CN108611603B - 一种金属多层膜的制备方法 - Google Patents

一种金属多层膜的制备方法 Download PDF

Info

Publication number
CN108611603B
CN108611603B CN201810437232.1A CN201810437232A CN108611603B CN 108611603 B CN108611603 B CN 108611603B CN 201810437232 A CN201810437232 A CN 201810437232A CN 108611603 B CN108611603 B CN 108611603B
Authority
CN
China
Prior art keywords
film
layer
multilayer film
thickness
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810437232.1A
Other languages
English (en)
Other versions
CN108611603A (zh
Inventor
操振华
孙超
魏明真
马玉洁
王耿洁
蔡云鹏
孟祥康
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201810437232.1A priority Critical patent/CN108611603B/zh
Publication of CN108611603A publication Critical patent/CN108611603A/zh
Application granted granted Critical
Publication of CN108611603B publication Critical patent/CN108611603B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种金属多层膜的制备方法,先将单晶硅片依次由丙酮和乙醇超声清洗,吹干后放入超高真空磁控溅射设备基片台上,准备镀膜;采用直流磁控溅射法,将金属靶材放在真空室靶台上,在本底真空度为1.0×10‑5~2.5×10‑5Pa的条件下,通入氩气,调节真空度为5~7Pa,进行预溅射;将真空度调至0.5~1Pa,进行镀膜,先镀Cu层,功率为65~80W,然后Ag层,功率为30~50W,Ag膜与Cu膜的沉积速率为0.2nm/s,依次交替沉积,得到Cu/Ag多层膜。本发明操作简单,条件易于控制,重复性好,制得的多层膜层界清晰、厚度均匀、表面光滑平整,具有优良的电学和力学性能,适用于微电子行业。

Description

一种金属多层膜的制备方法
技术领域
本发明涉及一种金属多层膜的制备方法,属于材料技术领域。
背景技术
电子和半导体技术中越来越多使用薄膜材料,如金属、合金、半导体和绝缘材料的薄膜用于制作导体、记忆装置中的磁性元件、电阻、电容器电极、射线探测器、晶体管和各种光学覆层。在宇航工业中,薄膜用做空间飞行器的控温涂层等。
金属多层膜是由两种或两种以上金属交替沉积而成,并最终形成层间界明显并且组分周期性变化的薄膜材料,交替周期数用Λ表示,不同金属膜厚比称为调制比R。随着集成电路工艺进入亚微米及纳米尺度阶段,对薄膜材料的综合性能的要求越来越高,例如,微机电系统的互联材料一般要求具备高强度和高电导率,但是通常来说,薄膜材料中的高强度与高电导率是相互冲突的。当前关于Cu/Ag多层膜的研究主要集中在强化机制上面,而多层膜中强度的提高依赖于界面与晶界等对位错的阻挡,传统的提高金属强度的方法还有加工硬化、固溶强化和晶粒细化等,而这些加工变形使晶粒达到纳米尺度,而界面和晶界对电子的散射作用则是使电阻率升高的主要因素,这些加工过程中会产生大量晶界、缺陷或第二相粒子,这样会破坏晶格的对称性,造成电子的散射,降低材料的电导率,不能满足微机电系统中互联材料的需求。
因此,如何制备得到高强度、高电导率的金属多层膜是目前急待解决的问题。
发明内容
本发明的目的在于解决现有技术的不足,提供一种金属多层膜的制备方法,该工艺操作简单,条件易于控制,重复性好,制得的多层膜层界清晰、厚度均匀、表面光滑平整,具有优良的电学和力学性能。
技术方案
本发明人研究发现,对于纳米金属多层膜,其电子散射机制可能敏感地依赖于膜内大量晶界、异质界面及其协同作用,加之多层膜特有的结构参量也会增加微结构的变异性,导致金属多层膜的电子输运行为变得与金属块体材料大相近庭,因此,金属单层膜的调制周期和调制比对金属多层膜的力学性能和电学性能都有很大影响。本发明人选择金属Cu、Ag金属作为研究对象,通过交替沉积并最终形成显著共格界面特征的调制纳米金属多层膜,采用直流磁控溅射技术来制备调制纳米金属多层膜,通过控制工艺参数,使之具有大量的外延界面和孪晶界面,外延界面和孪晶界面不同于非共格界面,对电子的散射比较小,因此具有良好的导电性,外延界面和孪晶界面同样能够阻碍位错的运动,因而具有较高的硬度。具体方案如下:
一种金属多层膜的制备方法,包括如下步骤:
(1)将厚度为2mm的单晶硅片衬底依次由丙酮和乙醇超声清洗,吹干后,放入超高真空磁控溅射设备基片台上,准备镀膜;
(2)采用直流磁控溅射法,将金属靶材放在真空室靶台上,在本底真空度为1.0×10-5~2.5×10-5Pa的条件下,通入氩气,调节真空室真空度为5.0~7.0Pa,然后开始气辉,预溅射15~30min;
(3)预溅射之后,将真空室真空度调至0.5~1Pa,进行镀膜,先镀Cu层,功率为65~80W,然后Ag层,功率为30~50W,Ag膜与Cu膜的沉积速率均为0.2~0.3nm/s,通过控制沉积时间,来控制单层Ag膜和Cu膜的厚度,保证Ag膜与Cu膜厚度相同,单层Ag膜或Cu膜的厚度为2~80nm,按照先镀Cu层后镀Ag层这个顺序依次交替沉积,得到Cu/Ag多层膜。
进一步,步骤(1)中,单晶硅片衬底依次由丙酮和乙醇超声清洗20~30min。
进一步,步骤(2)中,所述金属靶材为纯度99.999wt%的Cu和99.999wt%的Ag。
进一步,步骤(3)中,单层Ag膜或Cu膜的厚度为6nm。
进一步,步骤(3)中,所述Cu/Ag多层膜的厚度为1000nm。
进一步,步骤(3)中,镀Cu层时,功率为80W,镀Ag层时,功率为30W,Ag膜与Cu膜的沉积速率均为0.2nm/s。
本发明的有益效果:与传统的复合材料多层膜的制备方法相比,本发明具有如下特点:
(1)本发明制得的Cu/Ag纳米多层膜的最大强度为4.16GPa,Cu/Ag纳米多层膜的最大电导率可以达到2.83×107s/m,大于理论计算的铜银多层膜的平均强度2.87GPa和平均电导率1.68×107s/m;
(2)本发明中Cu/Ag纳米多层膜的强度随着单层厚度的减小而增加,在单层厚度为6nm时达到最大值,这主要是由于孪晶界面强化导致强度增加;与此同时,由于大量外延界面的生长,电导率基本保持不变,继续减小单层厚度,电导率逐渐上升,在单层厚度为6nm时,强度与电导率均达到最大值。从而解决了高强度与高电导率这一相互矛盾的问题;
(3)本发明操作简单,条件易于控制,重复性好,可用于实际应用,也为研究其他金属多层膜的电学和力学性能提供了指导作用。
附图说明
图1为实施例4的Cu/Ag多层膜的电镜图;
图2为实施例4的Cu/Ag多层膜的电子衍射图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
镀膜设备:
采用型号为JGP500A的磁控溅射仪,该设备安装三支Φ75mm永磁磁控靶,最大溅射功率为500W;一台四工位具有公转功能的样品转盘,可实现三靶共溅射实验,样品既可加热也可水冷,最高温度可到达800℃,加热速率可调范围在10℃/min-50℃/min,适用于制备多种不同材料薄膜;真空系统主要配有一台2XZ-8(8L/S)型机械泵和FF-200/1200涡沦分子泵,最高真空度可达到6.0×10-6Pa,超高真空度为薄膜成分的精确控制提供了保障。
材料准备:
溅射靶材分别为纯度99.999wt%的Ag和Cu,直径均为75mm;衬底为单晶硅片,厚度为2mm。
实施例1
一种金属多层膜的制备方法,包括如下步骤:
(1)将厚度为2mm的单晶硅片衬底依次由丙酮和乙醇超声清洗20min,吹干后,放入超高真空磁控溅射设备基片台上,准备镀膜;
(2)采用直流磁控溅射法,将金属靶材放在真空室靶台上,在本底真空度为2.5×10-5Pa的条件下,通入氩气,流量为20sccm,调节真空室真空度为5.0Pa,然后开始气辉,预溅射20min;
(3)预溅射之后,将真空室真空度调至0.8Pa,进行镀膜,先镀Cu层,功率为80W,然后Ag层,功率为30W,Ag膜与Cu膜的沉积速率均为0.2nm/s,通过控制沉积时间,来控制单层Ag膜和Cu膜的厚度,保证Ag膜与Cu膜厚度相同,单层Ag膜或Cu膜的厚度为80nm,按照先镀Cu层后镀Ag层这个顺序依次交替沉积,得到Cu/Ag多层膜,Cu/Ag多层膜厚度为1000nm。
实施例2
步骤(3)中,单层Ag膜或Cu膜的厚度为40nm,其余与实施例1相同。
实施例3
步骤(3)中,单层Ag膜或Cu膜的厚度为20nm,其余与实施例1相同。
实施例4
步骤(3)中,单层Ag膜或Cu膜的厚度为6nm,其余与实施例1相同。图1为实施例4的Cu/Ag多层膜的电镜图,图1a是整体形貌,图1b和图1c是明显的外延界面和孪晶界面,图2为Cu/Ag多层膜的电子衍射图。由图1和2可以看出,Cu、Ag膜层的厚度之比基本为1:1,膜层界清晰、厚度均匀,具有大量的共格孪晶,且基本没有大角度晶界。
实施例5
步骤(3)中,单层Ag膜或Cu膜的厚度为2nm,其余与实施例1相同。
对比例1
制备纯Ag膜:2mm的单晶硅片为衬底,室温下只沉积Ag膜,厚度1000nm,得到厚度为1000nm的Ag膜。
对比例2
制备纯Cu膜:2mm的单晶硅片为衬底,室温下只沉积Cu膜,厚度1000nm,得到厚度为1000nm的Cu膜。
性能测试:
用压头为金刚石Berkovich压头的纳米压痕仪对实施例的Cu/Ag多层膜进行硬度测量,采用四探针仪来测量Cu/Ag多层膜的电导率,与对比例的Ag膜和Cu膜进行对比,测试结果见表1:
表1Ag/Cu多层膜与纯Cu、Ag膜的比较
Figure BDA0001654906760000041
备注:平均值*为根据混合规则得到的平均值。
由表1可以看出,本发明中的Cu/Ag纳米多层膜,尤其是单层膜厚度为6nm时,金属多层膜具有高强度的同时具备高电导率,并且稳定好,这是由于Cu/Ag纳米多层膜中形成大面积外延界面与共格孪晶界面,大角晶界数量急剧减少,降低了晶界对电子的散射,保持高强度的同时,还可以获得高的电导率。

Claims (6)

1.一种金属多层膜的制备方法,其特征在于,包括如下步骤:
(1)将厚度为2mm的单晶硅片衬底依次由丙酮和乙醇超声清洗,吹干后,放入超高真空磁控溅射设备基片台上,准备镀膜;
(2)采用直流磁控溅射法,将金属靶材放在真空室靶台上,在本底真空度为1.0×10-5~2.5×10-5Pa的条件下,通入氩气,调节真空室真空度为5.0~7.0Pa,然后开始气辉,预溅射15~30min;
(3)预溅射之后,将真空室真空度调至0.5~1Pa,进行镀膜,先镀Cu层,功率为65~80W,然后Ag层,功率为30~50W,Ag膜与Cu膜的沉积速率均为0.2~0.3nm/s,通过控制沉积时间,来控制单层Ag膜和Cu膜的厚度,保证Ag膜与Cu膜厚度相同,单层Ag膜或Cu膜的厚度为6~20nm,按照先镀Cu层后镀Ag层这个顺序依次交替沉积,得到Cu/Ag多层膜。
2.如权利要求1所述的金属多层膜的制备方法,其特征在于,步骤(1)中,单晶硅片衬底依次由丙酮和乙醇超声清洗20~30min。
3.如权利要求1所述的金属多层膜的制备方法,其特征在于,步骤(2)中,所述金属靶材为纯度99.999wt%的Cu和99.999wt%的Ag。
4.如权利要求1所述的金属多层膜的制备方法,其特征在于,步骤(3)中,单层Ag膜或Cu膜的厚度为6nm。
5.如权利要求1所述的金属多层膜的制备方法,其特征在于,步骤(3)中,所述Cu/Ag多层膜的厚度为1000nm。
6.如权利要求1至5任一项所述的金属多层膜的制备方法,其特征在于,步骤(3)中,镀Cu层时,功率为80W,镀Ag层时,功率为30W,Ag膜与Cu膜的沉积速率均为0.2nm/s。
CN201810437232.1A 2018-05-09 2018-05-09 一种金属多层膜的制备方法 Active CN108611603B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810437232.1A CN108611603B (zh) 2018-05-09 2018-05-09 一种金属多层膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810437232.1A CN108611603B (zh) 2018-05-09 2018-05-09 一种金属多层膜的制备方法

Publications (2)

Publication Number Publication Date
CN108611603A CN108611603A (zh) 2018-10-02
CN108611603B true CN108611603B (zh) 2020-09-04

Family

ID=63662676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810437232.1A Active CN108611603B (zh) 2018-05-09 2018-05-09 一种金属多层膜的制备方法

Country Status (1)

Country Link
CN (1) CN108611603B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109881191B (zh) * 2019-03-29 2020-05-22 上海交通大学 一种用于电接触材料银铜扩散涂层的制备方法
CN110983255B (zh) * 2019-12-19 2021-09-21 南京工程学院 一种含有L12有序相的Ni基多层膜的制备方法
CN111020513B (zh) * 2019-12-30 2022-01-07 西安理工大学 一种提高纳米金属多层膜韧性的方法
CN113718202B (zh) * 2021-09-07 2022-07-01 曲阜师范大学 一种石墨炔润滑薄膜的制备方法及其应用
CN113913769A (zh) * 2021-10-29 2022-01-11 南京南智先进光电集成技术研究院有限公司 一种多衬底适用的纳米导电金属薄膜制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104630711B (zh) * 2015-01-28 2017-04-26 西安交通大学 一种塑性金属纳米 Cu/Ru 多层膜的制备方法

Also Published As

Publication number Publication date
CN108611603A (zh) 2018-10-02

Similar Documents

Publication Publication Date Title
CN108611603B (zh) 一种金属多层膜的制备方法
TWI398537B (zh) 濺鍍設備及用以製造金屬化結構的方法
Cemin et al. Low electrical resistivity in thin and ultrathin copper layers grown by high power impulse magnetron sputtering
CN108468032B (zh) 一种塑性提升的纳米晶薄膜制备方法
CN105063560B (zh) 利用磁控溅射法制备电阻率分布均匀的azo薄膜的方法
JP2000091271A (ja) 電子回路製造方法
TW201900915A (zh) 具有包含TaC的塗層的碳材料及其製造方法
CN104630711B (zh) 一种塑性金属纳米 Cu/Ru 多层膜的制备方法
CN101117705A (zh) 钨酸锆-铜梯度复合薄膜的制备方法
KR101695590B1 (ko) 티타늄금속기판 위에 다이아몬드 코팅층이 형성된 수처리용 구조재 및 그 제조 방법
TW201902858A (zh) 具有包含TaC 的塗層的碳材料及其製造方法
CN105304736B (zh) 磁控溅射联合快速退火技术制备Ge/Si量子点
JP2008214728A (ja) セラミックス膜の製造方法
KR102659491B1 (ko) 배선 재료용 저저항 필름의 제조 방법
CN110344015B (zh) 一种脉冲电场辅助的薄膜制备或处理的装置及方法
CN112376028A (zh) 一种Sn掺杂Ge2Sb2Te5热电薄膜及其制备方法
CN112038481A (zh) 重稀土掺杂ZnO柱状晶择优取向压电薄膜材料及其制备方法
Gelali et al. Structure and morphology of the Cu films grown by DC magnetron sputtering
CN110668392A (zh) 增强散热Cu-Cu2O核壳纳米线阵列自保护电极及制备方法
JPS58157963A (ja) 高融点金属又は金属化合物から成る層の製造方法
Lu et al. Effect of sputtering power on the properties of TaN thin films prepared by the magnetron sputtering
CN113913769A (zh) 一种多衬底适用的纳米导电金属薄膜制备方法
CN108486530A (zh) 在线加热实现玻璃Be2Ti3薄膜p-n型转变的方法
TWI597377B (zh) Copper plating with good thermal conductivity and illuminance and preparation method thereof
CN117637266A (zh) 一种双层膜结构的埋嵌电阻薄膜材料

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant