WO2015033688A1 - 冷却デバイス - Google Patents

冷却デバイス Download PDF

Info

Publication number
WO2015033688A1
WO2015033688A1 PCT/JP2014/069473 JP2014069473W WO2015033688A1 WO 2015033688 A1 WO2015033688 A1 WO 2015033688A1 JP 2014069473 W JP2014069473 W JP 2014069473W WO 2015033688 A1 WO2015033688 A1 WO 2015033688A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling device
ceramic material
heat
temperature
metal particles
Prior art date
Application number
PCT/JP2014/069473
Other languages
English (en)
French (fr)
Inventor
廣瀬 左京
竹島 裕
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2015033688A1 publication Critical patent/WO2015033688A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/04Constructions of heat-exchange apparatus characterised by the selection of particular materials of ceramic; of concrete; of natural stone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a cooling device.
  • a cooling device that combines a heat sink and a fan or Peltier element as described above makes the device relatively large and consumes power, making the device smaller and thinner, and lower power consumption (battery life). It is disadvantageous from the point of view. Therefore, development of a cooling device that can be used without a power source and is small is strongly desired.
  • a heat storage material that utilizes latent heat associated with electronic phase transition is known as a heat storage material that does not require electric power (Patent Document 2).
  • latent heat is the total amount of thermal energy required when the phase of a substance changes, and generally refers to the amount of heat absorbed and exothermed with the change of phase.
  • heat storage is to store heat, and cold insulation is to keep the temperature of the object low, and cooling means to lower the temperature of the object.
  • Such a material absorbs heat only in the vicinity of the object in contact with the object to be cooled, and it is clear that the entire cooling device cannot absorb heat and cannot fully utilize the capacity of the cooling device. It was. Therefore, although it can be used in an application in which the space insulated by the heat storage effect is kept for a long time, the temperature rises in a spike shape (steep) when sudden processing is performed like a CPU, for example. It has been found difficult to cool such things efficiently.
  • an object of the present invention is to provide a cooling device that does not require electric power, can be reduced in thickness and size, and has high efficiency and high response.
  • the present inventors have found that the above problems can be solved by combining a ceramic material that absorbs latent heat associated with a crystal structure phase transition or a magnetic phase transition, and metal particles.
  • the present invention has been reached.
  • a cooling device comprising a ceramic material that absorbs heat and metal particles.
  • a combination of a ceramic material that absorbs latent heat associated with a crystal structure phase transition or a magnetic phase transition, and metal particles can be reduced in thickness and size, and without using power, efficiency can be reduced.
  • a cooling object can be cooled well, can cope with a sudden increase in temperature of the cooling object, and a highly durable cooling device is provided.
  • FIG. 1 shows the results of differential scanning calorimetry in an experimental example.
  • FIG. 2 shows the temperature measurement result of the cooling test in the experimental example.
  • FIG. 3 is a schematic diagram for explaining the result of the cooling test in the experimental example.
  • 4 (a) is a schematic cross-sectional view of the cooling device of Examples 1 to 5
  • FIG. 4 (b) is a schematic cross-sectional view of the cooling device of Example 6
  • FIG. 4 (c) is a package. It is a schematic sectional drawing of the cooling device of Example 1 at the time of carrying out.
  • cooling refers to lowering the temperature of the object to be cooled by absorbing heat generated in the object to be cooled, and absorbing the heat generated around the object to be cooled to heat the object to be cooled. Both prevent it from being done.
  • the temperatures related to latent heat and phase transition such as “temperature indicating latent heat” and “temperature for phase transition” mean the temperature indicating latent heat at the time of temperature rise and the temperature at which the phase transition at the time of temperature rise, unless otherwise specified. To do.
  • the temperature which shows a latent heat, and the temperature which changes a phase mean substantially the same temperature.
  • the cooling device of the present invention includes a ceramic material that absorbs heat (hereinafter, also simply referred to as “ceramic material”).
  • the ceramic material absorbs heat by absorbing latent heat.
  • the latent heat means latent heat accompanying a solid-solid phase transition, such as a crystal structure phase transition or a magnetic phase transition. Using the latent heat accompanying the phase transition of the ceramic material, the heat generated in the object to be cooled or the heat generated around the object to be cooled is absorbed to cool the object to be cooled.
  • the ceramic material is not particularly limited, and a known ceramic material that undergoes phase transition at a desired temperature can be used. A person skilled in the art can select an appropriate ceramic material according to the desired phase transition temperature, application, and the like.
  • the temperature at which the ceramic material undergoes phase transition is appropriately selected according to the object to be cooled, the purpose of cooling, and the like.
  • the phase transition should be performed at 30 to 100 ° C., preferably 40 to 60 ° C. Is preferred.
  • the ceramic material is not particularly limited, for example, ceramic material described in Patent Document 2, specifically, VO 2, LiMn 2 O 4 , LiVS 2, LiVO 2, NaNiO 2, LiRh 2 O 4, V 2 O 3, V 4 O 7, V 6 O 11, Ti 4 O 7, SmBaFe 2 O 5, EuBaFe 2 O 5, GdBaFe 2 O 5, TbBaFe 2 O 5, DyBaFe 2 O 5, HoBaFe 2 O 5, YBaFe 2 O 5 , PrBaCo 2 O 5.5 , DyBaCo 2 O 5.54 , HoBaCo 2 O 5.48 , YBaCo 2 O 5.49 , A y VO 2 (wherein A is Li or Na, 0.1 ⁇ y ⁇ 2.0, preferably 0.5 ⁇ y ⁇ 1.0), V 1-x M x O 2 ( where, M is, W, Ta, Mo, N A Ru or Re, 0 ⁇ x ⁇ 0.2, preferably cited is 0 ⁇ x
  • the ceramic material used in the cooling device of the present invention is an oxide containing vanadium V and M (where M is at least one selected from W, Ta, Mo and Nb),
  • M is at least one selected from W, Ta, Mo and Nb
  • the molar content of M is about 0 mol parts or more and about 5 mol parts or less. Note that M is not an essential component, and the content molar part of M may be 0.
  • the ceramic material used in the cooling device of the present invention is an oxide containing A (here, A is Li or Na) and vanadium V, where V is 100 mole parts.
  • a mole content of A is from about 50 mole parts to about 100 mole parts.
  • the ceramic material used in the cooling device of the present invention has a composition formula: V 1-x M x O 2 (Wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05) Or the composition formula: A y VO 2 (Wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0)
  • V 1-x M x O 2 wherein, M is W, Ta, Mo or Nb, 0 ⁇ x ⁇ 0.05
  • a y VO 2 wherein, A is Li or Na, 0.5 ⁇ y ⁇ 1.0
  • the ceramic material used in the cooling device of the present invention has a composition formula: V 1-x W x O 2 (Where 0 ⁇ x ⁇ 0.05) The substance shown by is included as a main component.
  • the main component means a component contained in the ceramic material by 50% by mass or more, particularly 60% by mass or more, preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 98% by mass. For example, it means 98.0 to 99.8% by mass.
  • Other components include VO x having a different oxygen content from VO 2 .
  • the ceramic material used in the present invention preferably has a latent heat amount of 5 J / g or more, more preferably 20 J / g or more.
  • a large amount of latent heat By having a large amount of latent heat, a large cooling effect can be exhibited with a smaller volume, which is advantageous in terms of miniaturization.
  • the ceramic material may be in the form of particles (powder).
  • particles powder
  • the occurrence of cracks can be suppressed even when repeated phase transitions that are a problem in the sintered body element clarified by the inventors, and the durability of the cooling device is high. Become.
  • the particle size of the ceramic material particles is not particularly limited.
  • the average particle size is 0.2 to 50 ⁇ m, preferably 0.5 to 50 ⁇ m.
  • Such an average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or an electronic scanning microscope.
  • the average particle system is preferably 0.5 ⁇ m or more from the viewpoint of ease of handling, and is preferably 10 ⁇ m or less from the viewpoint of reducing the porosity between particles.
  • the ceramic material two or more kinds of ceramic materials having different temperatures showing the latent heat at the time of temperature rise (or at the time of temperature fall), that is, the phase transition temperature can be used.
  • These ceramic materials are preferably laminated in order of increasing temperature showing latent heat, and the lower layer (layer having a high temperature showing latent heat) is preferably arranged on the cooling object side.
  • the ceramic material absorbs latent heat, it uses heat energy for phase transition, so that it is difficult to transfer heat to others.
  • the upper layer absorbs heat early (at a lower temperature) and completes the phase transition, resulting in a high overall device.
  • the temperature indicating the latent heat of the ceramic material that is, the temperature at which the ceramic material undergoes phase transition can be adjusted by the amount of the element to be added (dope).
  • a ceramic material has a composition formula: V 1-x W x O 2 When x is 0.005, the phase transition occurs at about 50 ° C., and when x is 0.01, the phase transition occurs at about 40 ° C.
  • the cooling device of the present invention includes metal particles. Since the metal particles have higher thermal conductivity than the ceramic material, the heat of the object to be cooled can be efficiently transmitted to a wide area of the cooling device by using the metal particles. In this case, a powder obtained by coating a ceramic particle with a metal using a chemical or physical method may be used.
  • the metal particles are dispersed therein.
  • the metal particles exist as a mixture of the ceramic material particles and the metal particles, and the ceramic material forms a layer. In some cases, it may be included in that layer and may be present in all layers or in some layers.
  • the metal particles are not particularly limited, but are not particularly limited, and examples thereof include particles made of tin, nickel, copper, aluminum, and the like. These metal particles may be used alone or in combination of two or more metal particles. Preferred metal particles are tin, silver, or copper particles.
  • the particle size of the metal particles (powder) is not particularly limited.
  • the average particle size is 0.5 to 100 ⁇ m, preferably 1 to 50 ⁇ m.
  • Such an average particle diameter can be measured using a laser diffraction / scattering soot particle diameter / particle size distribution measuring apparatus or a scanning electron microscope.
  • the average particle system is preferably 1 ⁇ m or more from the viewpoint of ease of handling, and is preferably 50 ⁇ m or less from the viewpoint of reducing the porosity between particles.
  • the mixing ratio of the ceramic material and the metal particles is not particularly limited.
  • the volume ratio is 8: 2 to 2: 8, preferably 6: 4 to 3: 7.
  • the volume ratio between the ceramic material and the metal particles can be obtained by measuring the respective weights and calculating the volume from the theoretical density.
  • the thermal conductivity inside the cooling device can be improved, and the cooling efficiency can be increased.
  • the strength of the cooling device after molding can be increased.
  • the amount of heat that can be absorbed can be increased by increasing the proportion of the ceramic material.
  • the cooling device of the present invention may further contain a resin.
  • a resin By including a resin in the cooling device, flexibility can be given and strength can be increased.
  • the resin is not particularly limited, and examples thereof include acrylic resin, epoxy, polyester, silicon, polyurethane, polyethylene, polypropylene, polystyrene, nylon, polycarbonate, and polybutylene terephthalate.
  • the content of the resin is not particularly limited, but is preferably equal to or more than an amount capable of filling a gap between particles (including metal particles and ceramic material particles, if present). 10 to 60 parts by volume is preferable with respect to a total of 100 parts by volume of the metal particles.
  • the cooling device of the present invention may have a heat conducting portion made of a material having a higher thermal conductivity than the ceramic material (hereinafter also referred to as “high heat conducting material”).
  • the heat conducting unit has a function of efficiently transferring heat generated in the object to be cooled to a wide area of the cooling device.
  • the high thermal conductivity material is not particularly limited as long as it has a higher thermal conductivity than the ceramic material, but includes metal materials, resins, nitrides such as AlN, and oxides such as Al 2 O 3 , A metal material is preferable.
  • the metal material is not particularly limited, and examples thereof include tin, nickel, copper, bismuth, silver, iron, aluminum, and alloys containing them. This metal material may be the same metal as the metal particles or may be different. A metal material may be used independently or may be used in combination of 2 or more types of metal materials.
  • the shape and arrangement of the heat conduction part are not particularly limited as long as the heat generated in the object to be cooled can be efficiently transmitted to a wide area of the cooling device.
  • the heat conducting part has a contact part with the object to be cooled, and is arranged so as to contact the ceramic material at a position away from the contact part.
  • the heat conducting part is disposed so as to surround the periphery of the cooling device, that is, can be disposed so as to package the ceramic material and the metal particles.
  • the cooling device of the present invention may have elasticity.
  • the cooling device can be fixed more easily and stably by being sandwiched between other members.
  • the method for imparting elasticity to the cooling device of the present invention is not particularly limited, and examples thereof include a method of containing a resin.
  • the shape of the cooling device of the present invention is not particularly limited, and may be, for example, a block shape or a sheet shape.
  • the entire volume is increased and more heat can be absorbed. If necessary, the surface of the device may be roughened to increase the surface area.
  • the cooling device By making the cooling device into a sheet shape, the surface area increases, so it becomes easier to release the absorbed heat to the outside. Moreover, when it is set as a sheet form, the softness
  • the manufacturing method of the cooling device of the present invention is not particularly limited, and can be obtained, for example, by mixing powder of ceramic material and metal particles and compression molding. If desired, the metal particles may be sintered by heat treatment after compression molding.
  • the resin may be mixed with a ceramic material and metal particles and molded, or a cooling device obtained after the molding may be impregnated with the resin.
  • the cooling device of the present invention can be molded into a desired shape and can also be given flexibility, it can function as a cooling device and can also be used as another member such as a substrate, a case, or a cushioning material. Can be used.
  • V 2 O 3 Vanadium trioxide
  • V 2 O 5 vanadium pentoxide
  • WO 3 tungsten oxide
  • V: W: O It weighed so that it might become 0.995: 0.005: 2 (molar ratio), and it dry-mixed. Thereafter, heat treatment was performed at 1000 ° C. for 4 hours in a nitrogen / hydrogen / water atmosphere, and V 0.995 W 0.005 O 2 (0.5 at% W-doped VO 2 ) powder (average particle size: about 20 ⁇ m) as a ceramic material. ) was prepared.
  • pure water, partially stabilized zirconium (PSZ) balls, a dispersant (manufactured by San Nopco: SN5468) and the ceramic material powder obtained above are added to a polypot and pulverized and mixed for 24 hours.
  • a powder having an average particle size of about 3 ⁇ m was added, and thereafter an acrylic binder, a plasticizer and an antifoaming agent were added and mixed again for 2 hours to obtain a sheet forming slurry.
  • a sheet forming slurry was formed into a sheet to produce a green sheet, then cut into strips, and a ceramic single plate was produced by a crimping process.
  • This ceramic single plate is subjected to a degreasing treatment in the atmosphere at 300 ° C., and then sintered by heat treatment at 1000 ° C. for 4 hours in a nitrogen / hydrogen / water atmosphere to obtain a size of 20 mm ⁇ 20 mm ⁇ 5 mm.
  • a ceramic single plate cooling device was fabricated.
  • Cooling test As a heating element, a PTC (positive temperature coefficient) heater with an ultimate temperature of about 60 ° C is used, heat conduction grease is applied to the surface of the PTC heater, and an ultra-fine K thermocouple is applied to make the above.
  • the sintered ceramic single plate cooling device was pressed and fixed. Furthermore, an ultrafine K thermocouple was attached to the upper surface of the cooling device (the surface opposite to the surface in contact with the PTC heater).
  • the heat conductive grease was apply
  • the surface (contact surface) temperature of the PTC heater is slightly lowered by using the sintered ceramic single plate cooling device as compared with the case where this cooling device is not used.
  • the temperature of the upper surface of the cooling device has a large temperature difference from the contact surface and does not sufficiently contribute to heat absorption.
  • the heat of the PTC heater 4 is transmitted to the lower part of the sintered ceramic single plate 2 in contact with the PTC heater 4 (the x part in FIG. 3). It is thought that the cause is that the amount of heat transferred from the ceramic material of the x part to the y part is reduced while the heat required for the heat absorption is absorbed.
  • the cooling effect is seen for a while after the PTC heater is energized, but after 400 seconds, the cooling effect is hardly seen even though the temperature of the upper surface of the cooling device is low, and the merit of using the cooling device is small. It was confirmed.
  • Examples 1 to 5 The ceramic material powder and Sn powder (average particle size: about 30 ⁇ m) obtained in the same manner as in the above experimental example were weighed so as to have the ratio shown in Table 1 below, and dry-mixed with iron cored Teflon balls. . Next, the obtained mixture (composite material of ceramic material and Sn powder) was formed into a disk shape having a diameter of 20 mm and a thickness of 5 mm by press molding, and composite cooling devices of Examples 1 to 5 were manufactured.
  • FIG. 4 (a) schematically shows a schematic cross-sectional view of the composite cooling device of Examples 1 to 5 (in the figure, the ratio of the ceramic material to the metal material is equal for convenience, but in practice, (The ratio is shown in Table 1).
  • Example 6 A disc-shaped composite cooling device was produced in the same manner as in Example 1. Next, Struers cold embedding resin # 100 (unsaturated polyester, styrene resin) was applied by vacuum impregnation and impregnated in vacuum for 10 minutes to fill the voids of the composite cooling device. A composite cooling device was fabricated. In FIG.4 (b), the schematic sectional drawing of the composite cooling device of Example 6 is shown typically.
  • Comparative Example 1 A cooling device was produced using only the ceramic material powder obtained in the same manner as in the above experimental example. Since compression molding could not be performed with the ceramic material powder alone, sintering was performed in the same manner as in the experimental example to obtain a cube-shaped cooling device having the same thickness and volume as in Examples 1-5.
  • the cooling device obtained above was evaluated by the following cooling test and heat cycle test.
  • the cooling device of Example 1 was low in strength and could not be evaluated as follows.
  • the cooling device of Example 1 also has sufficient strength by, for example, being impregnated with a resin (Example 6), sintered with metal particles, and packaged with a high thermal conductive material (FIG. 4C). It can be a cooling device.
  • Cooling test A PTC heater with an ultimate temperature of about 70 ° C. was used as a heating element, and heat conduction grease was applied to the heater surface, and an ultra-fine K thermocouple was attached, from which Examples 2 to 6 and Comparative Example 1 were applied. The cooling device was pressed and fixed. For reference, an extra fine K thermocouple was attached to the surface of the heater without a cooling device.
  • the rated current was applied to the PTC heater for 10 minutes using a DC power source, the temperature of the heater surface at that time was measured, and the cooling effect was evaluated.
  • the results are shown in Table 2.
  • the temperature drop of the surface of the PTC heater is 5 ° C or higher compared to the temperature when the cooling device is not used (57 ° C).
  • The case of less than 3 ° C was evaluated as x.
  • the cooling device of Comparative Example 1 that does not contain metal (Sn) powder and sinters the ceramic material has a high cooling effect when experimented with a higher temperature heater (attainable temperature is 80 ° C.).
  • attainable temperature is 80 ° C.
  • the temperature difference from room temperature becomes small as a result of evaluation under a condition where the ultimate temperature is about 60 ° C.
  • the cooling effect is small due to the effect of heat transfer, and a number of cracks are confirmed after the heat cycle test, and repeated resistance Was found to be low.
  • the reason for the cracks is considered to be that stress is generated at the grain boundaries due to the change in crystal structure of VO 2 during the phase transition.
  • the cooling devices of Examples 2 to 4 have high repetition resistance in addition to a high cooling effect.
  • the cooling device of Example 5 had a slightly lower cooling effect than Examples 2 to 4, but it was confirmed that the repeated resistance was similarly high.
  • the reason why the cooling effect of the cooling device of Example 5 is low is considered to be due to the low content of the ceramic material. For example, it is considered that a sufficient cooling effect can be obtained by increasing the volume of the cooling device. .
  • the cooling device of Example 1 has a low content of metal particles and is uneasy about strength only by compression molding, but it can be made sufficiently strong by impregnating the resin as in Example 6. In addition, a high cooling effect and a high resistance to repetition could be achieved.
  • the cooling device of the present invention can be used, for example, as a cooling device for a small communication terminal in which a thermal countermeasure problem has become prominent.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Thermal Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

 本発明は、電力を必要とせず、薄型化・小型化が可能であり、かつ、高効率かつ高応答の冷却デバイスを提供する。本発明の冷却デバイスは、潜熱を有するセラミックス材料と金属粒子とを含んで成る。

Description

冷却デバイス
 本発明は、冷却デバイスに関する。
 近年、小型通信機器の進歩により薄くて軽いスマートフォンやタブレット型端末が広く普及し始めている。このような機器においてもパーソナルコンピューターと同様に高性能化が進められ、それに伴いCPUなどの発熱に関する問題が顕著化しており、機器の内部温度を、より高度に制御することが求められている。このような課題に対しては、従来からヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置が知られている(特許文献1を参照)。
特開2010-223497号公報 特開2010-163510号公報
 上記のようなヒートシンクとファンまたはペルチェ素子を組み合わせた冷却装置は、機器が比較的大きくなり、また、電力を消費するので、機器の小型化・薄型化、および低消費電力(バッテリーの持ち時間)の観点から不利である。したがって、無電源で使用可能で、かつ小型な冷却デバイスの開発が強く望まれている。
 一方、電力を必要としない蓄熱材として電子相転移に伴う潜熱を利用する蓄熱材が知られている(特許文献2)。ここで潜熱とは、物質の相が変化するときに必要とされる熱エネルギーの総量であり、一般的に相の変化に伴う吸発熱量の事をいう。蓄熱とはその名の通り熱を蓄えることであり、保冷とは対象物の温度を低い状態に保つことであり、冷却とは対象物の温度を下げることを意味する。本発明者の検討の結果、このような材料を用いることにより、蓄熱、保冷効果に加え、冷却したい対象物(例えば、CPU)を冷却する効果を一応得ることができることが確認されたが、このような材料は、冷却対象物に接している近傍の部分だけで熱を吸収し、冷却デバイス全体で熱を吸収することができず冷却デバイスの能力を最大限利用できていないことが明らかになった。したがって、蓄熱効果により断熱された空間を長時間にわたって保冷する用途では使用することができるが、例えば、CPUのように、突発的な処理を行った際にスパイク状(急峻)に温度が上昇するようなものの冷却を効率よく行うことは難しいことが見出された。
 したがって、本発明の目的は、電力を必要とせず、薄型化・小型化が可能であり、高効率かつ高応答の冷却デバイスを提供することにある。
 本発明者は、上記問題を解消すべく鋭意検討した結果、結晶構造相転移や磁気相転移等に伴う潜熱を吸収するセラミックス材料、および金属粒子を組み合わせることにより、上記の問題を解決できることを見出し、本発明に至った。
 本発明の要旨によれば、熱を吸収するセラミックス材料および金属粒子を含んで成る冷却デバイスが提供される。
 本発明によれば、結晶構造相転移や磁気相転移等に伴う潜熱を吸収するセラミックス材料と、金属粒子とを組み合わせることにより、薄型化・小型化が可能であり、電力を用いることなく、効率よく冷却対象物を冷却することができ、かつ冷却対象物の急激な温度の上昇に対応でき、さらに、耐久性の高い冷却デバイスが提供される。
図1は、実験例における示差走査熱量測定の結果を示す。 図2は、実験例における冷却試験の温度測定結果を示す。 図3は、実験例における冷却試験の結果を説明するための模式図である。 図4(a)は、実施例1~5の冷却デバイスの概略断面図であり、図4(b)は、実施例6の冷却デバイスの概略断面図であり、図4(c)は、パッケージングした場合の実施例1の冷却デバイスの概略断面図である。
 本明細書において、「冷却」とは、冷却対象物で生じた熱を吸収して冷却対象物の温度を下げること、および冷却対象物の周囲で生じた熱を吸収し、冷却対象物が加熱されることを防止することの両方を意味する。
 本明細書において、「潜熱を示す温度」および「相転移する温度」といった潜熱および相転移に関する温度は、特記しない限り、それぞれ、昇温時に潜熱を示す温度および昇温時に相転移する温度を意味する。なお、潜熱を示す温度および相転移する温度は、実質的に同じ温度を意味する。
 本発明の冷却デバイスは、熱を吸収するセラミックス材料(以下、単に「セラミックス材料」ともいう)を含む。このセラミックス材料の熱の吸収は、潜熱を吸収することにより為される。前記潜熱は、固体-固体の相転移、例えば結晶構造相転移や磁気相転移等に伴う潜熱を意味する。このセラミックス材料の相転移に伴う潜熱を利用し、冷却対象物で生じる熱または冷却対象物の周囲で生じる熱を吸収し、冷却対象物を冷却する。
 上記セラミックス材料は、特に限定されず、所望の温度で相転移する公知のセラミックス材料を用いることができる。当業者であれば、所望の相転移温度、用途等に応じて、適当なセラミックス材料を選択することができる。
 上記セラミックス材料が相転移する温度は、冷却対象物、冷却目的などに応じて適宜選択され、例えば冷却対象物がCPUである場合、30~100℃、好ましくは40~60℃で相転移することが好ましい。
 上記セラミックス材料としては、特に限定されないが、例えば特許文献2に記載のセラミックス材料、具体的には、VO、LiMn、LiVS、LiVO、NaNiO、LiRh、V、V、V11、Ti、SmBaFe、EuBaFe、GdBaFe、TbBaFe、DyBaFe、HoBaFe、YBaFe、PrBaCo5.5、DyBaCo5.54、HoBaCo5.48、YBaCo5.49、AVO(式中、AはLiまたはNaであり、0.1≦y≦2.0、好ましくは0.5≦y≦1.0)、V1-x(式中、Mは、W、Ta、Mo、Nb、RuまたはReであり、0≦x≦0.2、好ましくは0≦x≦0.05)等が挙げられる
 好ましい態様において、本発明の冷却デバイスに用いられるセラミックス材料は、バナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が約0モル部以上約5モル部以下である。なお、Mは必須成分ではなく、Mの含有モル部は0であってもよい。
 別の好ましい態様において、本発明の冷却デバイスに用いられるセラミックス材料は、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下である。
 また、別の好ましい態様において、本発明の冷却デバイスに用いられるセラミックス材料は、組成式:
   V1-x
(式中、Mは、W、Ta、MoまたはNbであり、0≦x≦0.05)
または、組成式:
    AVO
 (式中、AはLiまたはNaであり、0.5≦y≦1.0)
で表される1種またはそれ以上の物質を主成分として含む。
 より好ましい態様において、本発明の冷却デバイスに用いられるセラミックス材料は、組成式:
   V1-x
(式中、0≦x≦0.05)
で示される物質を主成分として含む。
 ここで、主成分とは、セラミックス材料中に50質量%以上含まれる成分を意味し、特に60質量%以上、好ましくは80質量%以上、より好ましくは90質量%以上、さらに好ましくは98質量%以上、例えば98.0~99.8質量%含むことを意味する。その他の成分としては、VOと酸素量の異なるVOが挙げられる。
 本発明で用いられるセラミックス材料は、好ましくは5J/g以上、より好ましくは20J/g以上の潜熱量を有する。大きな潜熱量を有することにより、より小さな体積で大きな冷却効果を発揮できるので、小型化の点で有利である。
 好ましい態様において、上記セラミックス材料は、粒子(粉末)状であり得る。セラミックス材料を粒子として用いることにより、発明者らにより明らかになった焼結体素子で問題となる相転移を繰り返した場合にもクラックの発生を抑制することができ、冷却デバイスの耐久性が高くなる。
 上記セラミックス材料の粒子の粒度は、特に限定されないが、例えば平均粒子径が、0.2~50μmであり、好ましくは、0.5~50μmである。かかる平均粒子径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または電子走査顕微鏡を用いて測定することができる。平均粒子系は、取り扱いの容易性の観点から、0.5μm以上であることが好ましく、粒子間の空隙率を小さくする観点から、10μm以下であることが好ましい。
 別の好ましい態様において、セラミックス材料として、昇温時(または降温時)の潜熱を示す温度、即ち、相転移する温度が異なる、2種またはそれ以上のセラミックス材料を用いることができる。これらのセラミックス材料は、潜熱を示す温度が高い順に積層し、下層(潜熱を示す温度が高い層)を冷却対象物側に配置することが好ましい。セラミックス材料は、潜熱を吸収している際、熱エネルギーを相転移に利用していることから、熱を他に伝えにくい状態となる。しかしながら、上記のように異なる温度で潜熱を示すセラミックス材料を用い、これを層状に配置することにより、上層が早期に(より低温で)熱を吸収して相転移を完了させ、デバイス全体で高効率で応答よく冷却対象物を冷却することが可能になる。またこの場合、必要に応じて熱伝導のよい金属やカーボンなどで冷却デバイスを覆うことで、熱伝導、放熱の効果により冷却対象物の温度上昇をより抑えることが可能となる。一方、冷却対象物の周囲、特に上層側にある機器で熱が発生する場合、逆に潜熱を示す温度が高い層を上層に配置することにより、上層は相転移が完了するのが遅く、下層に熱が伝わるのを抑制することができるので、外部の熱から冷却対象物を保護することが可能になる。またこの場合、必要に応じて熱伝導率の悪い材料(例えば樹脂)などで冷却デバイスを覆うことで、断熱の効果により冷却対象物の温度上昇をより抑えることが可能となる。
 セラミックス材料の潜熱を示す温度、即ち、セラミックス材料が相転移する温度は、添加(ドープ)する元素の添加量により調節することができる。
 例えば、セラミックス材料が、組成式:
   V1-x
で示される場合、xを0.005とすると、相転移は約50℃で起こり、xを0.01とすると、相転移は約40℃で起こる。
 本発明の冷却デバイスは、金属粒子を含む。この金属粒子は、上記セラミックス材料よりも熱伝導率が高いので、金属粒子を用いることにより冷却対象物の熱を効率的に冷却デバイスの広範な領域に伝えることが可能になる。また、この場合、化学的、物理的手法を用いてセラミックス粒子に金属をコーティングした紛体を使用してもよい。
 上記金属粒子は、セラミックス材料が塊である場合はそこに分散されており、セラミックス材料が粒子である場合は、セラミックス材料の粒子と金属粒子との混合物として存在し、セラミックス材料が層を形成する場合は、その層中に含まれ得、すべての層に存在してもよく、または一部の層に存在してもよい。
 上記金属粒子としては、特に限定されないが、特に限定されないが、例えば、スズ、ニッケル、銅およびアルミニウムなどからなる粒子が挙げられる。この金属粒子は、単独で用いてもよく、または2種以上の金属粒子を組み合わせて用いてもよい。好ましい金属粒子は、スズ、銀、または銅粒子である。
 上記金属粒子(粉末)の粒度は、特に限定されないが、例えば平均粒子径が、0.5~100μmであり、好ましくは、1~50μmである。かかる平均粒子径は、レーザー回折・散乱式 粒子径・粒度分布測定装置または走査電子顕微鏡を用いて測定することができる。平均粒子系は、取り扱いの容易性の観点から、1μm以上であることが好ましく、粒子間の空隙率を小さくする観点から、50μm以下であることが好ましい。
 上記セラミックス材料と金属粒子の混合比は、特に限定されないが、例えば、体積比で8:2~2:8であり、好ましくは6:4~3:7である。なお、セラミックス材料と金属粒子の体積比は、それぞれの重量を測定して理論密度から体積を算出することにより得ることができる。金属粒子の割合を多くすることにより、冷却デバイス内部の熱伝導性を向上させることができ、冷却効率を高めることができる。さらに、成形後の冷却デバイスの強度を高めることができる。他方、セラミックス材料の割合を多くすることにより、吸収できる熱量を大きくすることができる。
 一の態様において、本発明の冷却デバイスは、さらに樹脂を含んでいてもよい。冷却デバイスに樹脂を含有させることにより、柔軟性を与えることができ、また、強度を高めることができる。
 上記樹脂としては、特に限定されるものではないが、例えばアクリル系樹脂、エポキシ、ポリエステル、シリコン、ポリウレタン、ポリエチレン、ポリプロピレン、ポリスチレン、ナイロン、ポリカーボネート、ポリブチレンテレフタレート等が挙げられる。
 上記樹脂の含有量は、特に限定されないが、粒子(金属粒子および存在する場合にはセラミックス材料の粒子を含む)間の空隙を埋めることができる量以上であることが好ましく、例えば、セラミックス材料と金属粒子の合計100体積部に対して、10~60体積部が好ましい。
 一の態様において、本発明の冷却デバイスは、セラミックス材料よりも高い熱伝導率を有する材料(以下、「高熱伝導材料」ともいう)から構成される熱伝導部を有していてもよい。この熱伝導部は、冷却対象物で生じた熱を効率的に冷却デバイスの広範な領域に伝える機能を有する。
 上記高熱伝導材料としては、上記セラミックス材料よりも高い熱伝導率を有する材料であれば特に限定されないが、金属材料、樹脂、AlNなどの窒化物およびAlなどの酸化物が挙げられ、好ましくは金属材料である。
 上記金属材料としては、特に限定されるものではないが、例えば、スズ、ニッケル、銅、ビスマス、銀、鉄およびアルミニウムやそれらを含む合金等が挙げられる。この金属材料は、上記金属粒子と同じ金属であっても、異なっていてもよい。金属材料は、単独で用いてもよく、または2種以上の金属材料を組み合わせて用いてもよい。
 上記熱伝導部は、冷却対象物で生じた熱を効率的に冷却デバイスの広範な領域に伝えることが可能であれば、その形状および配置は特に限定されない。
 好ましい態様において、上記熱伝導部は、冷却対象物との接触部を有し、該接触部から離れた位置においてセラミックス材料と接触するように配置される。このように熱伝導部を配置することにより、より効率的に熱を冷却デバイスの広範な領域に伝えることができる。
 別の好ましい態様において、上記熱伝導部は、冷却デバイスの周囲を取り囲むように配置され、即ち、セラミックス材料および金属粒子をパッケージングするように配置することができる。このような形態とすることにより、冷却デバイスの強度を高めることができ、また、熱を外部に放出する能力を高めることができる。
 好ましい態様において、本発明の冷却デバイスは弾性を有し得る。弾性を有することにより、例えば他の部材に挟むことによる冷却デバイスの固定をより容易かつ安定に行うことができる。本発明の冷却デバイスに弾性を与える方法は、特に限定されないが、例えば樹脂を含有させる方法が挙げられる。
 本発明の冷却デバイスの形状は、特に限定されず、例えば、ブロック状またはシート状のいずれであってもよい。
 冷却デバイスをブロック状とすることにより、全体の体積が大きくなり、より多くの熱を吸収することができる。必要に応じて、デバイス上面に凹凸加工をして表面積を大きくしてもよい。
 冷却デバイスをシート状とすることにより、表面積が増加するので、吸収した熱を外部に放出しやすくなる。また、シート状とした場合、樹脂を含有せしめることにより、冷却デバイスの柔軟性を高めることができ、設置に関する自由度が向上する。またこれにより、一つのデバイスで複数の冷却対象物の冷却をおこなうこともできる。
 本発明の冷却デバイスの製造方法は、特に限定されないが、例えば、セラミックス材料の粉末および金属粒子を混合し、圧縮成形することにより得ることができる。所望により、圧縮成形後に、熱処理して金属粒子を焼結させてもよい。
 また、樹脂を用いる場合、樹脂をセラミックス材料および金属粒子と一緒に混合して成形してもよく、成形後に得られた冷却デバイスに樹脂を含浸させてもよい。
 本発明の冷却デバイスは、所望の形状に成形することができ、さらに柔軟性を与えることもできるので、冷却デバイスとしての機能を有しつつ、基板、ケースまたは緩衝材等の他の部材としても利用することができる。
 実験例:
・焼結セラミックス冷却デバイスの作製
 セラミックス原料として、三酸化バナジウム(V)、五酸化バナジウム(V)、および酸化タングステン(WO)を用い、これらをV:W:O=0.995:0.005:2(モル比)となるように秤量し、乾式混合した。その後、窒素/水素/水雰囲気下で1000℃、4時間熱処理し、セラミックス材料としてV0.9950.005(0.5at%WドープVO)の粉末(平均粒子径:約20μm)を調製した。
 次に、純水、部分安定化ジルコニウム(Partial Stabilized Zirconia;PSZ)ボール、分散剤(サンノプコ製:SN5468)および上記で得られたセラミックス材料の粉末をポリポットに加えて、24時間粉砕混合を行い、平均粒子径が約3μmの粉末とし、その後アクリル系バインダー、可塑剤および消泡剤を加え、再度2時間混合を行い、シート成形用スラリーを得た。
 次に、ドクターブレード法を使用し、シート成形用スラリーをシート成形して、グリーンシートを作製し、その後短冊カットし、圧着プロセスにより、セラミックス単板を作製した。このセラミックス単板を、300℃大気中で脱脂処理に付し、その後窒素/水素/水雰囲気下で、1000℃で4時間熱処理して焼結させて、20mm×20mm×5mmのサイズの焼結セラミックス単板の冷却デバイスを作製した。
・示差走査熱量測定
 上記で得られたセラミックス単板の冷却デバイスについて、示差走査熱量測定(Differential scanning calorimetry:DSC)により、0℃→100℃→0℃の温度掃引で、熱の出入り(吸熱および発熱)を評価した。結果を図1に示す。図1から、得られたセラミックス材料は、加温時には50℃~60℃付近で吸熱し、冷却時には40~50℃付近で放熱することが確認された。
・冷却試験
 発熱体として、到達温度が約60℃のPTC(positive temperature coefficient)ヒーターを使用し、PTCヒーター表面に熱伝導グリスを塗布、そして極細K熱電対を貼り付けてその上から上記で作製した焼結セラミックス単板の冷却デバイスを押しつけて固定した。さらに冷却デバイスの上面(PTCヒーターと接触している面と反対の面)にも極細K熱電対を貼り付けた。また、基準用に別のPTCヒーターの表面に熱伝導グリスを塗布し、極細K熱電対を貼り付けた(冷却デバイスなし)。
 上記の冷却デバイス有りのPTCヒーターおよび冷却デバイスなしのPTCヒーターについて、直流電源を用いてPTCヒーターに定格電流を通電した状態で10分間、ついで、通電を止めて20分間、ヒーターと冷却デバイスの接触面の温度、および冷却デバイスの上面の温度を測定した。結果を図2に示す。
 図2に示されるように、焼結セラミックス単板の冷却デバイスを用いることにより、この冷却デバイスを用いない場合と比較して、PTCヒーターの表面(接触面)温度がわずかに低下していることが確認された。しかしながら、冷却デバイス上面の温度は、接触面との温度差が大きく、熱吸収に十分寄与できていないことが確認された。これは、図3の矢印で示されるように、PTCヒーター4の熱は、これと接触している焼結セラミックス単板2の下部(図3のx部分)に伝わるが、x部分が相転移に要する熱を吸収している間、このx部分のセラミックス材料からy部分に伝わる熱量が低下するのが原因であると考えられる。その結果、PTCヒーターに通電後しばらくは冷却効果が見られるが、400秒後には、冷却デバイスの上面の温度が低いにもかかわらず、冷却効果はほとんど見られなくなり、冷却デバイスを用いるメリットが小さいことが確認された。
 実施例1~5
 上記実験例と同様にして得られたセラミックス材料の粉末、およびSn粉末(平均粒子径:約30μm)を、下記表1に示す割合となるように秤量し、鉄芯入りテフロンボールで乾式混合した。次いで、得られた混合物(セラミックス材料とSn粉末の複合材料)を、プレス成型により、直径20mm×厚み5mmの円盤状に成形し、実施例1~5の複合冷却デバイスを作製した。図4(a)に、実施例1~5の複合冷却デバイスの概略断面図を模式的に示す(なお、図において、セラミックス材料と金属材料の比は、便宜上等しくなっているが、実際には表1に示す割合である)。
 実施例6
 実施例1と同様に円盤状の複合冷却デバイスを作製した。次いで、真空含浸により、ストルアス製冷間埋込樹脂#100(不飽和ポリエステル、スチレン系樹脂)を塗布し、真空中で10分含侵することにより複合冷却デバイスの空隙に充てんし、実施例6の複合冷却デバイスを作製した。図4(b)に、実施例6の複合冷却デバイスの概略断面図を模式的に示す。
 比較例1
 上記実験例と同様にして得られたセラミックス材料の粉末のみを用いて冷却デバイスを作製した。セラミックス材料の粉末のみでは圧縮成形ができなかったので、実験例と同様の操作で焼結させ、実施例1~5と同じ厚みおよび体積の立方体形状の冷却デバイスとした。
Figure JPOXMLDOC01-appb-T000001
(評価)
 下記の冷却試験およびヒートサイクル試験にて、上記で得られた冷却デバイスを評価した。なお、実施例1の冷却デバイスは、強度が低く、下記の評価を行えなかった。ただし、実施例1の冷却デバイスも、例えば、樹脂を含浸させる(実施例6)、金属粒子を焼結させる、高熱伝導材料などによりパッケージングすることにより(図4(c))、十分な強度の冷却デバイスとすることができる。
・冷却試験
 発熱体として、到達温度が約70℃のPTCヒーターを使用し、ヒーター表面に熱伝導グリスを塗布、そして極細K熱電対を貼り付け、その上から実施例2~6および比較例1の冷却デバイスを押しつけて固定した。また、基準用に、冷却デバイスなしのヒーター表面にも極細K熱電対を貼り付けた。
 直流電源を用いてPTCヒーターに定格電流を10分間通電し、その時点でのヒーター表面の温度を測定し、冷却効果を評価した。結果を表2に示す。評価は、PTCヒーターの表面の温度が、冷却デバイスを使用しない場合の温度(57℃)と比較して、温度の低下が、5℃以上の場合を◎、3℃以上5℃未満の場合を○、3℃未満の場合を×とした。
・ヒートサイクル試験
 実施例2~6および比較例1の冷却デバイスのそれぞれについて、25℃~125℃の範囲で所定の温度プロファイルで100サイクル繰り返した。試験後の冷却デバイスについて、レーザー顕微鏡でクラックの有無を観察し、繰り返し耐性を評価した。結果を表2に併せて示す。
Figure JPOXMLDOC01-appb-T000002
 上記の結果から、金属(Sn)粉末を含まず、セラミック材料を焼結させた比較例1の冷却デバイスは、より高い温度のヒーター(到達温度が80℃)で実験した場合は高い冷却効果を示すが、到達温度が60℃程度の条件で評価した結果、室温との温度差が小さくなり、熱の伝達の影響で、冷却効果が小さく、さらにヒートサイクル試験後にクラックが多数確認され、繰り返し耐性が低いことが認められた。クラックが入る原因は、VOが相転移時に結晶構造が変化することにより、粒界において応力が発生するためと考えられる。
 一方、実施例2~4の冷却デバイスは、高い冷却効果に加え、高い繰り返し耐性を有することが確認された。実施例5の冷却デバイスは、冷却効果が実施例2~4と比べやや低かったが、繰り返し耐性は同様に高いことが確認された。実施例5の冷却デバイスの冷却効果が低い原因は、セラミックス材料の含有量が少ないことに起因すると考えられるので、例えば、冷却デバイスの体積を大きくすることにより十分な冷却効果が得られると考えられる。また、実施例1の冷却デバイスは、金属粒子の含有量が少なく、圧縮成形のみでは強度に不安があるが、実施例6のように樹脂を含浸させることにより、十分な強度とすることができ、また、高い冷却効果および高い繰り返し耐性を達成することができた。
 本発明の冷却デバイスは、例えば、熱対策問題が顕著化している小型通信端末の冷却デバイスとして利用することができる。
  2 … 焼結セラミックス単板
  4 … PTCヒーター
  6 … セラミックス粉末
  8 … 金属粉末
  10 … 樹脂
  12 … パッケージ

Claims (11)

  1.  熱を吸収するセラミックス材料と金属粒子とを含んで成る冷却デバイス。
  2.  セラミックス材料が、粒子状であることを特徴とする、請求項1に記載の冷却デバイス。
  3.  セラミックス材料が、バナジウムVおよびM(ここに、Mは、W、Ta、MoおよびNbから選ばれる少なくとも一種である)を含む酸化物であって、VとMの合計を100モル部としたときのMの含有モル部が約0モル部以上約5モル部以下であることを特徴とする、請求項1または2に記載の冷却デバイス。
  4.  セラミックス材料が、A(ここに、AはLiまたはNaである)およびバナジウムVを含む酸化物であって、Vを100モル部としたときのAの含有モル部が約50モル部以上約100モル部以下であることを特徴とする、請求項1または2に記載の冷却デバイス。
  5.  セラミックス材料が、式:
       V1-x
    (式中、Mは、W、Ta、MoまたはNbであり、xは、0以上0.05以下である)
    または、式:
       AVO
    (式中、Aは、LiまたはNaであり、yは、0.5以上1.0以下である)
    で表される1種またはそれ以上の材料を含むことを特徴とする、請求項1または2に記載の冷却デバイス。
  6.  金属粒子が、スズ、ニッケル、銅およびアルミニウムから選択される1種またはそれ以上の金属粒子を含むことを特徴とする、請求項1~5のいずれかに記載の冷却デバイス。
  7.  セラミックス材料と、金属粒子の体積比が6:4~3:7であることを特徴とする、請求項1~6のいずれかに記載の冷却デバイス。
  8.  さらに樹脂を含むことを特徴とする、請求項1~7のいずれかに記載の冷却デバイス。
  9.  セラミックス材料が、潜熱を示す温度が異なる2種またはそれ以上のセラミックス材料であり、セラミックス材料が積層されていることを特徴とする、請求項1~8のいずれかに記載の冷却デバイス。
  10.  セラミックス材料が、潜熱を示す温度が高い順に積層されていることを特徴とする、請求項9に記載の冷却デバイス。
  11.  さらに、セラミックス材料よりも高い熱伝導率を有する材料から構成される熱伝導部を有して成ることを特徴とする、請求項1~10のいずれかに記載の冷却デバイス。
PCT/JP2014/069473 2013-09-05 2014-07-23 冷却デバイス WO2015033688A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184084 2013-09-05
JP2013184084 2013-09-05

Publications (1)

Publication Number Publication Date
WO2015033688A1 true WO2015033688A1 (ja) 2015-03-12

Family

ID=52628174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/069473 WO2015033688A1 (ja) 2013-09-05 2014-07-23 冷却デバイス

Country Status (1)

Country Link
WO (1) WO2015033688A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443023A (zh) * 2018-12-19 2019-03-08 中冶焦耐(大连)工程技术有限公司 一种棱锥体松化料层填料

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001794A (ja) * 2007-06-20 2009-01-08 Clariant Internatl Ltd 潜熱蓄熱体(latentheatstore)として使用するための相変化物質(PCM)としてのポリオレフィンワックス
JP2010080173A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 燃料電池
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2013084710A (ja) * 2011-10-07 2013-05-09 Nikon Corp 蓄熱体、電子機器および電子機器の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009001794A (ja) * 2007-06-20 2009-01-08 Clariant Internatl Ltd 潜熱蓄熱体(latentheatstore)として使用するための相変化物質(PCM)としてのポリオレフィンワックス
JP2010080173A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 燃料電池
JP2010163510A (ja) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research 蓄熱材
JP2013084710A (ja) * 2011-10-07 2013-05-09 Nikon Corp 蓄熱体、電子機器および電子機器の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109443023A (zh) * 2018-12-19 2019-03-08 中冶焦耐(大连)工程技术有限公司 一种棱锥体松化料层填料

Similar Documents

Publication Publication Date Title
JP5781824B2 (ja) 熱膨張抑制部材および対熱膨張性部材
JP5795187B2 (ja) 対熱膨張性樹脂および対熱膨張性金属
JP2009302332A (ja) 熱電変換素子及び熱電変換素子用導電性部材
TW201801101A (zh) 用於浪湧電流限制器的ntc-陶瓷電子組件以及生產該電子組件的方法
JP6987077B2 (ja) 熱電レグ及びこれを含む熱電素子
JP2011035117A (ja) 熱電変換材料
WO2015033690A1 (ja) 冷却デバイス
WO2015033691A1 (ja) 冷却デバイス
JP7091341B2 (ja) 熱電焼結体および熱電素子
WO2020195956A1 (ja) 断熱部材、及び電子機器
WO2015033688A1 (ja) 冷却デバイス
JP2017110838A (ja) 熱搬送デバイス
Lei et al. Microwave Synthesis and Enhanced Thermoelectric Performance of p-Type Bi0. 90Pb0. 10Cu1–x Fe x SeO Oxyselenides
JP2013139376A (ja) セラミック、そのセラミックを使用する傾斜抵抗率モノリス、および製造方法
WO2020116366A1 (ja) 化合物及び熱電変換材料
WO2016006338A1 (ja) 複合体および冷却デバイス
WO2015033687A1 (ja) 冷却デバイス
WO2015033689A1 (ja) 冷却デバイス
JP6038244B2 (ja) 熱膨張抑制部材および対熱膨張性部材
JP5218285B2 (ja) 熱電変換材料
TW201910266A (zh) 鎂系熱電變換材料、鎂系熱電變換元件、及鎂系熱電變換材料之製造方法
JP6414636B2 (ja) 冷却デバイス
JP6424972B2 (ja) 磁気組成物
JP2013243212A (ja) 熱拡散装置
JP2017065984A (ja) セラミック粒子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14842122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14842122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP