CN111393161B - 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法 - Google Patents

钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法 Download PDF

Info

Publication number
CN111393161B
CN111393161B CN202010177544.0A CN202010177544A CN111393161B CN 111393161 B CN111393161 B CN 111393161B CN 202010177544 A CN202010177544 A CN 202010177544A CN 111393161 B CN111393161 B CN 111393161B
Authority
CN
China
Prior art keywords
powder
energy storage
ceramic material
titanate
strontium titanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010177544.0A
Other languages
English (en)
Other versions
CN111393161A (zh
Inventor
郑鹏
孙沛聪
白王峰
郑梁
张阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010177544.0A priority Critical patent/CN111393161B/zh
Publication of CN111393161A publication Critical patent/CN111393161A/zh
Application granted granted Critical
Publication of CN111393161B publication Critical patent/CN111393161B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

本发明公开了一种具有高储能密度和高功率密度的钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法,采用0.72Bi0.5Na0.5TiO3‑0.28SrTiO3体系铁电材料为基础,将铋层状材料铌酸铋钡(BaBi2Nb2O9)按照一定摩尔比掺入到钛酸铋钠钛酸锶基陶瓷中,采用固相合成方法,制备得到一种新型的具有高储能密度和高功率密度的储能陶瓷材料,该陶瓷材料的化学组成是(1‑x)(0.72Bi0.5Na0.5TiO3‑0.28SrTiO3)‑xBaBi2Nb2O9,其中0.01≤x≤0.04。本发明获得的储能陶瓷材料,主要性能参数可利用储能密度Wrec=3.97J/cm3,储能效率η=81%,在120kV/cm电场下,电流密度509.5A/cm2功率密度(PD)可达30.57MW/cm3。此外制备工艺稳定可靠,生产成本低,易于实现工业化生产,在储能领域具有良好的应用前景。利用这种材料制得的陶瓷元件,组装成各种储能电容器,能够运用到军事(为电磁枪炮、飞机弹射系统提供电能)、民用(电动汽车逆变器等)、和科学领域(粒子加速器的驱动等)等领域。

Description

钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
技术领域
本发明涉及一种具有高储能密度和高功率密度的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,具体涉及一种添加铋层状结构材料铌酸铋钡(BaBi2Nb2O9)的钛酸铋钠钛酸锶(BNT-ST)基储能陶瓷材料的制备,属于脉冲功率电容器用陶瓷介质材料领域。
背景技术
随着电子工业的发展,在电网系统、脉冲功率技术以及混合动力车等领域迫切需求一种具有储能密度高、功率密度高的电介质材料。块体陶瓷电介质材料具有较高的温度稳定性以及储能总量,有很好的优势。目前,应用较广的储能陶瓷材料还是以铅基材料为主,但是铅基材料在制备、使用及废弃后处理过程中会对环境以及人体健康造成严重的影响,因此无铅储能陶瓷材料成为了国内外学者的研究重点。
由于在低电场下具有较大的饱和极化强度,钛酸铋钠(BNT)基弛豫铁电材料在储能领域具有很大的潜力。另外BNT可以和许多材料(如BaTiO3、SrTiO3、K0.5Na0.5NbO3等)形成固溶体,有利于减小剩余极化强度,提升储能性能。其中,(1-x)BNT-xST体系在x=0.24~0.28的组成范围内具有较大的饱和极化强度(Pmax)和较小的剩余极化强度(Pr),表现出较好的储能性能。然而较低的耐击穿强度(BDS)和不可忽略的剩余极化强度(Pr)仍然限制了储能性能的进一步提升。因此,如何进一步提升钛酸铋钠基储能材料的储能性能成为了储能材料领域
研究的一个重要课题。
本发明首次将铋层状结构材料(BaBi2Nb2O9)引入到钙钛矿结构的钛酸铋钠钛酸锶(0.72BNT-0.28ST)储能材料中,并且获得了3.97J/cm3的可利用储能密度和81%的储能效率。
发明内容
针对上述现有技术不足,本发明的目的是提供一种钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,利用铋层状结构材料铌酸铋钡(BaBi2Nb2O9)的添加增强钛酸铋钠钛酸锶基储能陶瓷材料的储能性能,制备出一种新型的、环境友好型的具有高储能密度和高功率密度的储能陶瓷材料。
本发明可以通过以下技术方案来实现:
一种具有高储能密度和高功率密度的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,该储能陶瓷材料的通式为(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,其中0.01≤x≤0.04;
通式中,下标数字代表元素的摩尔比;
优选的x=0.01、0.02、0.03、0.04;
进一步优选的,x=0.02组份,这主要是由于该组分陶瓷具有较小的晶粒尺寸,有助于提高击穿强度并且进一步提升储能性能。
本发明还公开了一种具有高储能密度和高功率密度的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,步骤如下:
配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料,其中0.01≤x≤0.04;
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm。
优选地,在所述一次球磨和二次球磨过程中,所述球磨时间为12小时。
优选地,在所述预烧过程中,所述预烧温度为750℃,所述保温时间为2小时。
优选地,在所述烧结过程中,所述烧结温度为1100℃,所述保温时间为2小时。
优选地,x=0.01。
优选地,x=0.02。
优选地,x=0.03。
优选地,x=0.04。
与现有技术相比,本发明的技术方案,通过添加铋层状结构材料铌酸铋钡(BaBi2Nb2O9),并控制添加的量,有效提高了钛酸铋钠钛酸锶基储能陶瓷材料的储能性能。需要说明的是,现有技术中虽然有许多关于对储能陶瓷材料进行其他材料添加的报道,但是不同的添加物,添加物的不同的加入量,都会对储能陶瓷材料产生较大影响,最好的添加物和添加量则需要在试验过程中不断摸索,反复试验才能得到。对于本次制备得到的添加铋层状材料铌酸铋钡的钛酸铋钠钛酸锶基储能陶瓷材料表现出优越的储能性能。
实验数据表明,本发明具有优异的效果:
本发明添加铋层状结构材料铌酸铋钡的钛酸铋钠钛酸锶基储能陶瓷材料,可利用储能密度(Wrec)为3.97J/cm3,储能效率(η)为81%,并且具有优越的充放电性能,放电速度在0.3μs以内,功率密度可达到30.57MW/cm3。在储能领域具有良好的应用前景。
另外,该发明通过传统陶瓷工艺制得,制备成本低,工业简单且适合于大批量工业化生产,改性过后的陶瓷材料储能性能较之前提升了3倍以上,推进了储能陶瓷材料的进展。
附图说明
图1为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的SEM照片;
图2为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的的介电常数随温度变化曲线;
图3为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的电滞回线;
图4为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的储能特性随电场变化曲线;
图5为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的储能特性随频率变化曲线;
图6为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的储能特性随温度变化曲线;
图7为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的储能特性随反转次数变化曲线;
图8为实施例2制得的钛酸铋钠钛酸锶基高储能密度和高功率密度陶瓷的放电电流峰值(Imax),放电电流密度(Imax/S)和放电功率密度(PD)随电场强度变化曲线。
具体实施方式
下面结合实施例对本发明做进一步的说明。
实施例1
制备符合化学组成(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,x=0.01的钛酸铋钠钛酸锶基储能陶瓷,包括以下几个步骤:
(1)配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
(10)减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
(11)上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm。
实施例2
制备符合化学组成(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,x=0.02的钛酸铋钠钛酸锶基储能陶瓷,包括以下几个步骤:
(1)配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
(10)减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
(11)上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm。
图1为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷的SEM显微结构图片。从图中可以看出,该陶瓷晶粒尺寸在1微米左右,这有助于提高陶瓷的耐击穿强度;
图2为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷的介电常数随温度变化曲线;
图3为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷在室温和10Hz下测得的单向电滞回线;
图4为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷在60-250kV/cm电场内储能性能;从图中可以看出,在250kV/cm电场下,可利用储能密度(Wrec)为3.09J/cm3,储能效率(η)为85.6%;
图5为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷在室温和150kV/cm电场强度下得到的储能性能随频率变化曲线。从图中可以看出,该陶瓷表现出优异的频率稳定性,可利用储能密度变化率小于4%;
图6为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷在10Hz和150kV/cm电场强度下得到的储能性能随温度变化曲线。从图中可以看出,该陶瓷表现出优异的温度稳定性,可利用储能密度变化率小于3%;
图7为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷在室温,10Hz和150kV/cm电场强度下得到的储能性能随反转次数变化曲线。从图中可以看出,该陶瓷表现出优异的疲劳稳定性,可利用储能密度变化率小于3%;
图8为制备的具有高储能密度和高功率密度的钛酸铋钠钛酸锶基陶瓷的欠阻尼放电电流峰值,放电电流密度和放电功率密度。从图中可以看出,该陶瓷在120kV/cm电场强度下放电电流峰值可以达到99.99A,放电电流密度到达509.5A/cm2,放电功率密度达到30.57MW/cm3
实施例3
制备符合化学组成(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,x=0.03的钛酸铋钠钛酸锶基储能陶瓷,包括以下几个步骤:
(1)配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
(10)减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
(11)上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm。
实施例4
制备符合化学组成(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,x=0.04的钛酸铋钠钛酸锶基储能陶瓷,包括以下几个步骤:
(1)配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料;
(2)一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
(3)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
(4)压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
(5)二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
(6)烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
(7)造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液(PVA)作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
(8)排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
(9)烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
(10)减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
(11)上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对这些实施例的多种修改对本领域的专业技术人员来说是显而易见的,本申请中所定义的一般原理可以在不脱离本发明的精神或范围的情况下在其它实施例中实现。因此,本发明将不会被限制于本申请所示的这些实施例,而是要符合与本申请所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.钛酸铋钠钛酸锶基储能陶瓷材料,其特征在于,该储能陶瓷材料通式为(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9,其中0.01≤x≤0.04。
2.根据权利要求1所述的钛酸铋钠钛酸锶基储能陶瓷材料,其特征在于x=0.01、0.02、0.03、0.04。
3.钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,其特征在于,包括如下步骤:
配料:以Na2CO3粉体、Bi2O3粉体、TiO2粉体、SrCO3粉体、BaCO3粉体和Nb2O5粉体为原料,按通式(1-x)(0.72Bi0.5Na0.5TiO3-0.28SrTiO3)-xBaBi2Nb2O9中Bi、Na、Ti、Sr、Ba和Nb的化学计量进行配料,其中0.01≤x≤0.04;
一次球磨:向上述混合物中加入与混合物等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料,由此可以进一步的提高钛酸铋钠基储能陶瓷材料的综合性能;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨,得到粉料;
压片预烧:将粉料置于磨具中预压成料块,将料块预烧,预烧温度为750~800℃,保温时间2~4小时;
二次球磨:将预烧后的料块在研钵中,经碾碎研磨后得到初级粉料,向得到的初级粉料中加入与初级粉料等量的无水乙醇,持续球磨12~24小时,使粉体混合均匀形成浆料;
烘干:将上述浆料置于恒温烘箱中烘烤,去除无水乙醇,并在研钵中研磨成粉料;
造粒成型:将蒸馏水以及浓度为8%的聚乙烯醇溶液PVA作为粘合剂掺入粉料中,掺入的蒸馏水的质量是粉料质量的2.5%,掺入的粘合剂的质量是粉料质量的5%,在研钵中混合均匀;将混合后的粉料置于磨具中,压制成生坯;将生坯在研钵中磨碎成粉料,通过60目和120目的筛子过筛,取60目和120目筛子中间层的粉料,得到了颗粒大小合适的粉料;将粉料置于磨具中,在200MPa的压强下压制成生坯;
排胶:将生坯排胶,在650℃的温度下煅烧3小时,排除生坯中的PVA,得到瓷坯;
烧结:将瓷坯进行烧结,烧结温度为1100~1150℃,保温时间2~4小时,得到陶瓷片;
减薄和抛光:将烧结得到的陶瓷片减薄至0.15mm左右,并且进行抛光处理;
上电极:将抛光后的陶瓷片清洗、烘干、喷上金电极,电极面积约2mm;
在所述一次球磨和二次球磨过程中,所述球磨时间为12小时;
在所述预烧过程中,所述预烧温度为750℃,所述保温时间为2小时;
在所述烧结过程中,所述烧结温度为1100℃,所述保温时间为2小时。
4.根据权利要求3所述的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,其特征在于,x=0.01。
5.根据权利要求3所述的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,其特征在于,x=0.02。
6.根据权利要求3所述的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,其特征在于,x=0.03。
7.根据权利要求3所述的钛酸铋钠钛酸锶基储能陶瓷材料的制备方法,其特征在于,x=0.04。
CN202010177544.0A 2020-03-14 2020-03-14 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法 Active CN111393161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010177544.0A CN111393161B (zh) 2020-03-14 2020-03-14 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010177544.0A CN111393161B (zh) 2020-03-14 2020-03-14 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111393161A CN111393161A (zh) 2020-07-10
CN111393161B true CN111393161B (zh) 2022-06-07

Family

ID=71428824

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010177544.0A Active CN111393161B (zh) 2020-03-14 2020-03-14 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111393161B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004032B (zh) * 2021-02-09 2022-09-20 杭州电子科技大学 一种类线性高储能高效率无铅弛豫陶瓷及其制备方法
CN113501711A (zh) * 2021-07-12 2021-10-15 内蒙古科技大学 基于能量存储与电卡制冷的多层陶瓷电容器及其制备方法
CN114520114B (zh) * 2022-02-24 2023-06-16 电子科技大学 一种高温度稳定性钛酸铋钠基介质储能陶瓷及其制备方法
CN115340375B (zh) * 2022-09-14 2023-05-09 西安工业大学 一种宽温谱钛酸铋钠-钛酸钡基铁电陶瓷电介质材料及其制备方法和应用
CN115626824A (zh) * 2022-09-16 2023-01-20 安徽工程大学 一种钛酸铋钠基高储能密度无铅介电陶瓷及其制备方法
CN116751051A (zh) * 2023-05-30 2023-09-15 西安交通大学 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN109574656A (zh) * 2018-12-14 2019-04-05 武汉理工大学 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06131915A (ja) * 1992-10-15 1994-05-13 Furukawa Electric Co Ltd:The 高周波誘電体セラミックスおよびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109354492A (zh) * 2018-10-09 2019-02-19 中国科学院光电技术研究所 铋基无铅高储能密度陶瓷材料及其制备方法
CN109574656A (zh) * 2018-12-14 2019-04-05 武汉理工大学 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dielectric and piezoelectric properties of Bi1/2Na1/2TiO3–SrTiO3 lead–free ceramics;Trang An Duong et al.;《Journal of Electroceramics》;20180926;第41卷(第1-4期);第1-7页 *
Investigation of Energy Storage and Electrical Properties of Modified BaTiO3 Doped by BaBi2Nb2O9 Nano Crystalline Ceramics;Mrinal K. Adak et al.;《Physica B: Physics of Condensed Matter》;20191111;第578卷;第1-8页 *

Also Published As

Publication number Publication date
CN111393161A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN111393161B (zh) 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN109180178B (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN107244898B (zh) 钛酸锶钡掺杂的锆钛酸钡钙基压电陶瓷材料及制备方法
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN110540423A (zh) 钛酸铋钠基高储能密度和功率密度陶瓷及制备方法和应用
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN112919907B (zh) 一种储能效率加强高储能无铅铁电陶瓷材料及其制备方法
CN109369154B (zh) 一种储能效率提高的反铁电储能陶瓷及其制备方法与应用
CN113004032A (zh) 一种类线性高储能高效率无铅弛豫陶瓷及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN114349497A (zh) 一种宽温稳定型储能陶瓷材料及其制备方法
CN114621004A (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN111253151B (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
JP2001192267A (ja) 圧電セラミックス
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法
CN103693958A (zh) 一种用于储能电容器的反铁电陶瓷材料及其制备方法和应用
CN108439974A (zh) 脉冲储能介质陶瓷材料及其制备方法
CN112142466B (zh) 一种铌镱酸铅基反铁电陶瓷材料及其制备方法
CN111825451B (zh) 稀土元素Tm掺杂的铌酸银反铁电陶瓷材料及其制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
CN111333413A (zh) 铁酸铋-钛酸铅-钛锡酸钡三元体系高温压电陶瓷材料及其制备方法
CN108516827B (zh) 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant