CN110451955B - 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法 - Google Patents

钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法 Download PDF

Info

Publication number
CN110451955B
CN110451955B CN201910748447.XA CN201910748447A CN110451955B CN 110451955 B CN110451955 B CN 110451955B CN 201910748447 A CN201910748447 A CN 201910748447A CN 110451955 B CN110451955 B CN 110451955B
Authority
CN
China
Prior art keywords
formula
tio
energy storage
sanding
follows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910748447.XA
Other languages
English (en)
Other versions
CN110451955A (zh
Inventor
王晓慧
赵培尧
陈玲玲
汪宏显
李龙土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201910748447.XA priority Critical patent/CN110451955B/zh
Publication of CN110451955A publication Critical patent/CN110451955A/zh
Application granted granted Critical
Publication of CN110451955B publication Critical patent/CN110451955B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种钛酸铋钠‑钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法。所述陶瓷材料的分子式如式I所示:式I中,M表示MnO2;w、x、y分别表示钛酸钡‑铌钽锌酸铋、铌钽锌酸铋和Ta的摩尔分数;z表示M的质量分数;其中,0.05≤w≤0.95,0.06≤x≤0.5,0.01≤y≤0.3,0≤z≤0.3。本发明提供的钛酸铋钠‑钛酸钡基无铅弛豫铁电体储能陶瓷及多层储能陶瓷电容器,具有优良的储能性能及综合性能。通过选择适当的w、x、y、z值及工艺参数,可使该体系的陶瓷块体放电储能密度达到2.27J/cm3,充放电效率达到90%以上,而双层电容器放电储能密度可达到14.26J/cm3,充放电效率达到85%。(1‑w)Bi0.5Na0.5TiO3‑w{(1‑x)BaTiO3‑xBi[Zn2/3(Nb1‑ yTay)1/3]O3}+zM 式I。

Description

钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
技术领域
本发明涉及一种钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法,属于材料领域。
背景技术
世界经济和人类社会的飞速发展离不开能源的支持,太阳能、风能等新型清洁可再生能源也逐步走向实用化,运用先进的储能设备与技术将这些具有间歇性、随机性和波动性等问题的新型可再生能源进行合理存储和利用的研究也逐渐加深。众多储能设备和技术中,电介质电容器具有超高的功率密度、超快速的充放电能力、很高的循环寿命和安全性,非常适用于功率波动大或者需要高功率密度的领域,因而广泛应用于商业、医疗及军用等领域。目前,商业使用的电介质电容器主要为陶瓷电介质,其能量密度小于2J/cm3,随着电力电子器件和系统向着小型化、轻量化以及集成化方向发展,开发具有高储能性能的电介质电容器材料具有重要意义。
储能陶瓷电容器根据电介质不同分为铁电体、弛豫铁电体、反铁电体、线性电介质等。当前,国内相关研究如下:清华大学李敬锋教授课题组的铌酸银基反铁电储能陶瓷(授权公告号CN106478097),其放电储能密度可以达到2.00~2.50J/cm3,充放电效率为50.5~57.2%。武汉理工大学刘韩星等的钛酸铋钠-钛酸锶基储能陶瓷(授权公告号CN109574656),其放电能量密度为1.61~2.17J/cm3,充放电效率达46.6~82.0%。上海硅酸盐研究所董显林等的钛酸锶钡基弛豫铁电体储能陶瓷材料(授权公告号CN109180178),其放电能量密度大于3J/cm3,充放电效率大于72.5%。西安交通大学李飞等的无铅弛豫反铁电陶瓷储能材料(授权公告号CN109180181),其放电储能密度达2.8J/cm3,充放电效率可达98%。
在众多陶瓷电介质中,弛豫铁电体由于具有高介电常数和弥散型相变带来的较小的介电常数-温度变化率,以及细长的电滞回线,在储能陶瓷领域占有巨大优势,研发成本低,储能特性优良的弛豫铁电体陶瓷储能电介质具有重要的实际应用意义。
发明内容
本发明的目的是提供一种成本较低,具有高储能密度和充放电效率的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷电介质及其制备方法,以及以此电介质为基础的多层储能陶瓷电容器的制备方法。
本发明所提供的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷材料的分子式如式I所示:
(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3}+zM
式I
式I中,M表示MnO2
w、x、y分别表示钛酸钡-铌钽锌酸铋、铌钽锌酸铋和Ta的摩尔分数;z表示M的质量分数;其中,0.05≤w≤0.95,0.06≤x≤0.5,0.01≤y≤0.3,0≤z≤0.3。
具体的,式I中,w=0.5~0.65、0.5、0.53、0.6或0.65;x=0.1~0.2、0.1、0.15或0.2;y=0~0.2、0、0.1、0.12或0.2;z=0~0.05、0、0.02或0.05。
具体的,根据本发明的实施例,式I所示陶瓷材料具有但不限于下列之一所示的化学组分:
1)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3};
其中,w、x、y的定义同式I,w=0.53~0.6,x=0.1~0.2,y=0~0.2;
2)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3};
其中,w、x、y的定义同式I,w=0.53,x=0.2,y=0.2;
3)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3};
其中,w、x、y的定义同式I,w=0.6,x=0.1,y=0;
4)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3}+zM;
其中,w、x、y、z的定义同式I,w=0.5~0.65,x=0.1~0.15,y=0.1~0.12,z=0.02~0.05;M表示MnO2
5)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3}+zM;
其中,w、x、y、z的定义同式I,w=0.5,x=0.1,y=0.1,z=0.02;M表示MnO2
6)(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3}+zM;
其中,w、x、y、z的定义同式I,w=0.65,x=0.15,y=0.12,z=0.05;M表示MnO2
本发明还提供了所述陶瓷材料的制备方法,包括如下1)或2)步骤:
1)以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到式I所示陶瓷材料;
2)分别以分析纯的下述a)和b)为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧,分别得到Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3;然后按照式I中的化学计量比将Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3的混合粉体依次进行二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到式I所示陶瓷材料;
a)Na2CO3、Bi2O3和TiO2
b)BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和MnO2
上述的制备方法中,所述一次砂磨和所述二次砂磨的条件如下:
砂磨介质为水或乙醇;砂磨介质的质量为原料总质量的2~10倍;砂磨轮次为10~80轮;
上述的制备方法中,所述一次烘干和所述二次烘干的条件如下:
温度为70~200℃;时间为12~24h。
上述的制备方法中,所述煅烧的条件如下:
温度为800~1000℃;时间为2~5h;
所述造粒的条件如下:
采用的粘合剂为聚乙烯醇;所述粘合剂的质量为原料总质量的5%~10%;
所述排胶的条件如下:
以180~200℃/h的升温速率升温到400~600℃并保温2~5h;
所述烧结的条件如下:
以180~200℃/h的升温速率升温到1000~1200℃并保温2~5h,再以180~200℃/h的降温速率降温至室温。
本发明所提供的陶瓷材料可用于制备电容器或多层陶瓷电容器。
具体地,本发明提供了一种多层陶瓷电容器,由若干间隔排列的电介质层和电极层组成,且最外两侧均为所述电介质层;
所述电介质层由所述陶瓷材料组成。
所述的多层陶瓷电容器中,所述电介质层的厚度为5~30μm;
所述电极层的厚度为1~2μm;
构成所述电极层的材料为Ag、Pd、Pt或Ag-Pd合金。
本发明还提供了所述多层陶瓷电容器的制备方法,包括如下1)或2)的步骤:
1)以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干;然后配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银而得;
2)分别以分析纯的下述a)和b)为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧,分别得到Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3;然后按照式I中的化学计量比将Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-yTay)1/3]O3的混合粉体依次进行二次砂磨、二次烘干;然后配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银而得;
a)Na2CO3、Bi2O3和TiO2
b)BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和MnO2
上述的制备方法中,所述一次砂磨、所述二次砂磨和所述煅烧的条件同所述陶瓷材料的制备方法中的条件。
上述的制备方法中,所述配置流延浆料的条件如下:
采用的分散剂为乙醇和/或乙酸乙酯,所述分散剂的用量为原料总质量的2~10倍;
采用的粘结剂为聚乙烯醇缩丁醛,所述粘接剂的用量为原料总质量的3~10%。
上述的制备方法中,所述印刷电极的条件如下:
采用的电极为Ag-Pd电极;印刷方法为各种常规方法,如丝网印刷及磁控溅射等;
所述排胶的条件如下:
以180~200℃/h的升温速率升温到400~600℃并保温2~5h;
所述烧结的条件如下:
以180~200℃/h的升温速率升温到1000~1200℃并保温2~5h,再以180~200℃/h的降温速率降温至室温;
所述被银的条件如下:
烧渗温度为500~600℃;时间为20~30分钟;被银方法可采用烧渗方法。
所述烧渗之前还可包括对陶瓷片进行打磨的步骤。
本发明具有如下有益效果:
本发明提供的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及多层储能陶瓷电容器,具有优良的储能性能及综合性能。通过选择适当的w、x、y、z值及工艺参数,可使该体系的陶瓷块体放电储能密度达到2.27J/cm3,充放电效率达到90%以上,而双层电容器放电储能密度可达到14.26J/cm3,充放电效率达到85%。
附图说明
图1为实施例1中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的放电储能密度和充放电效率与电场强度的关系图。
图2为实施例1中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的最大可施加电场下的电滞回线图。
图3为实施例2中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的充放电储能密度和充放电效率与电场强度的关系图。
图4为实施例2中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷介电常数随温度的变化关系图。
图5为实施例2中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷储能性能与温度的关系图。
图6为实施例4中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体双层储能陶瓷电容器的充放电储能密度和充放电效率与电场强度的关系图。
图7为实施例4中制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体双层储能陶瓷电容器的电滞回线与温度的关系图。
具体实施方式
下述实施例中所使用的实验方法如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1、
本实施例中钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.4Bi0.5Na0.5TiO3-0.6{0.9BaTiO3-0.1Bi[Zn2/3Nb1/3]O3},按照如下步骤制备得到:
(1)砂磨、烘干和预烧:
以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO和Nb2O5为原料,按照上述化学式中的化学计量比配料,以乙醇(约为10L,即粉料质量的2倍)为介质进行砂磨10轮,烘干(温度为80℃,时间为24h)后在850℃保温5小时进行煅烧。
(2)二次砂磨、造粒、压制成型、排胶和烧结:
将步骤(1)中得到的预烧后的粉体再次以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨20轮后,烘干(温度为180℃,时间为24h)后加入粉料质量10%的PVA(聚乙烯醇)粘结剂造粒并压制成型。在烧结炉中以200℃/h的升温速率升至600℃排胶,保温5小时,然后以200℃/h的升温速率升至1100℃进行烧结,并保温4h,即可得到钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷。
(3)打磨、被银和测试:
将步骤(2)中烧结后的陶瓷片的双面进行简单的打磨处理至厚度约为0.2mm后被银,也即在600℃烧银30min。将上述制备得到的钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷在室温下测试性能,实验结果如表1所示。充放电能量密度和充放电效率采用铁电测试系统TF2000(aixACC TF Analyzer 2000)测量电滞回线计算所得,计算方法为:
Figure BDA0002166368500000051
其中,放电储能密度和充放电效率随电场强度的关系图如图1所示,最大可施加电场下的电滞回线图如图2所示。0.4Bi0.5Na0.5TiO3-0.6{0.9BaTiO3-0.1Bi[Zn2/3Nb1/3]O3}体系陶瓷片最大击穿场强为229kV/cm,最大击穿场强下介质极化强度约为32.6μC/cm2,充放电效率保持在85%以上,具体储能性能如表1所示。
表1实施例1钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷性能
Figure BDA0002166368500000061
实施例2、
本实施例中钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.47Bi0.5Na0.5TiO3-0.53{0.8BaTiO3-0.2Bi[Zn2/3(Nb0.8Ta0.2)1/3]O3},按照如下步骤制备得到:
以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5和Ta2O5为原料,按照上述表达式所示化学计量比进行配料,其余步骤同实施例1。
实验结果如表2所示,其中放电储能密度和充放电效率随电场强度的变化如图3所示,介电常数和在150kV/cm电场强度下测试得到的储能性能随温度的变化分别如图4和图5所示。0.47Bi0.5Na0.5TiO3-0.53{0.8BaTiO3-0.2Bi[Zn2/3(Nb0.8Ta0.2)1/3]O3}体系陶瓷片最大击穿场强为189kV/cm,充放电效率保持在94%以上,具体储能性能如表2所示。其介电常数在40~280℃温度范围内变化小于±15%;在150kV/cm电场下,放电储能密度在25~190℃温度范围内变化小于±10%,且充放电效率均在85%以上,温度稳定性优异。
表2实施例2钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷性能
Figure BDA0002166368500000062
实施例3、
本实施例中钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷的成分表达式如下所示:0.35Bi0.5Na0.5TiO3-0.65{0.85BaTiO3-0.15Bi[Zn2/3(Nb0.88Ta0.12)1/3]O3}+0.05MnO2,按照如下步骤制备得到:
以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照上述表达式所示化学计量比进行配料,其余步骤同实施例1。
实验结果如表3所示。
表3实施例3钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷性能
Figure BDA0002166368500000063
实施例4、
本实施例中钛酸铋钠-钛酸钡基无铅弛豫铁电体双层储能陶瓷电容器的成分表达式如下所示:0.5Bi0.5Na0.5TiO3-0.5{0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3}+0.02MnO2,按照如下步骤制备得到:
(1)砂磨、烘干和预烧:
以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照上述化学式中的化学计量比配料,以乙醇(约为10L,即粉料质量的2倍)为介质进行砂磨10轮,烘干(温度为80℃,时间为24h)后在850℃保温5小时进行煅烧;
(2)二次砂磨、烘干、配置流延浆料、流延
将步骤(1)中得到的陶瓷粉料以去离子水(约为10L,即粉料质量的2倍)为介质进行砂磨20轮后,烘干(温度为180℃,时间为24h),而后以酒精或乙酸乙酯(粉料质量的10倍)为介质进行分散,加入粉料质量6%的PVB(聚乙烯醇缩丁醛),随后流延。
(3)印刷电极、叠层、切割、排胶和烧结
将步骤(2)中得到的厚度为10μm的流延膜带印刷Ag-Pd电极,每层Ag-Pd厚度均为1.5μm,经叠层和切割得到双层储能陶瓷电容器的坯体,在烧结炉中以200℃/h的升温速率升至600℃排胶,保温4小时,然后以200℃/h的升温速率升至1100℃进行烧结,并保温4h,即可得到钛酸铋钠-钛酸钡基无铅弛豫铁电体双层储能陶瓷电容器。
(4)被银和测试
将步骤(3)中烧结后的双层储能陶瓷电容器两端被银,在600℃烧银30min。
实验结果如表4所示,其中放电储能密度和充放电效率随电场强度的关系图如图6所示,400kV/cm电场下电滞回线随温度的变化如图7所示。由图可知,0.5Bi0.5Na0.5TiO3-0.5{0.9BaTiO3-0.1Bi[Zn2/3(Nb0.9Ta0.1)1/3]O3}+0.02MnO2体系双层储能陶瓷电容器最大击穿场强为1208kV/cm,充放电效率保持在85%以上,具体储能性能如表4所示。在400kV/cm电场下,放电储能密度在25~160℃温度范围内变化小于±10%,且充放电效率基本保持在90%以上,温度稳定性优异。
表4实施例4钛酸铋钠-钛酸钡基双层储能陶瓷电容器性能
Figure BDA0002166368500000071

Claims (8)

1.一种陶瓷材料,分子式如式I所示:
(1-w)Bi0.5Na0.5TiO3-w{(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3}+zM
式I
式I中,M表示MnO2wx、y分别表示钛酸钡-铌钽锌酸铋、铌钽锌酸铋和Ta的摩尔分数;z表示M的质量分数;其中,0.5≤w≤0.65,0.06≤x≤0.5,0.01≤y≤0.3,0≤z≤0.3。
2.权利要求1所述陶瓷材料的制备方法,包括如下1)或2)步骤:
1)以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到式I所示陶瓷材料;
2)分别以分析纯的下述a)和b)为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧,分别得到Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3+zMnO2;然后按照式I中的化学计量比将Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3+zMnO2的混合粉体依次进行二次砂磨、二次烘干、造粒、压制成型、排胶和烧结,得到式I所示陶瓷材料;
a)Na2CO3、Bi2O3和TiO2
b)BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和MnO2
所述煅烧的条件如下:
温度为800~1000℃;时间为2~5h;
所述造粒的条件如下:
采用的粘合剂为聚乙烯醇;所述粘合剂的质量为原料总质量的5%~10%;
所述排胶的条件如下:
以180~200oC/h的升温速率升温到400~600oC并保温2~5h;
所述烧结的条件如下:
以180~200oC/h的升温速率升温到1000~1200oC并保温2~5h,再以180~200oC/h的降温速率降温至室温。
3.根据权利要求2所述的制备方法,其特征在于:所述一次砂磨和所述二次砂磨的条件如下:
砂磨介质为水或乙醇;砂磨介质的质量为原料总质量的2~10倍;砂磨轮次为10~80轮;
所述一次烘干和所述二次烘干的条件如下:
温度为70~200℃;时间为12~24h。
4.权利要求1所述陶瓷材料在制备电容器或多层陶瓷电容器中的应用。
5.一种多层陶瓷电容器,由若干间隔排列的电介质层和电极层组成,且最外两侧均为所述电介质层;
所述电介质层由权利要求1所述陶瓷材料组成;
所述电介质层的厚度为5~30μm;
所述电极层的厚度为1~2μm;
构成所述电极层的材料为Ag、Pd、Pt或Ag-Pd合金。
6.权利要求5所述多层陶瓷电容器的制备方法,包括如下1)或2)的步骤:
1)以分析纯的Na2CO3、Bi2O3、TiO2、BaCO3、ZnO、Nb2O5、Ta2O5和MnO2为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧、二次砂磨、二次烘干;然后配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银而得;
2)分别以分析纯的下述a)和b)为原料,按照式I中的化学计量比配料,然后依次进行一次砂磨、一次烘干、煅烧,分别得到Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3+zMnO2;然后按照式I中的化学计量比将Bi0.5Na0.5TiO3和(1-x)BaTiO3-xBi[Zn2/3(Nb1-y Ta y )1/3]O3+zMnO2的混合粉体依次进行二次砂磨、二次烘干;然后配置流延浆料、流延、印刷电极、叠层、切割、排胶、烧结和被银而得;
a)Na2CO3、Bi2O3和TiO2
b)BaCO3、TiO2、Bi2O3、ZnO、Nb2O5、Ta2O5和MnO2
7.根据权利要求6所述的制备方法,其特征在于:所述配置流延浆料的条件如下:
采用的分散剂为乙醇和/或乙酸乙酯,所述分散剂的用量为原料总质量的2~10倍;
采用的粘结剂为聚乙烯醇缩丁醛,所述粘结剂的用量为原料总质量的3~10%。
8.根据权利要求6或7所述的制备方法,其特征在于:所述印刷电极的条件如下:
采用的电极为Ag-Pd电极;
所述排胶的条件如下:
以180~200oC/h的升温速率升温到400~600oC并保温2~5h;
所述烧结的条件如下:
以180~200oC/h的升温速率升温到1000~1200oC并保温2~5h,再以180~200oC/h的降温速率降温至室温;
所述被银的条件如下:
烧渗温度为500~600℃;时间为20~30分钟。
CN201910748447.XA 2019-08-14 2019-08-14 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法 Active CN110451955B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910748447.XA CN110451955B (zh) 2019-08-14 2019-08-14 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910748447.XA CN110451955B (zh) 2019-08-14 2019-08-14 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN110451955A CN110451955A (zh) 2019-11-15
CN110451955B true CN110451955B (zh) 2022-02-08

Family

ID=68486497

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910748447.XA Active CN110451955B (zh) 2019-08-14 2019-08-14 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN110451955B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113999004B (zh) * 2021-11-08 2023-06-27 西安电子科技大学 一种无铅高储能密度陶瓷材料及其制备方法
CN114315345B (zh) * 2022-01-11 2022-10-11 北京工业大学 一种具有宽温稳定换能系数的高温压电能量收集陶瓷材料及制备
CN115196960B (zh) * 2022-06-29 2023-05-26 北京科技大学 一种兼具高储能密度,高功率密度和高效率的钛酸铋钠基弛豫铁电陶瓷材料及其制备方法
CN115376825B (zh) * 2022-08-16 2023-08-08 中国科学院上海硅酸盐研究所 一种兼具高储能密度和储能效率的nn基储能陶瓷块体材料及其制备方法
CN116444267A (zh) * 2023-05-08 2023-07-18 四川大学 一种高温强场高介低损的储能陶瓷及其制备方法
CN116854471A (zh) * 2023-07-07 2023-10-10 石河子大学 一种铌酸钠基弛豫铁电复合储能陶瓷材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036734A (zh) * 2015-06-25 2015-11-11 武汉理工大学 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN106892659A (zh) * 2017-03-31 2017-06-27 天津大学 一种抗还原巨介电常数多层陶瓷电容器介质材料

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102199035B (zh) * 2011-03-22 2013-06-26 清华大学 X9r型陶瓷电容器介质材料及其制备方法
CN105367053B (zh) * 2015-06-29 2018-12-11 福建火炬电子科技股份有限公司 一种低损耗x9r型多层陶瓷电容器用介质材料及其制备方法
CN108623300B (zh) * 2018-05-22 2020-11-10 清华大学 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN109942292B (zh) * 2019-04-12 2021-09-07 中南大学 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105036734A (zh) * 2015-06-25 2015-11-11 武汉理工大学 高介电常数x8r型多层陶瓷电容器用介质材料及其制备方法
CN106892659A (zh) * 2017-03-31 2017-06-27 天津大学 一种抗还原巨介电常数多层陶瓷电容器介质材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Dielectric property of NBT@BT–BZN composite ceramics",A Song,《World Scientific 》,第33卷,第10期,第1950115-1-1951115-8页;A Song;《World Scientific 》;20190318;第33卷(第10期);第1950115-1-1950115-8页 *

Also Published As

Publication number Publication date
CN110451955A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN108623300B (zh) 钛酸钡-铌锌酸铋基无铅弛豫铁电体储能陶瓷及其制备方法
CN108751982B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111205087B (zh) 一种铋基三明治结构的高储能密度陶瓷及其制备方法
CN110342925B (zh) 一种反铁电陶瓷材料及其制备方法
CN111393161B (zh) 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN113999004B (zh) 一种无铅高储能密度陶瓷材料及其制备方法
CN111233470B (zh) 一种具有优异充放电性能的反铁电陶瓷材料及其制备方法
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN111393149B (zh) 一种锆锡酸镧铅反铁电陶瓷及其制备方法和应用
CN114621004B (zh) 一种高储能密度的高熵陶瓷材料及其制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN114736016B (zh) 一种宽温度稳定性的高储能密度钛酸铋钾基钙钛矿陶瓷及制备方法
CN107814569B (zh) 一种无铅反铁电体陶瓷及其制备方法
CN114349497A (zh) 一种宽温稳定型储能陶瓷材料及其制备方法
CN111018516A (zh) 钛酸钡基高储能密度电子陶瓷及其制备方法
CN113135753A (zh) 一类低电场驱动高效储能特性的无铅弛豫陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN109293353B (zh) 一种高储能密度和高储能效率的无铅BiFeO3基铁电陶瓷材料及其制备方法
CN113511893A (zh) 一种bnt基三层结构的高储能密度陶瓷及其制备方法
CN112430084A (zh) 一种高耐电场强度、高储能密度的nbt-bt基驰豫铁电陶瓷薄膜材料及其制备方法
CN111253151A (zh) 具有高储能密度和高功率密度的铁酸铋钛酸钡基陶瓷及制备方法
CN115368132A (zh) 一种钛酸钡基陶瓷材料及制备方法
CN114292104A (zh) 一种脉冲电容器用储能陶瓷材料及其制备方法
CN115010493B (zh) 一种高熵焦绿石介电陶瓷材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant