CN114835489A - 一种铌酸钾钠基无铅压电陶瓷及其制备方法 - Google Patents

一种铌酸钾钠基无铅压电陶瓷及其制备方法 Download PDF

Info

Publication number
CN114835489A
CN114835489A CN202210514423.XA CN202210514423A CN114835489A CN 114835489 A CN114835489 A CN 114835489A CN 202210514423 A CN202210514423 A CN 202210514423A CN 114835489 A CN114835489 A CN 114835489A
Authority
CN
China
Prior art keywords
piezoelectric ceramic
sodium niobate
ball milling
potassium
electric field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202210514423.XA
Other languages
English (en)
Other versions
CN114835489B (zh
Inventor
何强
聂京凯
韩钰
卢铃
田一
樊超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Smart Grid Research Institute Co ltd
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
Original Assignee
State Grid Smart Grid Research Institute Co ltd
Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Smart Grid Research Institute Co ltd, Electric Power Research Institute of State Grid Hunan Electric Power Co Ltd filed Critical State Grid Smart Grid Research Institute Co ltd
Priority to CN202210514423.XA priority Critical patent/CN114835489B/zh
Publication of CN114835489A publication Critical patent/CN114835489A/zh
Application granted granted Critical
Publication of CN114835489B publication Critical patent/CN114835489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Abstract

本发明涉及功能陶瓷材料领域,具体涉及一种铌酸钾钠基无铅压电陶瓷及其制备方法。本发明提供的铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:将压电陶瓷粗品在60‑120℃的环境中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。本发明提供的铌酸钾钠基无铅压电陶瓷的制备方法使压电陶瓷的压电系数有明显提高,而反向压电系数在温度变化过程中稳定性得到提高。

Description

一种铌酸钾钠基无铅压电陶瓷及其制备方法
技术领域
本发明涉及功能陶瓷材料领域,具体涉及一种铌酸钾钠基无铅压电陶瓷及其制备方法。
背景技术
压电材料由于具有正、逆压电效应而可实现机械能与电能的相互转换,因此作为一种重要的功能材料被广泛应用于驱动器、传感器等高新技术领域。目前,锆钛酸铅基压电陶瓷因其性能的优越性而成为应用最广泛的压电材料,但是该体系材料中含有大量有毒的铅,在生产、使用及废弃处理过程中均会给人类健康和生态环境带来严重的危害。因此,研发性能优异的无铅压电陶瓷材料成为一项紧迫且具有重大实用意义的课题。
2004年,日本的Saito等人在Nature杂志上报道了利用织构方法制备的经掺杂改性的铌酸钾钠基压电陶瓷,其压电系数d33达416pC/N,可以与含铅压电陶瓷相媲美。该里程碑式的重大突破掀起了研究铌酸钾钠基无铅压电陶瓷的热潮,并使得铌酸钾钠基无铅压电陶瓷被认为是最具潜力替代含铅压电陶瓷的体系之一。目前,大部分关于铌酸钾钠基无铅压电陶瓷的研究仍专注于通过掺杂改性在室温附近形成多晶型相变区以提高其压电性能。但是,由于多晶型相变区的存在,使得铌酸钾钠基无铅压电陶瓷压电性能的温度稳定性很差。例如,对LiSbO3掺杂的铌酸钾钠无铅压电陶瓷,其反向压电系数d33*在室温下为355pm/V,而当温度升高至50℃时急剧下降至250pm/V,降幅达30%。反向压电性能对温度如此强烈的敏感性使铌酸钾钠基无铅压电陶瓷应用受限。
发明内容
因此,本发明要解决的技术问题在于克服现有技术中的铌酸钾钠基无铅压电陶瓷虽具有较优的压电性能,但对温度敏感,热稳定性较差的缺陷,从而提供一种铌酸钾钠基无铅压电陶瓷及其制备方法。
本发明提供一种铌酸钾钠基无铅压电陶瓷的制备方法,包括如下步骤:将压电陶瓷粗品在60-120℃的环境中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。
优选的,所述交流电场强度为10~30kV/cm,交流电场的频率为0.1-20Hz,极化循环的次数为20-50次,所述直流电场极化的电场强度为20-40kV/cm,极化时间为20~120秒。
优选的,将压电陶瓷粗品置于60-120℃的硅油中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。
优选的,所述压电陶瓷粗品的制备方法包括如下步骤:
1)按配方比例称取各组分原料,然后将原料混合后依次经一次球磨、一次烘干、一次烧结、二次球磨、二次烘干后得到混合粉料;
2)将混合料粉冷压成型、冷等静压处理后进行二次烧结,得到所述压电陶瓷粗品;
其中,以重量分数计,所述压电陶瓷粗品的原料包括:0.80-3.45份的CaCO3,7.10-12.18份的Na2CO3,8.20-15.90份的K2CO3,0.20-0.71份的Li2CO3,0-3.85份的MnO2,0.60-4.24份的ZrO2,28.50-57.32份的Nb2O5,1.2-13.20份的Ta2O5
优选的,在步骤1)中,所述一次球磨为湿法球磨,溶剂为无水乙醇;球磨转速为200-300rpm,球磨时间为4-24h;二次球磨为湿法球磨,溶剂为无水乙醇,球磨转速为200-300rpm,球磨时间为4-24h;
在步骤1)中,一次烘干的温度为50-65℃,一次烘干时间为6-24h;二次烘干的温度为50-65℃,二次烘干时间为6-24h。
优选的,在步骤1)中,一次烧结在空气条件进行,烧结温度为700~875℃,烧结时间为2-6h;在步骤2)中,二次烧结在空气条件进行,烧结温度为1060~1160℃,烧结时间为1-6h。
优选的,在步骤2)中,所述冷压成型的压力为30-50MPa,压制时间为30-60s;所述冷等静压的压力为200-300MPa,压制时间为5-20min。
本发明还提供一种铌酸钾钠基无铅压电陶瓷,由上述所述的铌酸钾钠基无铅压电陶瓷的制备方法制备得到。
优选的,所述铌酸钾钠基无铅压电陶瓷的通式为:
(1-x)(KaNaaLibCac)(NbdTaeZrf)O3-xMnO2,其中2a+b+c=1,d+e+f=1,0.44≤a≤0.48,0.01≤b≤0.05,0.02≤c≤0.07,0<d≤0.97,0.06≤e≤0.2,0.02≤f≤0.07;0≤x≤0.08,其中x为铌酸钾钠基无铅压电陶瓷中的MnO2与铌酸钾钠基无铅压电陶瓷的质量比。
优选的,所述铌酸钾钠基无铅压电陶瓷的压电常数d33为310~380pC/N;
在外加电场作用下,其反向压电常数d33*在室温至160℃的温度范围内的波动不超过10%。
本发明技术方案,具有如下优点:
本发明提供的铌酸钾钠基无铅压电陶瓷的制备方法,包括将压电陶瓷粗品在60-120℃的环境中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。本发明通过在直流电场极化前进行交流电场极化,使压电陶瓷粗品中的电畴结构在温度变化过程中稳定性得到提高,从而使压电陶瓷的压电系数有明显提高,而反向压电系数在温度变化过程中稳定性得到提高。从测试例的结果中可以发现铌酸钾钠基无铅压电陶瓷的具有优异的压电常数d33和机电耦合因素kp,同时反向压电常数d33*在室温至160℃的温度范围内的波动≤10%。
进一步,本发明通过所述压电陶瓷粗品的制备方法包括如下步骤:1)按配方比例称取各组分原料,然后将原料混合后依次经一次球磨、一次烘干、一次烧结、二次球磨、二次烘干后得到混合粉料;2)将混合料粉冷压成型、冷等静压处理后进行二次烧结,得到所述压电陶瓷粗品;其中,以重量分数计,所述压电陶瓷粗品的原料包括:0.80-3.45份的CaCO3,7.10-12.18份的Na2CO3,8.20-15.90份的K2CO3,0.20-0.71份的Li2CO3,00-3.85份的MnO2,0.60-4.24份的ZrO2,28.50-57.32份的Nb2O5,1.2-13.20份的Ta2O5。利用该方法制备得到的铌酸钾钠基无铅压电陶瓷粗品,在外加电场作用下可以进一步提高铌酸钾钠基无铅压电陶瓷的压电性能的温度稳定性。
进一步,本发明通过所述压电陶瓷粗品的制备方法中包括一次球磨和二次球磨,球磨介质均为无水乙醇,一次球磨时间为4-24h,二次球磨时间为4-24h,经过一次球磨和二次球磨后,得到成分均匀且细化的粉体,由此可以进一步提高铌酸钾钠基无铅压电陶瓷的综合性能。
进一步,本发明通过所述压电陶瓷粗品的制备方法中一次烧结是在空气条件700~875℃的温度下进行的,由此可以使得碳化物和氧化物中的碳元素和部分氧元素烧蚀掉,以便制备得到具有上述化学组成的铌酸钾钠基无铅压电陶瓷,并且利用该方法可以进一步提高铌酸钾钠基无铅压电陶瓷的压电性能的温度稳定性。
进一步,本发明通过所述压电陶瓷粗品的制备方法中冷压成型的压力为30-50MPa,压制时间为30-60s;冷等静压的压力为200-300MPa,压制时间为5-20分钟,由此可以进一步提高铌酸钾钠基无铅压电陶瓷的温度稳定性。
进一步,本发明通过所述压电陶瓷粗品的制备方法中是在空气条件1060~1160℃的温度下进行的,由此可以进一步提高铌酸钾钠基无铅压电陶瓷的温度稳定性。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
实施例中未注明具体实验步骤或条件者,按照本领域内的文献所描述的常规实验步骤的操作或条件即可进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规试剂产品。
实施例1
本实施例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2211g的Li2CO3,7.7958g的Na2CO3,10.1654g的K2CO3,37.0924g的Nb2O5,4.6422g的Ta2O5,1.4818g的CaCO3,1.8359g的ZrO2和1.5938g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm;球磨后将物料在60℃烘干24h,将烘干后的物料在875℃空气条件下烧结6h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm,球磨后将物料在60℃烘干12h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为60s,将粉料压制为直径15mm、厚度1.0mm的圆片,之后在300MPa下进行冷等静压处理20min,冷等静压处理后在空气条件下1105℃烧结3h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于120℃的硅油中依次进行交流电场极化和直流电场极化,所述交流电场极化电场强度为40kV/cm,交流电场的频率为1Hz,极化循环50次,所述直流电场极化的电场强度为30kV/cm,极化时间为20秒,得到所述铌酸钾钠基无铅压电陶瓷。
本实施例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.945(K0.467Na0.467Li0.019Ca0.047)(Nb0.886Ta0.0667Zr0.0473)O3-0.055MnO2
实施例2
本实施例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2276g的Li2CO3,8.0227g的Na2CO3,10.4612g的K2CO3,38.1718g的Nb2O5,4.7773g的Ta2O5,1.5249g的CaCO3,1.8893g的ZrO2和0.7969g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为200rpm;球磨后将物料在65℃烘干12h,将烘干后的物料在900℃空气条件下烧结5h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为200rpm,球磨后将物料在65℃烘干12h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为30s,将粉料压制为直径10mm、厚度1.5mm的圆片,之后在300MPa下进行冷等静压处理15min,冷等静压处理后在空气条件下1115℃烧结3h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于90℃的硅油中依次进行交流电场极化和直流电场极化,所述交流电场极化的电场强度为30kV/cm,交流电场的频率为1Hz,极化循环50次,所述直流电场极化的电场强度为30kV/cm,极化时间为20秒,得到所述铌酸钾钠基无铅压电陶瓷。
本实施例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.9725(K0.467Na0.467Li0.019Ca0.047)(Nb0.886Ta0.0667Zr0.0473)O3-0.0275MnO2。x=0.05y=0.01
实施例3
本实施例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2156g的Li2CO3,7.6020g的Na2CO3,9.9126g的K2CO3,36.17002g的Nb2O5,4.5267g的Ta2O5,1.4450g的CaCO3,1.7903g的ZrO2和2.2748g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为250rpm;球磨后将物料在60℃烘干24h,将烘干后的物料在900℃空气条件下烧结2h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为250rpm,球磨后将物料在60℃烘干24h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为40s,将粉料压制为直径10mm、厚度1.5mm的圆片,之后在200MPa下进行冷等静压处理15min,冷等静压处理后在空气条件下1085℃烧结3h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于120℃的硅油中依次进行交流电场极化和直流电场极化,所述交流电场极化的电场强度为40kV/cm,交流电场的频率为1Hz,极化循环40次,所述直流电场极化的电场强度为40kV/cm,极化时间为20秒,得到所述铌酸钾钠基无铅压电陶瓷。
本实施例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.9215(K0.467Na0.467Li0.019Ca0.047)(Nb0.886Ta0.0667Zr0.0473)O3-0.0785MnO2
实施例4
本实施例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2283g的Li2CO3,8.2051g的Na2CO3,10.6990g的K2CO3,38.6040g的Nb2O5,5.5768g的Ta2O5,1.5301g的CaCO3,1.1663g的ZrO2和0.7013g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm;球磨后将物料在65℃烘干12h,将烘干后的物料在900℃空气条件下烧结6h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm,球磨后将物料在65℃烘干12h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为45s,将粉料压制为直径10mm、厚度1.5mm的圆片,之后在200MPa下进行冷等静压处理15min,冷等静压处理后在空气条件下1120℃烧结2h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于90℃的硅油中依次进行交流电场极化和直流电场极化,所述交流电场极化的电场强度为30kV/cm,交流电场的频率为2Hz,极化循环40次,所述直流电场极化的电场强度为30kV/cm,极化时间为20秒,得到所述铌酸钾钠基无铅压电陶瓷。
本实施例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.9758(K0.476Na0.476Li0.019Ca0.029)(Nb0.893Ta0.0776Zr0.0291)O3-0.0242MnO2
实施例5
本实施例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2284g的Li2CO3,8.0259g的Na2CO3,10.4653g的K2CO3,32.8593g的Nb2O5,13.6548g的Ta2O5,2.1611g的CaCO3,2.6647g的ZrO2和0.2318g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为200rpm;球磨后将物料在60℃烘干24h,将烘干后的物料在850℃空气条件下烧结6h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为24h,球磨转速为200rpm,球磨后将物料在60℃烘干24h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为30s,将粉料压制为直径10mm、厚度1.5mm的圆片,之后在200MPa下进行冷等静压处理20min,冷等静压处理后在空气条件下1125℃烧结2h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于120℃的硅油中依次进行交流电场极化和直流电场极化,所述交流电场极化的电场强度为30kV/cm,交流电场的频率为1Hz,极化循环40次,所述直流电场极化的电场强度为30kV/cm,极化时间为60秒,得到所述铌酸钾钠基无铅压电陶瓷。
本实施例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.992(K0.458Na0.458Li0.0187Ca0.0653)(Nb0.7477Ta0.1869Zr0.0654)O3-0.008MnO2
对比例1
本对比例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2211g的Li2CO3,7.7958g的Na2CO3,10.1654g的K2CO3,37.0924g的Nb2O5,4.6422g的Ta2O5,1.4818g的CaCO3,1.8359g的ZrO2和1.5938g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm;球磨后将物料在60℃烘干24h,将烘干后的物料在875℃空气条件下烧结6h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm,球磨后将物料在60℃烘干12h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为60s,将粉料压制为直径15mm、厚度1.0mm的圆片,之后在300MPa下进行冷等静压处理20min,冷等静压处理后在空气条件下1105℃烧结3h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于120℃的硅油中进行直流电场极化,所述直流电场极化的电场强度为30kV/cm,极化时间为20秒,得到铌酸钾钠基无铅压电陶瓷。
本对比例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为:0.945(K0.467Na0.467Li0.019Ca0.047)(Nb0.886Ta0.0667Zr0.0473)O3-0.055MnO2
对比例2
本对比例提供一种铌酸钾钠基无铅压电陶瓷的制备方法,如下步骤:
1)将0.2211g的Li2CO3,7.7958g的Na2CO3,10.1654g的K2CO3,37.0924g的Nb2O5,4.6422g的Ta2O5,1.4818g的CaCO3,1.8359g的ZrO2和1.5938g的MnO2混合后在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm;球磨后将物料在60℃烘干24h,将烘干后的物料在875℃空气条件下烧结6h;将烧结后的物料在球磨机中进行湿法球磨,球磨溶剂为无水乙醇,球磨时间为12h,球磨转速为250rpm,球磨后将物料在60℃烘干12h,得到混合粉料;
2)将步骤1)中得到的混合粉料冷压成型,冷压成型的压力为50MPa,压制时间为60s,将粉料压制为直径15mm、厚度1.0mm的圆片,之后在300MPa下进行冷等静压处理20min,冷等静压处理后在空气条件下1105℃烧结3h,得到压电陶瓷粗品;
3)将压电陶瓷粗品置于120℃的硅油中进行交流电场极化,所述交流电场极化电场强度为40kV/cm,交流电场的频率为1Hz,极化循环50次,得到所述铌酸钾钠基无铅压电陶瓷。
本对比例提供的铌酸钾钠基无铅压电陶瓷的制备方法制备的铌酸钾钠基无铅压电陶瓷的通式为0.945(K0.467Na0.467Li0.019Ca0.047)(Nb0.886Ta0.0667Zr0.0473)O3-0.055MnO2
测试例
对实施例1-5和对比例1和2得到的铌酸钾钠基无铅压电陶瓷进行压电常数d33、机电耦合因素kp、相对介电常数ε330、居里温度Tc和反向压电常数d33*进行测试。
压电常数d33采用中国科学院声学所的ZJ-6A型准静态压电常数测试仪进行测试;
机电耦合因素kp采用北京邦联时代电子科技有限公司的PV80阻抗分析仪进行测试;
相对介电常数ε330采用是德4980AL型LCR表进行测试;
居里温度Tc采用武汉佰力博科技有限公司的DMS-1000系列高温介电阻抗温谱仪进行测试;
压电常数d33、机电耦合因素kp、相对介电常数ε330、居里温度Tc的测试结果见表1,反向压电常数d33*的测试结果见表1。
反向压电常数d33*采用德国aixACCT公司的TF ANALYZER 1000型铁电分析仪进行测试,其中测试温度范围为20-160℃,测试结果见表2。
表1
Figure BDA0003639007050000081
表2
Figure BDA0003639007050000082
Figure BDA0003639007050000091
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

1.一种铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,包括如下步骤:
将压电陶瓷粗品在60-120℃的环境中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。
2.根据权利要求1所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,所述交流电场强度为10~30kV/cm,交流电场的频率为0.1-20Hz,极化循环的次数为20-50次,所述直流电场极化的电场强度为20-40kV/cm,极化时间为20~120秒。
3.根据权利要求1或2所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,将压电陶瓷粗品置于60-120℃的硅油中依次进行交流电场极化和直流电场极化,得到所述压电陶瓷。
4.根据权利要求1-3任一项所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,所述压电陶瓷粗品的制备方法包括如下步骤:
1)按配方比例称取各组分原料,然后将原料混合后依次经一次球磨、一次烘干、一次烧结、二次球磨、二次烘干后得到混合粉料;
2)将混合料粉冷压成型、冷等静压处理后进行二次烧结,得到所述压电陶瓷粗品;
其中,以重量分数计,所述压电陶瓷粗品的原料包括:0.80-3.45份的CaCO3,7.10-12.18份的Na2CO3,8.20-15.90份的K2CO3,0.20-0.71份的Li2CO3,0-3.85份的MnO2,0.60-4.24份的ZrO2,28.50-57.32份的Nb2O5,1.2-13.20份的Ta2O5
5.根据权利要求4所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,在步骤1)中,所述一次球磨为湿法球磨,溶剂为无水乙醇;球磨转速为200-300rpm,球磨时间为4-24h;二次球磨为湿法球磨,溶剂为无水乙醇,球磨转速为200-300rpm,球磨时间为4-24h;
在步骤1)中,一次烘干的温度为50-65℃,一次烘干时间为6-24h;二次烘干的温度为50-65℃,二次烘干时间为6-24h。
6.根据权利要求4所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,在步骤1)中,一次烧结在空气条件进行,烧结温度为700~875℃,烧结时间为2-6h;在步骤2)中,二次烧结在空气条件进行,烧结温度为1060~1160℃,烧结时间为1-6h。
7.根据权利要求4所述的铌酸钾钠基无铅压电陶瓷的制备方法,其特征在于,在步骤2)中,所述冷压成型的压力为30-50MPa,压制时间为30-60s;所述冷等静压的压力为200-300MPa,压制时间为5-20min。
8.一种铌酸钾钠基无铅压电陶瓷,其特征在于,由权利要求1-7任一项所述的铌酸钾钠基无铅压电陶瓷的制备方法制备得到。
9.根据权利要求7所述的铌酸钾钠基无铅压电陶瓷,其特征在于,所述铌酸钾钠基无铅压电陶瓷的通式为:(1-x)(KaNaaLibCac)(NbdTaeZrf)O3-xMnO2,其中2a+b+c=1,d+e+f=1,0.44≤a≤0.48,0.01≤b≤0.05,0.02≤c≤0.07,0<d≤0.97,0.06≤e≤0.2,0.02≤f≤0.07;0≤x≤0.08,其中x为铌酸钾钠基无铅压电陶瓷中的MnO2与铌酸钾钠基无铅压电陶瓷的质量比。
10.根据权利要求8或9所述的铌酸钾钠基无铅压电陶瓷,其特征在于,所述铌酸钾钠基无铅压电陶瓷的压电常数d33为215~380pC/N;
在外加电场作用下,其反向压电常数d33*在室温至160℃的温度范围内的波动不超过10%。
CN202210514423.XA 2022-05-11 2022-05-11 一种铌酸钾钠基无铅压电陶瓷及其制备方法 Active CN114835489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210514423.XA CN114835489B (zh) 2022-05-11 2022-05-11 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210514423.XA CN114835489B (zh) 2022-05-11 2022-05-11 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN114835489A true CN114835489A (zh) 2022-08-02
CN114835489B CN114835489B (zh) 2023-04-28

Family

ID=82570663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210514423.XA Active CN114835489B (zh) 2022-05-11 2022-05-11 一种铌酸钾钠基无铅压电陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN114835489B (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS464710Y1 (zh) * 1968-04-11 1971-02-18
JPH07202291A (ja) * 1993-12-29 1995-08-04 Tdk Corp 圧電セラミックスの製造方法
WO2002018294A1 (de) * 2000-08-29 2002-03-07 Epcos Ag Ein silber niobium tantalat enthaltendes dielektrisches keramikmaterial
JP2003221276A (ja) * 2002-01-31 2003-08-05 Tdk Corp 圧電磁器およびその製造方法
CN102126856A (zh) * 2011-01-05 2011-07-20 常州大学 一种铌酸钾钠基无铅压电陶瓷的常压致密化方法
WO2011118884A1 (ko) * 2010-03-23 2011-09-29 한국전기연구원 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
CN103274689A (zh) * 2013-06-14 2013-09-04 清华大学 铌酸钾钠基无铅压电陶瓷及其制备方法
US20150295162A1 (en) * 2014-04-11 2015-10-15 Ngk Spark Plug Co., Ltd. Lead-free piezo-electric porcelain composition, piezo-electric element using the same, and method for producing lead-free piezo-electric porcelain composition
CN106187182A (zh) * 2016-07-23 2016-12-07 安阳华森纸业有限责任公司 Pzt基压电陶瓷的制备方法
CN106631156A (zh) * 2016-09-08 2017-05-10 常州大学 一种提高nkn基陶瓷稳定性及压电性能的材料后处理方法
CN109678456A (zh) * 2018-12-28 2019-04-26 国网湖南省电力有限公司 吸声陶瓷材料及其制备方法
CN109884346A (zh) * 2019-03-10 2019-06-14 复旦大学 一种铁电膜宏/微观结构与电学性能联合测试系统
CN111393162A (zh) * 2019-01-03 2020-07-10 清华大学 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS464710Y1 (zh) * 1968-04-11 1971-02-18
JPH07202291A (ja) * 1993-12-29 1995-08-04 Tdk Corp 圧電セラミックスの製造方法
WO2002018294A1 (de) * 2000-08-29 2002-03-07 Epcos Ag Ein silber niobium tantalat enthaltendes dielektrisches keramikmaterial
JP2003221276A (ja) * 2002-01-31 2003-08-05 Tdk Corp 圧電磁器およびその製造方法
WO2011118884A1 (ko) * 2010-03-23 2011-09-29 한국전기연구원 센서 및 액추에이터용 비납계 압전 세라믹 조성물 및 그 제조방법
CN102126856A (zh) * 2011-01-05 2011-07-20 常州大学 一种铌酸钾钠基无铅压电陶瓷的常压致密化方法
CN103274689A (zh) * 2013-06-14 2013-09-04 清华大学 铌酸钾钠基无铅压电陶瓷及其制备方法
US20150295162A1 (en) * 2014-04-11 2015-10-15 Ngk Spark Plug Co., Ltd. Lead-free piezo-electric porcelain composition, piezo-electric element using the same, and method for producing lead-free piezo-electric porcelain composition
CN106187182A (zh) * 2016-07-23 2016-12-07 安阳华森纸业有限责任公司 Pzt基压电陶瓷的制备方法
CN106631156A (zh) * 2016-09-08 2017-05-10 常州大学 一种提高nkn基陶瓷稳定性及压电性能的材料后处理方法
CN109678456A (zh) * 2018-12-28 2019-04-26 国网湖南省电力有限公司 吸声陶瓷材料及其制备方法
CN111393162A (zh) * 2019-01-03 2020-07-10 清华大学 一种高压电性能和高稳定型抗还原铌酸钾钠基无铅压电陶瓷及其制备方法
CN109884346A (zh) * 2019-03-10 2019-06-14 复旦大学 一种铁电膜宏/微观结构与电学性能联合测试系统

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EBRU MENSUR-ALKOY: "Electrical Properties and Impedance Spectroscopy of Lithium Modified Potassium Sodium Niobate Ceramics", 《FERROELECTRICS》 *
姚方舟: "面向应用的(K,Na)NbO3 基无铅压电陶瓷研究进展", 《硅酸盐学报》 *
徐泽: "Mn 掺杂对KNbO3 和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响", 《物理学报》 *
陈宏: "《压电陶瓷及其应用》", 31 May 2019, 陕西师范大学出版总社 *

Also Published As

Publication number Publication date
CN114835489B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN104016674B (zh) 一种钛酸钡基无铅压电陶瓷及其制备方法
CN102674820B (zh) 一种绝缘材料、含有其的陶瓷加热元件、制备及应用
CN106631007B (zh) 一种高温、高性能、高稳定性的铋层状结构压电陶瓷材料及其应用
CN105198417B (zh) 一种锆酸铋钠锂铈掺杂铌酸钾钠基陶瓷材料的制备方法
CN107200576A (zh) 一种高介电常数铕和铌共掺二氧化钛陶瓷及其制备方法
CN102167585B (zh) 一种多元素掺杂钛酸铋基无铅压电陶瓷材料及其制备方法
CN113896526B (zh) 一种压电性高、高温绝缘性好的压电材料及其制备方法
CN108546125B (zh) 一种面向高温环境应用的压电陶瓷材料及其制备方法
CN103274689A (zh) 铌酸钾钠基无铅压电陶瓷及其制备方法
Zeng et al. Origin of high piezoelectric activity in perovskite ferroelectric ceramics
CN103011805B (zh) 一种BaTiO3 基无铅X8R 型陶瓷电容器介质材料及其制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
Tian et al. Structure and electrical properties of Ir4+-doped 0.5 Ba0. 9Ca0. 1TiO3–0.5 BaTi0. 88Zr0. 12O3–0.12% La ceramics via a modified Pechini method
CN101570433A (zh) 具有较低烧结温度的微波介质陶瓷及其制备方法
CN106588011A (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN114835489A (zh) 一种铌酸钾钠基无铅压电陶瓷及其制备方法
CN114133243A (zh) 一种高介电常数高压电应变发射型压电陶瓷材料及制备方法
CN102241511B (zh) 一种铁电-反铁电相变热释电陶瓷材料、陶瓷元件及其制备方法
CN113480310A (zh) 一种高致密度、高介电常数的五氧化二钽基陶瓷及其制备方法
CN113024250A (zh) 高储能密度和储能效率的Sb5+掺杂铌酸锶钠银钨青铜铁电陶瓷材料及制备方法
CN102351533A (zh) 一种低温烧结高压电性能的锆钛酸钡钙基无铅压电陶瓷及其制备方法
Xia et al. Influence of trivalent Gd and Dy codoping on the structure and electrical conductivity of pyrochlore-type Sm2Zr2O7
CN107244913A (zh) 一种复合高温压电陶瓷材料
CN107117964B (zh) 一种不同温度预烧料混合的pzt压电陶瓷及其制备方法
CN110357630A (zh) 一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant