CN108622872A - 无定形碳材料及制备方法与用途 - Google Patents

无定形碳材料及制备方法与用途 Download PDF

Info

Publication number
CN108622872A
CN108622872A CN201810482507.3A CN201810482507A CN108622872A CN 108622872 A CN108622872 A CN 108622872A CN 201810482507 A CN201810482507 A CN 201810482507A CN 108622872 A CN108622872 A CN 108622872A
Authority
CN
China
Prior art keywords
powder
amorphous carbon
carbon material
weight
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810482507.3A
Other languages
English (en)
Other versions
CN108622872B (zh
Inventor
潘广宏
梁文斌
唐堃
田亚峻
康丹苗
段春婷
张开周
康利斌
王璐璘
卫昶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Energy Investment Corp Ltd
National Institute of Clean and Low Carbon Energy
Original Assignee
China Energy Investment Corp Ltd
National Institute of Clean and Low Carbon Energy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Energy Investment Corp Ltd, National Institute of Clean and Low Carbon Energy filed Critical China Energy Investment Corp Ltd
Priority to CN201810482507.3A priority Critical patent/CN108622872B/zh
Priority to US17/055,843 priority patent/US20210229998A1/en
Priority to JP2020564590A priority patent/JP7090743B2/ja
Priority to PCT/CN2018/100254 priority patent/WO2019218505A1/zh
Publication of CN108622872A publication Critical patent/CN108622872A/zh
Application granted granted Critical
Publication of CN108622872B publication Critical patent/CN108622872B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及碳材料领域,具体涉及一种无定形碳材料及制备方法与用途。所述无定形碳材料具有如下特征:(1)该无定形碳材料的真密度ρ和通过粉末XRD谱分析获得的层间距d002符合如下关系式:100×ρ×d002≥70;(2)该无定形碳材料通过粉末XRD谱分析获得的层d002、Lc和La符合如下关系式:Lc×d002≤0.58,和100×(Lc/La 2)×d002 3≤0.425,ρ的单位是g/cm3,d002、Lc和La的单位均为nm。本发明制备的无定形碳材料具有良好的传热性能并能提供较高电池容量。

Description

无定形碳材料及制备方法与用途
技术领域
本发明涉及碳材料领域,具体涉及一种无定形碳材料及制备方法与用途。
背景技术
在二次电池,特别是锂离子二次电池领域,石墨材料因其具有电子电导率高、层状结构在嵌锂前后体积变化小、嵌锂容量高和嵌锂电位低等特点,成为目前主要的商业化锂离子电池负极材料。
随着二次电池技术的发展,对于负极材料的要求不断提高,无定形碳材料逐渐引起关注。无定形碳材料具有层间距较大、与电解液相容性好、锂离子在其中的扩散速率较快、传热能力好等优点,因此在电动车、调频调峰电网和大规模储能领域具有广阔的应用前景。
CN105720233A公开了一种锂离子电池负极用碳材料,以及制备锂离子电池负极用碳材料的方法,该方法包括:将煤液化残渣进行聚合;将聚合产物进行稳定化,将稳定化产物进行碳化。
CN104681786A公开了一种由煤基材料石墨化内层、中间层及分布于表面的外层组成的煤基负极材料,以及制备该煤基负极材料的方法。所述制备方法包括:将煤基材料经过粉碎处理;再加入粘结剂,或粘结剂和改性剂混合;然后进行压型、高温石墨化。该材料的平均粒径D50为2-40μm,d002为0.335-0.337nm,比表面积为1-30m2/g,固定碳含量为≥99.9%,真密度为≥2g/cm3
CN105185997A公开了一种钠离子二次电池负极材料及其制备方法和用途。所述材料为无定形碳材料,以煤炭和硬碳前驱体为原料,加入溶剂后机械混合,干燥,然后在惰性气氛下经交联、固化、裂解制备而成。所述材料的平均粒径为1-50μm,d002为0.35-0.42nm,Lc为1-4nm,La为3-5nm。
以上专利文献公开了多种碳材料及其制备方法,这些制备方法操作步骤繁多,所制备的碳材料主要是用于提高电池容量,并没有考虑如何提高传热能力,而传热能力会影响电池的安全性和使用寿命。
发明内容
针对有技术存在的上述问题,本发明的目的在于提供一种新的无定形碳材料及其制备方法与用途。本发明的发明人在研究中发现,无定形碳材料中,通过控制无定形碳材料的真密度ρ、XRD谱层间距d002、La和Lc这些参数的关系在一定范围内,所得到的无定形碳材料具备优异的散热性能,同时且作为负极材料能提高电池的电化学性能,基于该发现,提出本发明。
为了实现上述目的,第一方面,本发明提供一种无定形碳材料,所述材料具有如下特征:
(1)该无定形碳材料的真密度ρ和通过粉末XRD谱分析获得的层间距d002符合如下关系式:100×ρ×d002≥70 式(I);
(2)该无定形碳材料通过粉末XRD谱分析获得的层间距d002、La和Lc符合如下关系式:Lc×d002≤0.58 式(II),和
100×(Lc/La 2)×d002 3≤0.425 式(III);
其中,ρ的单位是g/cm3,d002、Lc和La的单位均为nm。
第二方面,本发明提供一种制备所述无定形碳材料的方法,该方法包括:
(1)提供碳元素含量>70%的含碳材料粉末;
(2)将所述含碳材料粉末与含有表面活性剂的水溶液混合,然后进行相分离,并干燥所得固体,得到干燥粉末;
(3)在真空或惰性气氛下对所述干燥粉末进行碳化。
第三方面,本发明提供一种采用上述方法制备的无定形碳材料。
第四方面,本发明提供一种前述的无定形碳材料作为机械部件材料、电池电极材料或导热材料的用途。
本发明所述的无定形碳材料具有较高的热扩散系数,具有良好的传热性能,且作为电池的负极材料使得电池具有高的容量,扩展了其应用领域;另外,与现有技术相比,本发明的方法还具备操作简单的特点。
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
第一方面,本发明提供一种无定形碳材料,所述材料具有如下特征:
(1)该无定形碳材料的真密度ρ和通过粉末XRD谱分析获得的层间距d002符合如下关系式:100×ρ×d002≥70 式(I);
(2)该无定形碳材料通过粉末XRD谱分析获得的层间距d002、La和Lc符合如下关系式:Lc×d002≤0.58 式(II),和
100×(Lc/La2)×d002 3≤0.425 式(III);
其中,ρ的单位是g/cm3,d002、Lc和La的单位均为nm。
优选地,70≤100×ρ×d002≤120,进一步优选70≤100×ρ×d002≤100,更优选70≤100×ρ×d002≤90,最优选70≤100×ρ×d002≤86。
优选地,0.1≤Lc×d002≤0.58,进一步优选0.3≤Lc×d002≤0.58,更优选0.4≤Lc×d002≤0.58。
优选地,0.1≤100×(Lc/La 2)×d002 3≤0.425,进一步优选0.2≤100×(Lc/La 2)×d002 3≤0.425,更优选0.25≤100×(Lc/La 2)×d002 3≤0.425。
根据本发明,所述无定形碳材料的热扩散系数≥0.09mm2·s-1,优选热扩散系数≥0.095mm2·s-1,更优选热扩散系数≥0.1mm2·s-1。例如所述热扩散系数为0.1-50mm2·s-1
根据本发明,所述无定形碳材料通过粉末XRD谱分析获得的层间距d002值在0.34-0.4nm范围内,优选在0.35-0.395nm范围内,更优选在0.355-0.39nm范围内。
根据本发明,所述无定形碳材料通过粉末XRD谱分析获得的La值在3-6nm范围,优选在4-5nm范围内,更优选在4.1-4.95nm范围内。
根据本发明的无定形碳材料通过粉末XRD谱分析获得的Lc值在0.9-2.0nm范围内,优选在1-1.8nm范围内,更优选在1.1-1.7nm范围内,最优选在1.1-1.55nm范围内。
按照一种实施方式,所述无定形碳材料的真密度ρ为1.0-2.5g/cm3,优选为1.3-2.5g/cm3,更优选为1.8-2.3g/cm3
根据本发明,所述无定形碳材料可以是粒径D50为2-50μm,优选3-40μm,更优选5-30μm的粉末形式。
第二方面,本发明提供一种制备所述无定形碳材料的方法,该方法包括:
(1)提供碳元素含量>70%的含碳材料粉末;
(2)将所述含碳材料粉末与含有表面活性剂的水溶液混合,然后进行相分离,并干燥所得固体,得到干燥粉末;
(3)在真空或惰性气氛下对所述干燥粉末进行碳化。
本发明中,碳元素的含量是指碳的质量百分含量,通过等离子发射光谱(ICP)测得。所述含碳材料粉末中,碳元素含量例如可以为75-100%,优选为80-100%。
步骤(1)中,所述碳元素含量>70%的含碳材料粉末可以选自沥青、煤和焦炭中的至少一种。其中,所述沥青可以选自石油沥青、煤沥青和中间相沥青中的至少一种。所述煤沥青的软化点可以为30-360℃,优选为40-350℃。所述石油沥青的软化点可以为40-360℃,优选为40-350℃。所述中间相沥青的软化点可以为200-360℃,所述中间相沥青通常具有20-100%的中间相含量。
具体地,所述含碳材料可以为软化点为40℃、50℃、100℃、110℃、120℃、130℃、140℃、150℃、200℃、250℃、320℃、350℃以及这些点值中的任意两个所构成的范围中的任意值的煤沥青;也可以为软化点为40℃、45℃、50℃、60℃、70℃、80℃、90℃、100℃、150℃、200℃、250℃、320℃、350℃、360℃以及这些点值中的任意两个所构成的范围中的任意值的石油沥青;或者也可以为软化点在220℃、250℃、280℃、300℃、310℃、320℃、330℃、340℃、360℃以及这些点值中的任意两个所构成的范围中的任意值的中间相沥青。另外,所述中间相沥青的中间相含量可以为20%、40%、50%、60%、80%、90%、95%、97%、100%以及这些点值中的任意两个所构成的范围中的任意值。
步骤(1)中,所述含碳材料粉末可以具有在1-100μm范围内的平均粒径D50,优选的平均粒径D50为2-80μm,更优选平均粒径D50为3-50μm。具体地,所述平均粒径D50可以为1μm、2μm、3μm、5μm、10μm、12μm、20μm、25μm、30μm、35μm、40μm、50μm、60μm、70μm、80μm、90μm、100μm以及这些点值中的任意两个所构成的范围中的任意值。
所述含碳材料粉末可以通过任何想得到的方式获得,所述方式可以为本领域的常规选择,例如可以通过将作为碳源的含碳材料机械粉碎获得,所述机械粉碎可以参照现有技术选择,例如可以选自但不限于,鄂式粉碎、气流粉碎、挤压破碎、冲击破碎、研磨破碎、劈裂破碎、水利破碎、爆炸破碎等。
在碳化前,经所述表面活性剂处理制得的最终无定形碳材料与未经该处理制得的最终无定形碳材料相比,具有更高的热扩散系数和提供了更高的电池容量。不希望受限于任何理论,认为表面活性剂处理步骤至少部分地去除了碳源中所含的小分子物质,由此提高了所得无定形碳材料的热扩散系数并提供了更高的电池容量。
步骤(2)中,所述含有表面活性剂的水溶液的浓度可以为0.001-50重量%,优选为0.01-20重量%,更优选为0.01-10重量%。具体地,该水溶液例如可以为0.001重量%、0.01重量%、0.1重量%、0.2重量%、0.5重量%、1重量%、2重量%、3重量%、5重量%、10重量%、15重量%、20重量%、25重量%、30重量%、35重量%、40重量%、45重量%、50重量%以及这些点值中的任意两个所构成的范围中的任意值。
步骤(2)中,相对于100重量份的所述含碳材料粉末,所述表面活性剂的用量可以为0.005-250重量份,优选为0.01-100重量份,更优选为0.05-50重量份;具体地,例如可以为0.005重量份、0.05重量份、0.1重量份、0.2重量份、0.5重量份、1重量份、5重量份、10重量份、15重量份、20重量份、25重量份、30重量份、50重量份、100重量份、250重量份以及这些点值中的任意两个所构成的范围中的任意值。
按照一种具体的实施方式,相对于100重量份的所述含碳材料粉末,所述表面活性剂的用量为0.05-50重量份,其中,该水溶液的浓度为0.01-10重量%。
所述含有表面活性剂的水溶液的配制方式等不受限制,只要能使所述表面活性剂溶解形成均相溶液即可,通常为了加速所述表面活性剂的溶解,所述溶解可在高温条件下进行,例如50-85℃。
步骤(2)中,所述表面活性剂可以选自阴离子型表面活性剂和/或阳离子型表面活性剂。
优选地,所述阴离子型表面活性剂选自阿拉伯树胶、羧甲基纤维素钠、C8-C12脂肪酸盐(如硬脂酸钠)、C12-C20烷基磺酸盐(如十六烷基磺酸钠)、烷基苯磺酸盐(如十二烷基苯磺酸钠)和C12-C18脂肪醇硫酸盐(如月桂基硫酸钠)中的至少一种。
优选地,所述阳离子型表面活性剂选自季铵型阳离子表面活性剂,例如选自C10-C22烷基三甲基铵型阳离子表面活性剂、二(C10-C22)烷基二甲基铵型阳离子表面活性剂和C10-C22烷基二甲基苄基铵型阳离子表面活性剂中的至少一种。所述季铵型阳离子表面活性剂的实例可以包括但不限于:癸基三甲基氯化铵、十一烷基三甲基氯化铵、十二烷基三甲基氯化铵、十三烷基三甲基氯化铵、十四烷基三甲基氯化铵、十五烷基三甲基氯化铵、十六烷基三甲基氯化铵、十七烷基三甲基氯化铵、十八烷基三甲基氯化铵、十九烷基三甲基氯化铵、二十烷基三甲基氯化铵、癸基二甲基苄基氯化铵、十一烷基二甲基苄基氯化铵、十二烷基二甲基苄基氯化铵、十三烷基二甲基苄基氯化铵、十四烷基二甲基苄基氯化铵、十五烷基二甲基苄基氯化铵、十六烷基二甲基苄基氯化铵、十七烷基二甲基苄基氯化铵、十八烷基二甲基苄基氯化铵、十九烷基二甲基苄基氯化铵、二十烷基二甲基苄基氯化铵中的一种或任意几种的组合。
更优选地,所述表面活性剂选自阿拉伯树胶、羧甲基纤维素钠、十二烷基二甲基苄基氯化铵和十六烷基三甲基氯化铵中的至少一种。
步骤(2)中,所述混合通常在搅拌条件下进行,混合的温度可以为1-99℃,优选为15-90℃;具体地,该温度例如可以为1℃、5℃、10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃、60℃、65℃、770℃、75℃、80℃、85℃、90℃、95℃以及这些点值中的任意两个所构成的范围中的任意值。所需的温度可以采用任何可以想到的方式得到,例如可以为水浴加热、酒精灯加热等。所述搅拌时间0.5-30小时,优选1-10小时,更优选2-8小时。所述搅拌的速率可以根据实际情况具体设定,已能够实现本发明的目的为原则。
步骤(2)中,本发明对所述相分离的方式及操作条件等没有特别限制,可参照现有技术进行选择,其中,例如所述相分离可以通过静置后去除上层液体的方式进或者通过离心分离的方式进行。
步骤(2)中,本发明对所述干燥的方式和操作条件可参照现有技术选择,例如可以通过加热干燥、真空干燥或者自然晾干等本领域已知的方式实施。按照一种优选的实施方式,所述干燥为真空干燥,所述真空干燥的温度为80-130℃,时间为1-30小时。
步骤(3)中,所述碳化的温度为900-1600℃,时间为1-20小时。具体地,例如所述碳化的温度可以为900℃、1000℃、1100℃、1200℃、1300℃、1400℃、1500℃、1600℃以及这些点值中的任意两个所构成的范围中的任意值;碳化时间视需要而定,例如1小时、2小时、3小时、4小时、5小时、6小时、7小时、8小时、9小时、10小时、11小时、12小时、13小时、14小时、15小时、16小时、17小时、18小时、19小时、20小时以及这些点值中的任意两个所构成的范围中的任意值。所述碳化所用设备为本领域的常规选择。
步骤(3)中,干燥粉末在真空或惰性气氛碳化。若碳化在真空下进行,优选所述碳化在-40kPa至-101.325kPa之间的相对真空度下进行,具体地,可以为-40kPa、-50kPa、-60kPa、-70kPa、-80kPa、-90kPa、-101.325kPa以及这些点值中的任意两个所构成的范围中的任意值;若碳化在惰性气氛下进行,所述惰性气氛例如可以为氮气、氩气等气体或它们的气体混合物。所述碳化可以为先在一温度碳化一段时间后再升温继续碳化(即多步碳化),也可以是在同一温度下直接碳化(即一步碳化)。
在本发明中,可选地,在实施步骤(3)的碳化(即烧制)处理前,所述方法还可以包括对所述干燥粉末进行预先烧制,所述预先烧制在真空或惰性气氛下进行,预先烧制的温度低于所述碳化的温度。
一般地,所述预先烧制的温度可以为400-800℃,例如可以为400℃、450℃、500℃、550℃、600℃、650℃、700℃、750℃、800℃以及这些点值中的任意两个所构成的范围中的任意值;时间视需要可以为数小时,例如1-12小时,优选2-10小时。
在本发明中,所述预先烧制和碳化可在同一设备中实施,例如在购自合肥科晶材料技术有限公司的OTF-1200X-80-III-F3LV系统的管式炉部分中进行。所述预先烧制中涉及的真空度、惰性气氛等均可参照上述碳化进行选择,本发明不再赘述。
在本发明中,所述方法还可以包括:在步骤(1)和步骤(3)之间的任意阶段进行球磨,使得进入碳化过程的粉末的平均粒径D50为1-50μm,优选为1-40μm,更优选为2-30μm,例如为1μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、50μm以及这些点值中的任意两个所构成的范围中的任意值。
所述球磨可视需要在如前所述的步骤(1)、步骤(2)、步骤(3)以及预先烧制等任意之间的阶段进行。例如,该球磨可在步骤(1)和步骤(2)之间进行,也可以在步骤(2)和步骤(3)之间进行。球磨可视需要分一阶段或多个阶段进行,本发明对所述球磨条件不做限制,只要能获得所需的粉末粒度D50即可。
第三方面,本发明提供了由本发明第二方面所述方法制备得到的无定形碳材料。
第四方面,本发明提供了本发明第一方面或第三方面所述的无定形碳材料作为机械部件材料、电池电极材料或导热材料的用途。
根据本发明,所述无定形碳材料的用途包括作为二次电池(例如锂离子电池)的负极材料,可提高电池的容量。按照一种实施方式,以本发明的碳材料为负极材料制备负极,以金属锂片作为参比电极组装成的扣式电池的容量≥221mAh/g,优选容量≥230mAh/g。
以下通过实施例对本发明作进一步详细阐述,但本发明的保护范围并不仅限于此。
除非另外指明,以下测试方法和测试仪器适用于上文描述的本发明各个方面以及下文将要描述的各实施例和对比例。
以下实施例和对比例中,
1、设备
1)小型超微粉碎机购自温州顶历医疗器械有限公司,型号为WF18;
2)全方位行星式球磨机购自长沙米淇仪器设备有限公司,型号为QM-QX;
3)烧制(包括预先烧制、碳化)在购自合肥科晶材料技术有限公司的OTF-1200X-80-III-F3LV系统的管式炉部分中进行。
2、药品
阿拉伯树胶购自国药集团化学试剂北京有限公司,产品编号:69012495,规格:阿拉丁A108975,CAS号:9000-01-5;
羧甲基纤维素钠购自国药集团化学试剂北京有限公司,产品编号:30036328,规格CP300-800(沪试),CAS号:9004-32-4;
酚醛树脂购自国药集团化学试剂北京有限公司,产品编号30265876,规格A010024,碳含量为69重量%。
3、测试
1)软化点
根据ASTM D 3104-99硬沥青软化点的标准试验方法(Standard Test Method forSoftening Point of Pitches)测定。
2)真密度
真密度通过美国麦克公司(Micromeritics Instrument Corp.)的真密度仪II 1340在25℃下测定。
3)粉末XRD分析
采用德国布鲁克AXS公司(Bruker AXS GmbH)的D8Advance型衍射仪进行测试,管电压40kV,管电流40mA,X射线辐射源为Cu Kα采集步长为0.02°,采集2θ范围为10-60°。根据Scherrer公式计算Lc,Lc=Kλ/B002cosθ,其中K为Scherrer常数,λ为X射线波长,B为衍射峰半高宽,θ为衍射角。
4)拉曼光谱
采用法国Horiba jobin yvon公司的LabRAM HR-800型拉曼光谱仪进行测试,激光波长532.06nm,狭缝宽度100μm,扫描范围700~2100cm-1。由拉曼光谱分析得到的IG和ID值,按照公式La=4.4IG/ID来计算La
5)粒度(D50)
采用英国马尔文仪器有限公司(Malvern Instruments Ltd.)的MalvernMastersizer 2000激光粒度仪进行测试。
6)热扩散系数
采用德国耐驰公司(NETZSCH Group)的LFA 447激光热导率仪,应用激光散射法进行测试。
7)电池容量
电池容量采用武汉市蓝电电子股份有限公司的电池测试系统CT2001A电池测试仪进行测试。对包括分别由以下实施例和对比例的碳材料(作为负极材料)制成负极的扣式电池进行首次充放电容量测试,其中将电池以0.2C(1C=370mAh/g)恒流充电至3.0V,再以0.2C恒流放电至0V,对电池进行测量,取平均值为测量值。
扣式电池制备过程如下:将由下文的实施例或对比例中制得的碳材料(作为负极材料)与导电炭黑Super P和粘结剂聚偏二氟乙烯(PVDF)以按92:3:5的质量比混合均匀,加入溶剂N-甲基吡咯烷酮(NMP)至固含量为48%,搅拌成均匀的负极浆料,用刮刀将该负极浆料均匀地涂布到铜箔上,然后置于80℃烘箱中真空干燥24小时以除去溶剂。将所得负极片用冲孔机冲成直径为12mm的片材,将该片材于80℃干燥24小时,转移到MBraun 2000手套箱中(Ar气氛,H2O和O2浓度小于0.1×10-6体积%),以金属锂片作为参比电极,组装成扣式电池。
实施例1
将软化点300℃的中间相沥青(碳含量98重量%,中间相含量80%)通过小型超微粉碎机粉碎,得到D50=50μm的粉末,将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=20μm的粉末。
将阿拉伯树胶添加到水中,于80℃水浴条件下,配制为浓度3重量%的溶液。将前述球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在85℃下搅拌8小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空下(真空度-80kPa)于400℃预先烧制12小时,然后升温到1400℃烧制,并在此温度下烧制10小时,得到D50=21μm无定形碳材料。
实施例2
将软化点120℃的煤沥青(碳含量93重量%)通过小型超微粉碎机粉碎,得到D50=12μm的粉末。
将阿拉伯树胶添加到水中,于80℃水浴条件下,配制为浓度0.5重量%的溶液。将上述粉末加入到所述溶液中,粉末与溶液的质量比为20:100,在60℃下搅拌30小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的产品通过全方位行星式球磨机以280rpm进行球磨,得到D50=9μm的粉末。然后将球磨后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空下(真空度-90kPa)于800℃预先烧制1小时,然后升温到1000℃,并在此温度下烧制8小时,得到D50=10μm无定形碳材料。
实施例3
将软化点50℃的石油沥青(碳含量88重量%)通过小型超微粉碎机粉碎,得到D50=35μm的粉末,将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=28μm的粉末。
将阿拉伯树胶加到水中,于80℃水浴条件下,配制为浓度10重量%的溶液。将上述球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在室温下搅拌1小时,然后常温静置,去除上层液体,将所得固体在真空干燥箱中于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-101.325kPa)下于1600℃烧制1小时,得到D50=30μm无定形碳材料。
实施例4
将软化点100℃的煤沥青(碳含量92重量%)通过小型超微粉碎机粉碎,得到D50=25μm的粉末。
将十六烷基三甲基氯化铵(C19H42ClN)添加到水中,于80℃水浴条件下,配制为浓度0.2重量%的溶液。将前述粉碎得到的粉末加入到该溶液中,粉末与溶液的质量比为20:100,在50℃下搅拌10小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-80kPa)下450℃预先烧制10小时。将烧制产物通过全方位行星式球磨机以300rpm进行球磨,得到D50=20μm的粉末。将该粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-40kPa)下于900℃烧制20小时,得到D50=22μm无定形碳材料。
实施例5
将软化点330℃的中间相沥青(碳含量为99重量%,中间相含量95%)通过小型超微粉碎机粉碎,得到D50=50μm的粉末,将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=14μm的粉末。
将十二烷基二甲基苄基氯化铵(C21H38ClN)添加到水中,于80℃水浴条件下,配制为浓度0.01重量%的溶液。将上述球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在90℃下搅拌2小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-60kPa)下于800℃预先烧制1小时,然后升温到1000℃,并在此温度下烧制6小时,得到D50=15μm无定形碳材料。
实施例6
将煤(碳含量88重量%)通过小型超微粉碎机粉碎,得到D50=30μm的粉末,将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=5μm的粉末。
将阿拉伯树胶添加到水中,于85℃水浴条件下,配制为浓度为5重量%的溶液。将上述球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在1℃下搅拌30小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-50kPa)下于700℃预先烧制2小时,然后升温到1000℃,并在此温度下烧制5小时,得到D50=7μm无定形碳材料。
实施例7
将煤(碳含量86重量%)和软化点250℃的中间相沥青(碳含量97重量%,中间相含量40%)按照质量比1:1混合,将得到的混合物通过小型超微粉碎机粉碎,得到D50=25μm的粉末。将该粉末通过全方位行星式球磨机以250rpm进行球磨,得到D50=12μm的粉末。
将羧甲基纤维素钠添加到水中,于80℃水浴条件下,配制为浓度0.1重量%的溶液。将上述球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在80℃下搅拌2小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-70kPa)下于1200℃烧制3小时,得到D50=11μm无定形碳材料。
实施例8
将焦炭(碳含量80重量%)和煤(碳含量86重量%)按照质量比1:1混合,将得到的混合物通过小型超微粉碎机粉碎,得到D50=25μm的粉末。将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=5μm的粉末。
将羧甲基纤维素钠添加到水中,于80℃水浴条件下,配制为浓度2重量%的溶液。将球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在80℃下搅拌2小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-85kPa)下于1500℃烧制7小时,得到D50=9μm无定形碳材料。
对比例1
将软化点300℃的中间相沥青(碳含量98重量%,中间相含量80%),通过小型超微粉碎机粉碎,得到D50=50μm的粉末,将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=20μm的粉末。将球磨后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空(真空度-80kPa)下于400℃预先烧制12小时,然后升温到1400℃,并在此温度下烧制10小时,得到D50=22μm的碳材料。
对比例2
将酚醛树脂通过小型超微粉碎机粉碎,得到D50=50μm的粉末。将该粉末通过全方位行星式球磨机以300rpm进行球磨,得到D50=20μm的粉末。
将阿拉伯树胶添加到水中,于80℃水浴条件下,配制为浓度3重量%的溶液。将球磨后的粉末加入该溶液中,粉末与溶液的质量比为20:100,在85℃下搅拌8小时,然后常温静置,去除上层液体,将所得固体于120℃真空干燥12小时。将干燥后的粉末置于OTF-1200X-80-III-F3LV系统的管式炉部分中,在真空下(真空度-80kPa)于400℃预先烧制12小时,然后升温到1400℃,并在此温度下烧制10小时,得到D50=21μm的碳材料。
对由各实施例和对比例中获得的碳材料进行表征和性能测试,结果总结在下表1中。
表1
通过表1的数据可以看出,采用本发明所述的方法制备的无定形碳材料具有良好的传热性能,并且能够提供较高的电池容量效果。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (14)

1.一种无定形碳材料,其特征在于,
(1)该无定形碳材料的真密度ρ和通过粉末XRD谱分析获得的层间距d002符合如下关系式:100×ρ×d002≥70 式(I);
(2)该无定形碳材料通过粉末XRD谱分析获得的层间距d002、La和Lc符合如下关系式:Lc×d002≤0.58 式(II),和
100×(Lc/La2)×d002 3≤0.425 式(III);
其中,ρ的单位是g/cm3,d002、Lc和La的单位均为nm。
2.根据权利要求1所述的无定形碳材料,其中,100×ρ×d002≤120,优选100×ρ×d002≤100,更优选100×ρ×d002≤90,最优选100×ρ×d002≤86。
3.根据权利要求1或2所述的无定形碳材料,其中,Lc×d002≥0.1,优选Lc×d002≥0.3,更优选Lc×d002≥0.4。
4.根据权利要求1-3中任意一项所述的无定形碳材料,其中,100×(Lc/La 2)×d002 3≥0.1,优选100×(Lc/La 2)×d002 3≥0.2,更优选100×(Lc/La 2)×d002 3≥0.25。
5.根据权利要求1-4中任意一项所述的无定形碳材料,其中,所述无定形碳材料的热扩散系数≥0.09mm2·s-1,优选热扩散系数≥0.095mm2·s-1,更优选热扩散系数≥0.1mm2·s-1
6.根据权利要求1所述的无定形碳材料,其中,所述无定形碳材料是粒径D50为2-50μm,优选3-40μm,更优选5-30μm的粉末形式。
7.一种制备权利要求1-6中任意一项所述无定形碳材料的方法,其特征在于,该方法包括:
(1)提供碳元素含量>70%的含碳材料粉末;
(2)将所述含碳材料粉末与含有表面活性剂的水溶液混合,然后进行相分离,并干燥所得固体,得到干燥粉末;
(3)在真空或惰性气氛下对所述干燥粉末进行碳化。
8.根据权利要求7所述的方法,其中,所述含碳材料粉末的平均粒径D50为1-100μm,优选为2-80μm,更优选为3-50μm;
优选地,含碳材料为沥青、煤和焦炭中的至少一种。
9.根据权利要求7所述的方法,其中,所述含有表面活性剂的水溶液的浓度为0.001-50重量%,优选为0.01-20重量%,更优选为0.01-10重量%;
优选地,相对于100重量份的所述含碳材料粉末,所述表面活性剂的用量为0.005-250重量份,优选为0.01-100重量份,进一步优选为0.05-50重量份。
10.根据权利要求7-9中任意一项所述的方法,其中,所述表面活性剂为阴离子型表面活性剂和/或阳离子型表面活性剂;
优选地,所述阴离子型表面活性剂选自阿拉伯树胶、羧甲基纤维素钠、C8-C12脂肪酸盐、C12-C20烷基磺酸盐、烷基苯磺酸盐和C12-C18脂肪醇硫酸盐中的至少一种;
优选地,所述阳离子型表面活性剂选自C10-C22烷基三甲基铵型阳离子表面活性剂、二(C10-C22)烷基二甲基铵型阳离子表面活性剂和C10-C22烷基二甲基苄基铵型阳离子表面活性剂中的至少一种;
更优选地,所述表面活性剂选自阿拉伯树胶、羧甲基纤维素钠、十二烷基二甲基苄基氯化铵和十六烷基三甲基氯化铵中的至少一种。
11.根据权利要求7-10中任意一项所述的方法,其中,步骤(3)中,所述碳化的温度为900-1600℃,时间为1-20小时;
可选地,所述方法还包括:在进行步骤(3)的碳化处理之前,对所述干燥粉末在真空或惰性气氛下进行预先烧制,所述预先烧制的温度为400-800℃,时间为1-12小时。
12.根据权利要求7-11中任意一项所述的方法,其中,所述方法还包括:在步骤(1)和步骤(3)之间的任意阶段进行球磨,使得进行碳化处理的粉末的平均粒径D50为1-50μm,优选为1-40μm,更优选为2-30μm。
13.由权利要求7-12中任意一项所述的方法制备的无定形碳材料。
14.权利要求1-6和13中任意一项所述的无定形碳材料作为机械部件材料、电池电极材料或导热材料的用途。
CN201810482507.3A 2018-05-18 2018-05-18 无定形碳材料及制备方法与用途 Active CN108622872B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201810482507.3A CN108622872B (zh) 2018-05-18 2018-05-18 无定形碳材料及制备方法与用途
US17/055,843 US20210229998A1 (en) 2018-05-18 2018-08-13 Amorphous carbon material, preparation method and use thereof
JP2020564590A JP7090743B2 (ja) 2018-05-18 2018-08-13 アモルファス炭素材料、製造方法及び使用
PCT/CN2018/100254 WO2019218505A1 (zh) 2018-05-18 2018-08-13 无定形碳材料及制备方法与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810482507.3A CN108622872B (zh) 2018-05-18 2018-05-18 无定形碳材料及制备方法与用途

Publications (2)

Publication Number Publication Date
CN108622872A true CN108622872A (zh) 2018-10-09
CN108622872B CN108622872B (zh) 2020-09-29

Family

ID=63693699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810482507.3A Active CN108622872B (zh) 2018-05-18 2018-05-18 无定形碳材料及制备方法与用途

Country Status (4)

Country Link
US (1) US20210229998A1 (zh)
JP (1) JP7090743B2 (zh)
CN (1) CN108622872B (zh)
WO (1) WO2019218505A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086962A (zh) * 2019-12-23 2021-07-09 国家能源投资集团有限责任公司 碳材料及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849723A (zh) * 2012-09-27 2013-01-02 辽宁科技大学 利用预处理烟煤制备煤基炭泡沫的方法
US20140212694A1 (en) * 2013-01-29 2014-07-31 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same, lithium battery including the anode, and method of preparing the composite anode active material

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2965674B2 (ja) * 1990-11-22 1999-10-18 大阪瓦斯株式会社 リチウム二次電池
JP2886331B2 (ja) * 1990-11-22 1999-04-26 大阪瓦斯株式会社 リチウム二次電池
WO1993023889A1 (en) * 1992-05-15 1993-11-25 Yuasa Corporation Secondary cell and its manufacture method
JPH09139209A (ja) * 1995-11-15 1997-05-27 Sony Corp カーボン材料の構造制御方法
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery
JP3870309B2 (ja) * 1997-09-01 2007-01-17 大阪瓦斯株式会社 電極用炭素材料及びその製造方法並びにこれを用いた非水電解液二次電池用負極
EP1288160B1 (en) * 2000-04-27 2008-03-12 Institute of Physics Chinese Academy of Sciences Pyrolyzed hard carbon material, preparation and its applications
JP2003086469A (ja) * 2001-06-27 2003-03-20 Honda Motor Co Ltd 電気二重層キャパシタの電極用活性炭の製造に用いられる炭素化物
JP5216285B2 (ja) 2007-09-18 2013-06-19 Jx日鉱日石エネルギー株式会社 リチウムイオン二次電池負極用非晶質炭素材料及びその製造方法
CN101924209B (zh) * 2009-06-16 2012-11-14 上海宝钢化工有限公司 一种锂离子电池负极材料及其制备方法
KR20120106966A (ko) * 2009-12-24 2012-09-27 도레이 카부시키가이샤 탄소 미립자 및 그 제조 방법
CN102386384B (zh) * 2011-11-28 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 球形硬碳锂离子电池负极材料及其制备方法
KR101857981B1 (ko) * 2013-08-05 2018-05-15 쇼와 덴코 가부시키가이샤 리튬 이온 전지용 부극재 및 그 용도
CN106185862B (zh) 2016-06-30 2018-09-11 中国科学院物理研究所 一种热解硬碳材料及其用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102849723A (zh) * 2012-09-27 2013-01-02 辽宁科技大学 利用预处理烟煤制备煤基炭泡沫的方法
US20140212694A1 (en) * 2013-01-29 2014-07-31 Samsung Sdi Co., Ltd. Composite anode active material, anode including the same, lithium battery including the anode, and method of preparing the composite anode active material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113086962A (zh) * 2019-12-23 2021-07-09 国家能源投资集团有限责任公司 碳材料及其制备方法与应用
CN113086962B (zh) * 2019-12-23 2022-11-08 国家能源投资集团有限责任公司 碳材料及其制备方法与应用

Also Published As

Publication number Publication date
WO2019218505A1 (zh) 2019-11-21
JP7090743B2 (ja) 2022-06-24
CN108622872B (zh) 2020-09-29
JP2021531226A (ja) 2021-11-18
US20210229998A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
Lai et al. Preparation and characterization of flake graphite/silicon/carbon spherical composite as anode materials for lithium-ion batteries
Liu et al. Synthesis and electrochemical properties of Li4Ti5O12/C composite by the PVB rheological phase method
Du et al. One step synthesis of Fe2O3/nitrogen-doped graphene composite as anode materials for lithium ion batteries
US20130295454A1 (en) Low crystallinity silicon composite anode material for lithium ion battery
Luo et al. High performance silicon carbon composite anode materials for lithium ion batteries
Zhang et al. Synthesis of spherical LiFePO4/C via Ni doping
Huang et al. Enhanced rate performance of nano–micro structured LiFePO4/C by improved process for high-power Li-ion batteries
TW201336783A (zh) 鋰離子電池用電極材料之製造方法
JP2004185984A (ja) リチウム二次電池用負極材及びそれを用いたリチウム二次電池
Yang et al. Effects of sodium and vanadium co-doping on the structure and electrochemical performance of LiFePO4/C cathode material for lithium-ion batteries
Liu et al. High energy density LiFePO4/C cathode material synthesized by wet ball milling combined with spray drying method
Huang et al. Preparation and characterization of core-shell structured LiFePO4/C composite using a novel carbon source for lithium-ion battery cathode
CN108565401A (zh) 无定形碳材料及制备方法与用途
Liu et al. Blended spherical lithium iron phosphate cathodes for high energy density lithium–ion batteries
JP5604217B2 (ja) リン酸バナジウムリチウム炭素複合体の製造方法
Sun et al. Outstanding Li-storage performance of LiFePO4@ MWCNTs cathode material with 3D network structure for lithium-ion batteries
CN114388760A (zh) 一种金属氧化物纳米片材料及其制备方法和锂离子电池
Wu et al. Novel synthesis of LiCoPO4–Li3V2 (PO4) 3 composite cathode material for Li-ion batteries
JP2012036049A (ja) リン酸バナジウムリチウム炭素複合体の製造方法
CN108622872A (zh) 无定形碳材料及制备方法与用途
Zhang et al. Construction of superior performance LiVPO4F/C cathode assisting by a regulating additive NH4F and the “Combination-Protection-Release” mechanism for lithium ion batteries
JP5736865B2 (ja) リチウム二次電池用正極活物質材料の製造方法、及びそれを用いたリチウム二次電池
Liu et al. LiFe1-x (Ni0. 98Co0. 01Mn0. 01) xPO4/C (x= 0.01, 0.03, 0.05, 0.07) as cathode materials for lithium-ion batteries
Liu et al. Glycerol-assisted solution combustion synthesis of improved LiMn 2 O 4
JPH11322323A (ja) 炭素化合物及びその製造方法、並びに2次電池用電極

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100011 Beijing Dongcheng District, West Binhe Road, No. 22

Patentee after: CHINA ENERGY INVESTMENT Corp.,Ltd.

Patentee after: Beijing low carbon clean energy research institute

Address before: 100011 Beijing Dongcheng District, West Binhe Road, No. 22

Patentee before: CHINA ENERGY INVESTMENT Corp.,Ltd.

Patentee before: Beijing low carbon clean energy research institute

CP01 Change in the name or title of a patent holder