages 4902 - 4905, XP027014784 *

Also Published As

Publication number Publication date
JP6424972B2 (ja) 2018-11-21
JPWO2017135030A1 (ja) 2018-12-13

Similar Documents

Publication Publication Date Title
JP7272467B2 (ja) 電気熱量効果素子
TW200839814A (en) Dielectric ceramic composition and electronic device
Groh et al. High‐temperature multilayer ceramic capacitors based on 100− x (94Bi1/2Na1/2TiO3–6BaTiO3)–xK0. 5Na0. 5NbO3
WO2016194700A1 (ja) 冷却デバイス
JP5781715B1 (ja) 全固体型キャパシタ
Zeng et al. Impedance spectroscopy and piezoelectric property of LiF-doped PZN–PZT low-temperature sintering piezoelectric ceramics
JP6693113B2 (ja) 熱搬送デバイス
WO2015033691A1 (ja) 冷却デバイス
JP6414636B2 (ja) 冷却デバイス
WO2015033690A1 (ja) 冷却デバイス
WO2017135030A1 (ja) 磁気組成物
WO2016006338A1 (ja) 複合体および冷却デバイス
JP5605432B2 (ja) 半導体セラミックおよび抵抗素子
JP6784322B2 (ja) 複合酸化物
US10544061B2 (en) Vanadium dioxide
JP6791350B2 (ja) 複合酸化物
JP7439954B2 (ja) 電気熱量効果素子
WO2015033688A1 (ja) 冷却デバイス
WO2015033687A1 (ja) 冷却デバイス
JP6772878B2 (ja) 熱マネジメント方法
WO2015033689A1 (ja) 冷却デバイス
WO2023190558A1 (ja) セラミックス
WO2023190437A1 (ja) セラミックス
KR102200952B1 (ko) 방열칩 및 이의 제조 방법
JP2015076573A (ja) 全固体型電気二重層コンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747191

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2017565461

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747191

Country of ref document: EP

Kind code of ref document: A1