CN108623300B - 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法 - Google Patents

钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法 Download PDF

Info

Publication number
CN108623300B
CN108623300B CN201810493085.XA CN201810493085A CN108623300B CN 108623300 B CN108623300 B CN 108623300B CN 201810493085 A CN201810493085 A CN 201810493085A CN 108623300 B CN108623300 B CN 108623300B
Authority
CN
China
Prior art keywords
energy storage
sanding
formula
temperature
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810493085.XA
Other languages
English (en)
Other versions
CN108623300A (zh
Inventor
王晓慧
赵培尧
汪宏显
蔡子明
陈玲玲
吴隆文
李龙土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201810493085.XA priority Critical patent/CN108623300B/zh
Publication of CN108623300A publication Critical patent/CN108623300A/zh
Application granted granted Critical
Publication of CN108623300B publication Critical patent/CN108623300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1254Ceramic dielectrics characterised by the ceramic dielectric material based on niobium or tungsteen, tantalum oxides or niobates, tantalates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Abstract

本发明公开了一种钛酸钡‑铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法。该陶瓷材料化学式如下:(1‑x)BaTiO3‑xBi[Zn2/3(Nb1‑ yTay)1/3]O3+zM。通过选取合适的x、y、z值及工艺参数,可使得该体系的陶瓷块体放电储能密度达到1.92J/cm3,储能效率达97.6%,单层陶瓷电容器放电储能密度达到7.81J/cm3,储能效率达97.3%。并且,陶瓷块体和单层陶瓷电容器的储能性能在‑75~150℃内变化很小,室温介电常数约1000~1200,在约‑65~130℃温度区间内介电常数变化也很小(小于15%)。

Description

钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
技术领域
本发明属于材料领域,涉及一种钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法。
背景技术
随着世界经济和人类社会的飞速发展,人们对能源的需求与日剧增,太阳能、风能等具有间歇性、随机性和波动性等问题的新型清洁能源也逐步走向实用化,运用先进的储能设备与技术将这些新型可再生能源进行合理存储和利用的研究也逐渐加深。电介质电容器因其具有超高的功率密度以及超快速的充放电能力,非常适用于功率波动大或者需要高功率密度的领域,此外,电介质电容器充放电过程极其迅速,还具有很高的循环寿命和安全性,因而广泛应用于商业、医疗及军用等领域。目前,商业使用的电介质电容器主要为陶瓷电介质,其能量密度小于2J/cm3,随着电力电子器件和系统向着小型化、轻量化以及集成化方向发展,开发具有高储能密度的电介质电容器具有重要意义。
储能陶瓷电容器根据电介质不同分为铁电体,弛豫铁电体,反铁电体,线性电介质等。当前,国内相关专利有,清华大学李敬锋教授课题组的铌酸银基反铁电储能陶瓷(授权公告号CN106478097),其放电储能密度可以达到2.00~2.50J/cm3,储能效率为50.5~57.2%。西安电子科技大学叶婧等的钛酸铋钠基储能陶瓷(授权公告号CN106187168),其放电能量密度为1.22J/cm3,储能效率达91%。上海硅酸盐研究所董显林等的BCZT基弛豫铁电体储能陶瓷材料(授权公告号CN107244912),其放电能量密度为0.66J/cm3,储能效率可达88.1%。陕西科技大学杨海波等的无铅陶瓷储能材料(授权公告号CN107459347),其放电储能密度达1.73~1.98J/cm3,储能效率均在90%以上。
在众多陶瓷电介质中,弛豫铁电体由于具有诸多优良特性,被广泛应用于现代电子、电力、航空航天等领域,特别是弛豫铁电体一般具有高介电常数和弥散型相变带来的较小的介电常数-温度变化率,以及细长的电滞回线,在储能陶瓷领域占有巨大优势。2009年,Ogihara制备了BaTiO3-BiScO3陶瓷,其具有高介电常数且良好的介温稳定性,块体陶瓷室温能量密度高约2.3J/cm3,单层电容器储能密度可达6.1J/cm3。但其中含有大量昂贵的稀土元素Sc,陶瓷材料成本很高,因此,研发成本低,储能特性优良的弛豫铁电体陶瓷储能电介质具有重要的实际应用意义。
发明内容
本发明的目的是提供一种成本较低,具有高储能密度和储能效率的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷电介质及其制备方法,以及以此电介质为基础的单层储能陶瓷电容器的制备方法。
本发明提供的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷电介质,也即式I所示化合物,
(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3+zM
式I
所述式I中,M表示ZrO2;x、y、z分别表示BiO3、Ta和M的摩尔分数,0.06≤x≤0.5,0.01≤y≤0.3,0≤z≤0.3。
具体的,所述式I中,x=0.1或0.15;y=0或0.1或0.2。
本发明还要求保护由式I构成的陶瓷材料;
所述式I所示陶瓷材料的厚度具体可为0.2~2mm。
更具体的,根据本发明的实施例,所述式I所示陶瓷材料具有但不限于下列之一所示的化学组分:
1)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3
其中,x、y的定义同式I,x=0.1,0.01≤y≤0.3;
2)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3
其中,x、y的定义同式I,x=0.15,0.01≤y≤0.3;
3)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3+zM;
其中,x、y、z的定义同式I,x=0.1,y=0.1,0≤z≤0.3;M表示ZrO2
4)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3+zM;
其中,x、y、z的定义同式I,x=0.1,y=0.2,0≤z≤0.3;M表示ZrO2
5)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3+zM;
其中,x、y、z的定义同式I,x=0.15,y=0.1,0≤z≤0.3;M表示ZrO2
6)(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3+zM;
其中,x、y、z的定义同式I,x=0.15,y=0.2,0≤z≤0.3;M表示ZrO2
7)(1-x)BaTiO3-xBi[Zn2/3Nb1/3]O3+zM;
其中,x、z的定义同式I,x=0.1,0<z≤0.3;M表示ZrO2
8)(1-x)BaTiO3-xBi[Zn2/3Nb1/3]O3+zM;
其中,x、z的定义同式I,x=0.15,0<z≤0.3;M表示ZrO2
本发明提供的制备所述式I所示陶瓷的制备方法,包括如下步骤:
以BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和ZrO2为原料,按照所述式I的化学计量比进行配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到所述式I所示陶瓷。
上述方法的一次砂磨和二次砂磨步骤中,砂磨介质均为水;砂磨介质质量为原料总质量的2~10倍;砂磨轮次为10~60轮;
所述一次烘干和二次烘干步骤中,温度为100~200℃,具体可为180℃;时间为12~24h;
所述煅烧步骤中,温度为800~1000℃,具体可为850℃;时间为2~5h;
所述造粒步骤中,所用粘合剂为聚乙烯醇;所述粘合剂的质量为原料总质量的5%~10%;
所述排胶步骤包括:以180~200℃/h的升温速率升温到400~600℃并保温2~4h;
所述烧结步骤包括:以180~200℃/h的升温速率升温到1175~1250℃并保温2~4h,再以180~200℃/h的降温速率降温至室温;
上述陶瓷材料在制备电容器或多层陶瓷电容器中的应用,也属于本发明的保护范围。
本发明还要求保护一种多层储能陶瓷电容器,由若干个间隔排列的电介质层和电极层组成,且最外两侧均为电介质层;
所述电介质层由所述陶瓷材料组成。
上述多层储能陶瓷电容器,其中,所述电介质层的厚度为5~30μm,具体为15μm;
所述电极层的厚度为1~2μm,具体为1.5μm;
构成所述电极层的材料为Ag、Pd或Ag-Pd合金。
本发明提供的制备所述多层储能陶瓷电容器的方法,包括如下步骤:
以BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和ZrO2为原料,按照所述化学式的化学计量比进行配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银。
上述方法的一次砂磨和二次砂磨步骤中,砂磨介质均为水;砂磨介质质量为原料总质量的2~10倍;砂磨轮次为10~60轮;
所述一次烘干和二次烘干步骤中,温度为100~200℃;时间为12~24h;
所述煅烧步骤中,温度为800~1000℃,具体可为850℃;时间为2~5h;
所述配置流延浆料步骤中,所用分散剂为酒精和/或乙酸乙酯;粘结剂为聚乙烯醇缩丁醛(PVB);分散剂的用量为原料总质量的2~10倍;粘接剂的用量为原料总质量的3~10%;具体为5%;
所述印刷电极步骤中,所用电极为Ag-Pd电极;印刷方法为各种常规方法,如丝网印刷及磁控溅射等;
所述排胶步骤包括:以180~200℃/h的升温速率升温到400~600℃并保温2~4h;
所述烧结步骤包括:以180~200℃/h的升温速率升温到1175~1250℃并保温2~4h,再以180~200℃/h的降温速率降温至室温;
所述被银步骤中,被银方法可采用烧渗方法;所述烧渗方法中,烧渗温度为550~600℃;时间为20~30分钟。所述烧渗之前还可包括对所述陶瓷片进行打磨的步骤。
上述的制备方法中,步骤(3)中,所述陶瓷上下表面所镀银电极直径为3~6mm,可采用烧渗的方法,所述烧渗的温度可为550~600℃(如600℃),时间可为20~30分钟(如30分钟);
上述的制备方法中,步骤(4)中,所述配置流延浆料使用的分散剂可为酒精和/或乙酸乙酯,粘结剂为聚乙烯醇缩丁醛(PVB),印刷电极为Ag-Pd电极。
上述制备方法中,步骤(5)中,所述被银电极采用烧渗的方法,所述烧渗的温度可为550~600℃(如600℃),时间可为20~30分钟(如30分钟)。
本发明具有如下有益效果:
本发明的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及多层储能陶瓷电容器,具有优良的储能性能及综合性能。通过选择适当的x、y、z值及工艺参数,可使该体系的陶瓷块体放电储能密度达到1.92J/cm3,储能效率达到97.6%,而单层电容器放电储能密度可达到7.81J/cm3,储能效率达到97.3%。并且,陶瓷块体和单层电容器的储能性能在-75~150℃内变化很小,其室温介电常数约1000~1200,在约-65~130℃温度区间内介电常数变化也很小(小于15%)。
附图说明
图1为实施例1中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的放电储能密度和储能效率与电场强度的关系图。
图2为实施例1中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的最大击穿电场下的电滞回线图。
图3为实施例2中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的放电储能密度和储能效率与电场强度的关系图。
图4为实施例2中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷介电常数与温度的关系图。
图5为实施例2中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷储能性能与温度的关系图。
图6为实施例4中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体单层储能陶瓷电容器的放电储能密度和储能效率与电场强度的关系图。
图7为实施例4中制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体单层储能陶瓷电容器的储能性能与温度的关系图。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
实施例1、
本实施例中钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.9BaTiO3-0.1Bi[Zn2/3Nb1/3]O3+10%ZrO2,按照如下步骤制备得到:
砂磨、烘干和预烧:
以分析纯的BaCO3、TiO2、Bi2O3、ZnO、Nb2O5和ZrO2为原料,按照上述化学式中的化学计量比配料,以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨10轮,烘干(温度为180℃,时间为24h)后在850℃保温5小时进行煅烧;
二次砂磨、造粒、压制成型、排胶和烧结:
将步骤(1)中得到的预烧后的粉体再次以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨20轮后,烘干(温度为180℃,时间为24h)后加入粉料质量10%的PVA(聚乙烯醇)粘结剂造粒并压制成型。在烧结炉中以200℃/h的升温速率升至600℃排胶,保温4小时,然后以200℃/h的升温速率升至1225℃进行烧结,并保温4h,即可得到钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷。
打磨、被银和测试:
将步骤(2)中烧结后的陶瓷片的双面进行简单的打磨处理至厚度约为0.2mm后被银,也即在600℃烧银30min。将上述制备得到的钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷在室温下测试性能,实验结果如表1所示。充放电能量密度和充放电效率采用铁电测试系统TF2000(aixACC TF Analyzer 2000)测量电滞回线计算所得,计算方法为
Figure BDA0001668406660000051
其中,放电储能密度和充放电效率随电场强度的关系图如图1所示,最大击穿电场下的电滞回线图如图2所示。由图可知,0.9BaTiO3-0.1Bi[Zn2/3Nb1/3]O3+10%ZrO2体系陶瓷片最大击穿场强为170kV/cm,最大击穿场强下介质极化强度约为17.5μC/cm2,储能效率保持在90%以上,具体储能性能如表1所示。
表1、实施例1钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷性能
Figure BDA0001668406660000052
Figure BDA0001668406660000061
实施例2、
本实施例中钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3,按照如下步骤制备得到:
以分析纯的BaCO3、TiO2、Bi2O3、ZnO、Nb2O5和Ta2O5为原料,按照上述表达式所示化学计量比进行配料,其余步骤同实施例1。
实施例2实验结果如表2所示,其中放电储能密度和充放电效率随电场强度的变化如图3所示,介电常数和在200kV/cm电场强度下测试得到的储能性能随温度的变化分别如图4和图5所示。由图可知,0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3体系陶瓷片最大击穿场强为250kV/cm,储能效率保持在95%以上,具体储能性能如表2所示。其介电常数在-65~125℃温度范围内变化小于±15%,满足X7R的性能;在200kV/cm电场下,放电储能密度在-75~150℃温度范围内变化小于±10%,且储能效率均在90%以上,温度稳定性优异。
表2、实施例2钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷性能
Figure BDA0001668406660000062
实施例3
本实施例中钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3+10%ZrO2,按照如下步骤制备得到:
以分析纯的BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和ZrO2为原料,按照上述表达式所示化学计量比进行配料,其余步骤同实施例1。
实施例3实验结果如表3所示。
表3、实施例3钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷性能
Figure BDA0001668406660000063
实施例4
本实施例中钛酸钡-铌锌酸铋基无铅弛豫铁电体单层储能陶瓷电容器的成分表达式如下所示:0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3,按照如下步骤制备得到:
(1)砂磨、烘干和预烧:
以分析纯的BaCO3、TiO2、Bi2O3、ZnO、Nb2O5和Ta2O5为原料,按照上述化学式中的化学计量比配料,以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨10轮,烘干(温度为180℃,时间为24h)后在850℃保温5小时进行煅烧;
二次砂磨、烘干、配置流延浆料、流延
将步骤(1)中得到的陶瓷粉料以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨20轮后,烘干(温度为180℃,时间为24h),而后以酒精或乙酸乙酯(粉料质量的10倍)为介质进行分散,加入粉料质量5%的PVB(聚乙烯醇缩丁醛),随后流延。
印刷电极、叠层、切割、排胶和烧结
将步骤(2)中得到的厚度为15μm的流延膜带印刷Ag-Pd电极,每层Ag电极层和Pd电极层的厚度均为1.5μm,经叠层和切割得到单层储能陶瓷电容器的坯体,在烧结炉中以200℃/h的升温速率升至600℃排胶,保温4小时,然后以200℃/h的升温速率升至1225℃进行烧结,并保温4h,即可得到钛酸钡-铌锌酸铋基无铅弛豫铁电体单层储能陶瓷电容器。
被银和测试
将步骤(3)中烧结后的单层储能陶瓷电容器两端被银,在600℃烧银30min。
实施例4实验结果如表4所示,其中放电储能密度和充放电效率随电场强度的关系图如图6所示,650kV/cm电场下储能性能随温度的变化如图7所示。由图可知,0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3体系单层储能陶瓷电容器最大击穿场强为760kV/cm,储能效率保持在95%以上,具体储能性能如表4所示。在650kV/cm电场下,放电储能密度在-75~150℃温度范围内变化小于±10%,且储能效率基本保持在90%以上,温度稳定性优异。
表4、实施例4钛酸钡-铌锌酸铋基单层储能陶瓷电容器性能
Figure BDA0001668406660000071

Claims (10)

1.式I所示化合物,其特征在于:所述式I所示化合物的结构式如式I所示,
(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3+zM
式I
所述式I中,M表示ZrO2x、y、z分别表示Bi、Ta和M的摩尔分数,0.06≤x≤0.5,y=0或0.01≤y≤0.3,0≤z≤0.3。
2.根据权利要求1所述的化合物,其特征在于:所述式I中,x=0.1或0.15;y=0.1或0.2。
3.由权利要求1或2任一所述式I化合物构成的陶瓷材料。
4.一种制备权利要求3所述陶瓷材料的方法,包括如下步骤:
以BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和ZrO2为原料,按照所述式I的化学计量比进行配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到所述陶瓷材料。
5.根据权利要求4所述的方法,其特征在于:所述一次砂磨和二次砂磨步骤中,砂磨介质均为水;砂磨介质质量为原料总质量的5~10倍;砂磨轮次为10~60轮;
所述一次烘干和二次烘干步骤中,温度为100~200℃;时间为12~24h;
所述煅烧步骤中,温度为800~1000℃;时间为2~5h;
所述造粒步骤中,所用粘合剂为聚乙烯醇;所述粘合剂的质量为原料总质量的5%~10%;
所述排胶步骤包括:以180~200oC/h的升温速率升温到400~600oC并保温2~4h;
所述烧结步骤包括:以180~200oC/h的升温速率升温到1175~1250oC并保温2~4h,再以180~200oC/h的降温速率降温至室温。
6.权利要求1或2任一所述式I所示化合物或权利要求3所述陶瓷材料在制备电容器或多层陶瓷电容器中的应用。
7.一种多层陶瓷电容器,由若干个间隔排列的电介质层和电极层组成,且最外两侧均为电介质层;
所述电介质层由权利要求3所述陶瓷材料组成。
8.根据权利要求7所述的多层陶瓷电容器,其特征在于:所述电介质层的厚度为5~30μm;
所述电极层的厚度为1~2μm;
构成所述电极层的材料为Ag、Pd或Ag-Pd合金。
9.一种制备权利要求7或8所述多层陶瓷电容器的方法,包括如下步骤:
以BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和ZrO2为原料,按照权利要求1或2所述式I的化学计量比进行配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银而得。
10.根据权利要求9所述的方法,其特征在于:所述一次砂磨和二次砂磨步骤中,砂磨介质均为水;砂磨介质质量为原料总质量的5~10倍;砂磨轮次为10~60轮;
所述一次烘干和二次烘干步骤中,温度为100~200℃;时间为12~24h;
所述煅烧步骤中,温度为800~1000℃;时间为2~5h;
所述配置流延浆料步骤中,所用分散剂为酒精和/或乙酸乙酯;粘结剂为聚乙烯醇缩丁醛;分散剂的用量为原料总质量的2~10倍;粘接剂的用量为原料总质量的3~10%;
所述印刷电极步骤中,所用电极为Ag-Pd电极;
所述排胶步骤包括:以180~200oC/h的升温速率升温到400~600oC并保温2~4h;
所述烧结步骤包括:以180~200oC/h的升温速率升温到1175~1250oC并保温2~4h,再以180~200oC/h的降温速率降温至室温;
所述被银步骤中,烧渗温度为550~600℃;时间为20~30分钟。
CN201810493085.XA 2018-05-22 2018-05-22 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法 Active CN108623300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810493085.XA CN108623300B (zh) 2018-05-22 2018-05-22 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810493085.XA CN108623300B (zh) 2018-05-22 2018-05-22 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN108623300A CN108623300A (zh) 2018-10-09
CN108623300B true CN108623300B (zh) 2020-11-10

Family

ID=63693878

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810493085.XA Active CN108623300B (zh) 2018-05-22 2018-05-22 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN108623300B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109942292B (zh) * 2019-04-12 2021-09-07 中南大学 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN110002875A (zh) * 2019-05-09 2019-07-12 南昌航空大学 一种利用钽改性铌酸钠-锆酸钙基反铁电陶瓷储能的方法
CN110451955B (zh) * 2019-08-14 2022-02-08 清华大学 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN111217604B (zh) * 2020-01-14 2022-06-24 西安工业大学 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN112266247A (zh) * 2020-11-17 2021-01-26 济南大学 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN113200743B (zh) * 2021-05-20 2022-10-25 聊城大学 一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015172138A1 (en) * 2014-05-09 2015-11-12 The Penn State Research Foundation Single phase lead-free cubic pyrochlore bismuth zinc niobate-based dielectric materials and processes for manufacture
CN105294098B (zh) * 2015-11-17 2018-07-17 天津大学 超宽工作温区的多层陶瓷电容器介质材料及其制备方法

Also Published As

Publication number Publication date
CN108623300A (zh) 2018-10-09

Similar Documents

Publication Publication Date Title
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111393161B (zh) 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN113999004B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN105198416A (zh) 一种低温烧结的高储能密度反铁电陶瓷材料及其制备方法
CN110342925B (zh) 一种反铁电陶瓷材料及其制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
CN112919903A (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN107814569B (zh) 一种无铅反铁电体陶瓷及其制备方法
CN112266247A (zh) 一种高性能铌酸钾钠基无铅储能陶瓷的制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
CN109665839B (zh) 一种高储能密度plzt基反铁电陶瓷材料及其制备方法和应用
CN113511893B (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN114292104A (zh) 一种脉冲电容器用储能陶瓷材料及其制备方法
CN113200743B (zh) 一种钛酸钡基弛豫铁电体陶瓷粉体、陶瓷及其制备方法和应用
CN115872735B (zh) 一种锆锡铪酸镧铅陶瓷及其制备方法和储能应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant