CN116751051A - 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法 - Google Patents

一种钛酸铋钠基高储能性能陶瓷电容器及制备方法 Download PDF

Info

Publication number
CN116751051A
CN116751051A CN202310629429.6A CN202310629429A CN116751051A CN 116751051 A CN116751051 A CN 116751051A CN 202310629429 A CN202310629429 A CN 202310629429A CN 116751051 A CN116751051 A CN 116751051A
Authority
CN
China
Prior art keywords
energy storage
ceramic capacitor
ceramic
high energy
storage performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310629429.6A
Other languages
English (en)
Inventor
娄晓杰
康瑞瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN202310629429.6A priority Critical patent/CN116751051A/zh
Publication of CN116751051A publication Critical patent/CN116751051A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5122Pd or Pt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

本发明公开了一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,该陶瓷电容器的陶瓷材料化学组成式为[(Bi0.5Na0.5)1‑xSrx]1‑3y/2MyTiO3,属ABO3型钙钛矿结构;x=0‑0.5,y=0.02‑0.2;M为掺杂元素且占据钙钛矿结构的A位,M为La及La系稀土元素。本发明通过在钛酸铋钠基陶瓷体系中引入掺杂离子来提高储能性能的同时,并采用两步烧结法优化了击穿场强,最终获得综合储能性能优异的陶瓷电容器;大幅提高了储能性能及温度稳定性,且制备过程简单,成本低廉,适合工业化大批量生产,可广泛应用于脉冲电子功率器件中。

Description

一种钛酸铋钠基高储能性能陶瓷电容器及制备方法
技术领域
本发明属于功能陶瓷材料技术领域,涉及不含铅等有害元素的钛酸铋钠基高储能性能陶瓷电容器及制备方法。
背景技术
为解决人类社会面临的能源危机,人们开发了各种可再生能源,包括太阳能、风能和潮汐能,以逐渐取代化石能源。但是,可再生能源的间歇性特性严重影响了能源的利用。为了解决上述问题,有必要将能源收集技术与储能装置相结合。现有的储能装置包括电池、电化学电容器和介电电容器。其中,介电电容器因具有高功率密度、快速的充放电效率以及良好的抗疲劳特性而广泛应用于电子脉冲功率领域,如电磁弹射器和混合动力汽车。
电介质可分为线性电介质、铁电体、反铁电体和弛豫铁电体。其中,弛豫铁电体因为具有较高的极化强度和击穿场强,在储能方面有很大潜力。目前钛酸铋钠基弛豫铁电材料备受研究人员的青睐,比如:专利CN114315350A制备的钐掺杂的钛酸铋钠-锆钛酸钡陶瓷,在60-200℃温度范围内,击穿场强为200-209kV/cm,放电能量密度为1.12-1.32J/cm3,储能效率为86.9-89.6%。专利CN110540423A制备的钛酸铋钠-铌铝酸锶储能陶瓷,击穿场强达到280kV/cm,其放电能量密度为3.01J/cm3,储能效率为85%。尽管如此,钛酸铋钠基陶瓷的储能密度依旧需要进一步提高,以满足器件集成化的发展。
因此,通过对钛酸铋钠基陶瓷进行掺杂改性,提高其室温下的储能密度和温度稳定性具有重要的实际应用意义。
发明内容
针对现有技术中存在的不足,本发明的目的在于,提供一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,通过在钛酸铋钠基陶瓷体系中引入掺杂离子来提高储能性能的同时,并采用两步烧结法优化了击穿场强,最终获得综合储能性能优异的陶瓷电容器。
为了解决上述技术问题,本发明采用如下技术方案予以实现:
一种钛酸铋钠基高储能性能陶瓷电容器,该陶瓷电容器的陶瓷材料化学组成式为[(Bi0.5Na0.5)1-xSrx]1-3y/2MyTiO3,属ABO3型钙钛矿结构;x=0-0.5,y=0.02-0.2;M为掺杂元素且占据钙钛矿结构的A位,M为La及La系稀土元素。
本发明还包括如下技术特征:
具体的,该陶瓷电容器的陶瓷材料包括以下原料:Bi2O3、Na2CO3、SrCO3、TiO2以及M的氧化物,各原料纯度均高于99%。
具体的,当M为La时,其原料中M的氧化物为La2O3
具体的,陶瓷材料化学组成式为[(Bi0.5Na0.5)0.85Sr0.15]1-3y/2LayTiO3,y=0.02-0.2。
一种所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,包括以下步骤:
步骤1,根据化学组成式中的配比称取上述各原料,通过一次球磨将原料混合均匀,得到初始粉体;
步骤2,将初始粉体置入马弗炉,在800~900℃预烧2~4h,得到预合成的陶瓷粉体;
步骤3,将预合成的陶瓷粉体通过二次球磨、造粒、预压成型以及冷等静压过程得到陶瓷生坯;
步骤4,将陶瓷生坯置于马弗炉,在500~700℃排胶5~10h,然后开始高温烧结,烧结温度为1150-1180℃保温5min,快速降至1070-1100℃保温2h,接着随炉自然冷却至室温取出;
步骤5,将烧结成瓷的样品分别在300目、800目和1500目的砂纸上磨薄抛光;在样品上下表面被银,并置于马弗炉700℃保温30min得到陶瓷电容器,或在样品表面溅射Pt电极得到陶瓷电容器。
具体的,所述步骤1中,一次球磨转速为400~500r/min,球磨时间为6~12h。
具体的,所述步骤3中,二次球磨转速为400~500r/min,球磨时间为6~12h。
具体的,所述步骤3中,造粒采用6wt%的聚乙烯醇作为粘结剂。
具体的,所述步骤3中,预压成型的压力控制在2MPa.。
具体的,所述步骤3中,冷等静压的条件是200MPa保压60s。
本发明与现有技术相比,具有如下技术效果:
(1)本发明大幅提高了储能性能及温度稳定性,且制备过程简单,成本低廉,适合工业化大批量生产,可广泛应用于脉冲电子功率器件中。
(2)本发明提供的钛酸铋钠基储能陶瓷电容器,具有优异的储能性能,最大电场强度可以达到510kV/cm,与之相对应的放电能量密度为9.65J/cm3,储能效率为91.12%。
(3)本发明在钛酸铋钠-钛酸锶基的A位引入掺杂离子,提高体系的弛豫行为,使铁电畴被破坏,从而降低极化强度在电场下的滞后;制备的陶瓷其介电常数在宽温域内保持稳定,同时获得了细长的电滞回线,大幅提高了陶瓷的放电能量密度和储能效率,并且可以在很宽的温度范围内(-50-200℃)保持优异的储能性能稳定性。
(4)本发明中未使用Hf、Nb和Ta等高成本的原料,因此制备成本低廉。
(5)本发明采用两步烧结工艺,降低晶粒尺寸,大幅提高了击穿电场。
(6)本发明能应用于电磁弹射器和混合动力汽车等脉冲功率体系中。
附图说明
图1为本发明各实施例和对比例的X射线衍射(XRD)图谱;
图2为实施例2制得的y=0.12陶瓷组分的扫描电子显微镜(SEM)照片;
图3为实施例2制得的y=0.12陶瓷组分的介电常数(εr)和介电损耗(tanδ)随温度变化曲线;
图4为实施例2制得的y=0.12陶瓷组分在室温下的极化强度-电场关系曲线(Polarization-Electric field,简称P-E电滞回线);
图5为实施例2制得的y=0.12陶瓷组分随温度变化的电滞回线。
具体实施方式
本发明提供一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,该陶瓷电容器的陶瓷材料的化学组成式为[(Bi0.5Na0.5)1-xSrx]1-3y/2MyTiO3,属于ABO3型钙钛矿结构。其中,x=0-0.5,y=0.02-0.2,M为掺杂元素,占据钙钛矿结构的A位;M可以是La及La系稀土元素。
本发明制备方法包括以下原料:Bi2O3,Na2CO3,SrCO3,TiO2以及M的氧化物(纯度均高于99%)。
具体的,当M为La时,其原料中M的氧化物为La2O3,制得的陶瓷材料化学组成式为[(Bi0.5Na0.5)0.85Sr0.15]1-3y/2LayTiO3
本发明制备方法包括以下步骤:
步骤1,根据化学组成式中的配比称取上述各原料,通过一次球磨将原料混合均匀,得到初始粉体;球磨转速为400~500r/min,球磨时间为6~12h;
步骤2,将初始粉体置入马弗炉,在800~900℃预烧2~4h,得到预合成的陶瓷粉体;
步骤3,将预合成的陶瓷粉体通过二次球磨、造粒、预压成型以及冷等静压过程得到陶瓷生坯;球磨转速为400~500r/min,球磨时间为6~12h;造粒采用6wt%的聚乙烯醇(PVA)作为粘结剂;预压成型的压力控制在2MPa;冷等静压的条件是200MPa保压60s;
步骤4,将陶瓷生坯置于马弗炉,在500~700℃排胶5~10h,然后开始高温烧结,烧结温度为1150-1180℃保温5min,快速降至1070-1100℃保温2h,接着随炉自然冷却至室温取出;
步骤5,将烧结成瓷的样品分别在300目、800目和1500目的砂纸上磨薄抛光;在样品上下表面被银,并置于马弗炉700℃保温30min得到陶瓷电容器,或在样品表面溅射Pt电极得到陶瓷电容器。
本发明制备的储能陶瓷能用于混合动力汽车、分布式功率系统以及电磁弹射领域。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1:
本实施例提供本实施例提供一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,本实施例中的陶瓷材料化学组成为[(Bi0.5Na0.5)0.85Sr0.15]0.88La0.08TiO3,制备步骤如下:
步骤1,选取纯度高于99%的Bi2O3,Na2CO3,SrCO3,La2O3和TiO2作为原料;根据化学组成计算需称取的原料质量,然后用电子天平称量各原料(比计算的质量多0.5g),分别放入洗干净的烧杯中,用锡纸封口并用牙签扎10个孔,置于烘箱中150℃烘干10h备用;根据化学组成比称取上述烘干的各粉体,置于50mL聚四氟乙烯球磨罐内,采用玛瑙圆珠和无水乙醇作为球磨介质,其总量不超过球磨罐容积的三分之二,球磨转速为400r/min,球磨时间为12h,得到初始粉体;
步骤2,将上述初始粉体倒入蒸发皿中,并加盖以防止杂质进入,置于烘箱中80℃烘干8h备用;将烘干的初始粉体用玛瑙研钵研磨之后装入氧化铝坩埚中,用药匙将粉体压实,加盖放入马弗炉中预烧以获得预合成粉体,设置升温速率为3℃/min,预烧温度为850℃,保温时间为3h,之后随炉自然冷却至室温取出,得到预合成的陶瓷粉体;
步骤3,将预合成的陶瓷粉体用玛瑙研钵研磨之后再次装入球磨罐中进行二次球磨,该过程依然采用玛瑙圆珠和无水乙醇作为球磨介质,其总量不超过球磨罐容积的三分之二,球磨转速为400r/min,球磨时间为12h;上述球磨之后的浆料倒入蒸发皿中,并加盖以防止杂质进入,置于烘箱中80℃烘干8h备用;取出烘干的粉体,置于研钵中充分研磨,然后逐滴加入6wt%的聚乙烯醇(PVA)造粒直至均匀,接着过100目筛,装袋备用;称取0.25g上述粉料,装入直径为10mm的圆柱形模具中,在粉末压片机上预压成型;将预压成型的生坯装入实验室用手套,抽真空,接着放入冷等静压机,条件为200MPa保压60s,获得密实的陶瓷生坯;
步骤4,将上述陶瓷生坯置于马弗炉排胶,500℃保温10h,然后开始高温烧结,烧结条件为1150-1180℃保温5min,快速降至1070-1100℃保温2h,接着随炉自然冷却至室温取出;需要注意的是,由于Bi和Na属于易挥发性元素,因此烧结时需要将陶瓷生坯用其粉体覆盖以减少挥发。
步骤5,将烧结成瓷的样品分别在300目、800目和1500目的砂纸上磨薄抛光;在样品上下表面被银,并置于马弗炉700℃保温30min,用于测试介电性能;在样品表面溅射Pt电极,用于测试P-E电滞回线;其他性能直接使用烧结成瓷的样品即可。
实施例2:
本实施例提供一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,本实施例中的陶瓷材料化学组成为[(Bi0.5Na0.5)0.85Sr0.15]0.82La0.12TiO3,制备步骤与实施例1相同。
实施例3:
本实施例提供一种钛酸铋钠基高储能性能陶瓷电容器及制备方法,本实施例中的陶瓷材料化学组成为[(Bi0.5Na0.5)0.85Sr0.15]0.79La0.14TiO3,制备步骤与实施例1相同。
对比例1:
本对比例提供一种陶瓷电容器及制备方法,该陶瓷电容器的陶瓷材料化学组成为[(Bi0.5Na0.5)0.85Sr0.15]TiO3,制备步骤与实施例1相比,除了步骤1中无La2O3原料,其他步骤均相同。
与实施例相比,该对比例的击穿电场强度仅有280kV/cm,与之相对应的放电能量密度仅为2.18J/cm3,储能效率只有70.55%,该产品性能不利于作为储能电容器。
图1为本发明各实施例和对比例陶瓷组分的XRD图谱;从图中可以看出,本发明制备的陶瓷呈现典型的钙钛矿结构。图2为实施例2制得的y=0.12陶瓷组分的SEM照片,从图中可以看出,该陶瓷呈现致密的微观结构,平均晶粒尺寸为0.51μm。图3为实施例2制得的y=0.12陶瓷组分的εr和tanδ随温度变化曲线,测试温度范围是室温-500℃,测试频率分别为1kHz,10kHz,100kHz,1000kHz和2000kHz;从图中可以看出,该陶瓷组分具有两个特征介电峰,一个在室温附近,呈现出明显的频率弥散特性,另一个位于300℃附近,在两个介电峰之间,介电常数随温度变化不大,呈现出优异的温度稳定性。此外,该陶瓷组分的介电损耗在室温至400℃温度区间内均小于0.05。图4为实施例2制得的y=0.12陶瓷组分在室温下的P-E电滞回线,从图中可以看出,该陶瓷组分的电滞回线呈现细长型,并且击穿电场强度可以达到510kV/cm,与之相对应的放电能量密度为9.65J/cm3,储能效率为91.12%。图5为实施例2制得的y=0.12陶瓷组分随温度变化的P-E电滞回线,从图中可以看出,该陶瓷组分的储能性能呈现出优异的温度稳定性,在-50-200℃测试范围内,当电场强度为400kV/cm时,与之相对应的放电能量密度为6.3-6.82J/cm3,储能效率为87.36-94.97%。

Claims (10)

1.一种钛酸铋钠基高储能性能陶瓷电容器,其特征在于,该陶瓷电容器的陶瓷材料化学组成式为[(Bi0.5Na0.5)1-xSrx]1-3y/2MyTiO3,属ABO3型钙钛矿结构;x=0-0.5,y=0.02-0.2;M为掺杂元素且占据钙钛矿结构的A位,M为La及La系稀土元素。
2.如权利要求1所述的钛酸铋钠基高储能性能陶瓷电容器,其特征在于,该陶瓷电容器的陶瓷材料包括以下原料:Bi2O3、Na2CO3、SrCO3、TiO2以及M的氧化物,各原料纯度均高于99%。
3.如权利要求1所述的钛酸铋钠基高储能性能陶瓷电容器,其特征在于,当M为La时,其原料中M的氧化物为La2O3
4.如权利要求3所述的钛酸铋钠基高储能性能陶瓷电容器,其特征在于,陶瓷材料化学组成式为[(Bi0.5Na0.5)0.85Sr0.15]1-3y/2LayTiO3,y=0.02-0.2。
5.一种如权利要求2所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,包括以下步骤:
步骤1,根据化学组成式中的配比称取上述各原料,通过一次球磨将原料混合均匀,得到初始粉体;
步骤2,将初始粉体置入马弗炉,在800~900℃预烧2~4h,得到预合成的陶瓷粉体;
步骤3,将预合成的陶瓷粉体通过二次球磨、造粒、预压成型以及冷等静压过程得到陶瓷生坯;
步骤4,将陶瓷生坯置于马弗炉,在500~700℃排胶5~10h,然后开始高温烧结,烧结温度为1150-1180℃保温5min,快速降至1070-1100℃保温2h,接着随炉自然冷却至室温取出;
步骤5,将烧结成瓷的样品分别在300目、800目和1500目的砂纸上磨薄抛光;在样品上下表面被银,并置于马弗炉700℃保温30min得到陶瓷电容器,或在样品表面溅射Pt电极得到陶瓷电容器。
6.如权利要求5所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,所述步骤1中,一次球磨转速为400~500r/min,球磨时间为6~12h。
7.如权利要求5所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,所述步骤3中,二次球磨转速为400~500r/min,球磨时间为6~12h。
8.如权利要求5所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,所述步骤3中,造粒采用6wt%的聚乙烯醇作为粘结剂。
9.如权利要求5所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,所述步骤3中,预压成型的压力控制在2MPa.。
10.如权利要求5所述的钛酸铋钠基高储能性能陶瓷电容器的制备方法,其特征在于,所述步骤3中,冷等静压的条件是200MPa保压60s。
CN202310629429.6A 2023-05-30 2023-05-30 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法 Pending CN116751051A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310629429.6A CN116751051A (zh) 2023-05-30 2023-05-30 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310629429.6A CN116751051A (zh) 2023-05-30 2023-05-30 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法

Publications (1)

Publication Number Publication Date
CN116751051A true CN116751051A (zh) 2023-09-15

Family

ID=87952444

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310629429.6A Pending CN116751051A (zh) 2023-05-30 2023-05-30 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法

Country Status (1)

Country Link
CN (1) CN116751051A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710171A (zh) * 2015-03-10 2015-06-17 桂林电子科技大学 一种高储能密度钛酸锶铋基复相陶瓷及其制备方法
KR101685097B1 (ko) * 2015-10-16 2016-12-09 한국세라믹기술원 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액추에이터
CN111393161A (zh) * 2020-03-14 2020-07-10 杭州电子科技大学 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN115881430A (zh) * 2022-12-02 2023-03-31 西安交通大学 一种高能量密度的钛酸铋钠基介电陶瓷电容器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104710171A (zh) * 2015-03-10 2015-06-17 桂林电子科技大学 一种高储能密度钛酸锶铋基复相陶瓷及其制备方法
KR101685097B1 (ko) * 2015-10-16 2016-12-09 한국세라믹기술원 복합 비스무스계 무연 압전 세라믹스 및 이를 포함하는 액추에이터
CN111393161A (zh) * 2020-03-14 2020-07-10 杭州电子科技大学 钛酸铋钠钛酸锶基储能陶瓷材料及其制备方法
CN115881430A (zh) * 2022-12-02 2023-03-31 西安交通大学 一种高能量密度的钛酸铋钠基介电陶瓷电容器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIANG LI, ET AL.: ""Enhanced energy-storage performance of (1-x)(0.72Bi0.5Na0.5TiO3-0.28Bi0.2Sr0.7, 0.1TiO3)-xLa ceramics"", 《JOURNAL OF ALLOYS AND COMPOUNDS》, 10 October 2018 (2018-10-10), pages 116 - 123 *

Similar Documents

Publication Publication Date Title
CN109574656A (zh) 一种高储能钛酸铋钠-钛酸锶基介质材料及其制备方法
CN109133915A (zh) 一种高储能钛酸钡基介质材料及其制备方法
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN109942292B (zh) 一种钛酸铋钠基透明陶瓷材料及其制备方法和应用
CN102674832B (zh) 一种钛酸钡基无铅含铋弛豫铁电陶瓷材料及制备方法
CN111484325A (zh) 一种钛酸锶钡基陶瓷材料及其制备方法和应用
CN112919903B (zh) 高效电容器用钛酸锶铋基无铅陶瓷材料及其制备方法
CN109180181A (zh) 一种无铅弛豫反铁电陶瓷储能材料及其制备方法
CN114605151B (zh) Gd-Ta共掺杂钨青铜结构铁电储能陶瓷材料及制备方法
CN113666743A (zh) 一种knn基透明储能陶瓷材料及其制备方法
CN107244912B (zh) 一种新型bczt基储能陶瓷材料及其制备方法和应用
CN114716248A (zh) 一种高储能性的稀土掺杂钨青铜结构陶瓷材料及制备方法
CN111704463A (zh) 电介质陶瓷材料及其制备方法
CN115073167A (zh) 一种Sm3+和NaNbO3共同修饰钛酸铋钠基铁电陶瓷材料及其制备方法
CN109320244B (zh) 一种低温烧结压电陶瓷材料及其制备方法
CN113045307B (zh) 一种高介电低损耗钛酸钡基陶瓷及其制备方法
CN114436643A (zh) 一种巨介电常数、低介电损耗陶瓷及其制备方法
CN111978081B (zh) 一种bczt基储能陶瓷材料及其制备方法
CN113880576A (zh) 低烧结温度和各向异性的铌酸锶钡钠钨青铜型压铁电陶瓷材料及其制备方法
CN111217604B (zh) 具有高储能密度和效率的钛酸铋钠基电子陶瓷的制备方法
CN113024250A (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN116063067B (zh) 一种多主元素巨介电陶瓷材料及其制备方法和应用
CN115368132B (zh) 一种钛酸钡基陶瓷材料及制备方法
CN116751051A (zh) 一种钛酸铋钠基高储能性能陶瓷电容器及制备方法
CN112521145B (zh) 钛酸锶钡基高储能密度和功率密度陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination