CN108585794A - 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料 - Google Patents

一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料 Download PDF

Info

Publication number
CN108585794A
CN108585794A CN201810454190.2A CN201810454190A CN108585794A CN 108585794 A CN108585794 A CN 108585794A CN 201810454190 A CN201810454190 A CN 201810454190A CN 108585794 A CN108585794 A CN 108585794A
Authority
CN
China
Prior art keywords
powder
ceramic material
crmn
temperature coefficient
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810454190.2A
Other languages
English (en)
Inventor
关芳
黄世峰
林秀娟
戴晗
程新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201810454190.2A priority Critical patent/CN108585794A/zh
Publication of CN108585794A publication Critical patent/CN108585794A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/42Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明提供了一种铁掺杂钙钛矿型负温度系数热敏陶瓷材料的制备方法:按La:Cr:Mn原子百分比为20‑55:5‑75:5‑40称取原料进行湿磨,得浆料;浆料干燥研磨后得粉体;再煅烧,得到钙钛矿相的La(CrMn)O3的粉体;将粉体制备成块体材料后采用两步烧结法,随炉冷却即得到铁掺杂钙钛矿型负温度系数热敏陶瓷材料。通过该方法获得的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料的电学参数为:ρ 25°C=15.2Ω·cm‑13823.2KΩ·cm±2%,B25/50=2688‑3942K±1.5%,该材料具有高阻、低B及低阻、高B的参数组合、一致性好、稳定性高、可重复的特点,分别适用于宽温区内温度的测量、控制、线路补偿和抑制浪涌电流。

Description

一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料
技术领域
本发明属于新型热敏陶瓷材料领域,具体涉及一种采用氧化物固相法制备铬锰共占位钙钛矿型负温度系数热敏陶瓷材料的方法。
背景技术
负温度系数(NTC)热敏电阻,因其具有测温精度高、互换性好、可靠性高、成本低廉等优点,在温度测量、控制、补偿及通讯设备的远程控制等多方面得到了广泛的应用,被认为是具有极大发展潜力的电子元器件,有着很好的应用前景。通常AB2O4型尖晶石结构是NTC热敏陶瓷材料的主晶相,随着科技和需求的发展,这类材料的局限性日益突出。当材料的电阻率较高时其B值也高,反之亦然,同时尖晶石结构组成的多元系陶瓷材料的稳定性较差,烧结后的陶瓷处于非平衡状态,造成材料电学性能改变,这两点制约了尖晶石NTC热敏元件的应用,解决此问题的关键是探索新的NTC热敏陶瓷材料。
钙钛矿结构(ABO3)陶瓷铬酸镧(LaCrO3)与锰酸镧(LaMnO3)因具有巨磁阻(GMR)效应、传感和催化性能,而在固体氧化物燃料电池连接材料、高温发热材料、催化剂等方面得到广泛的应用,是很有前途的功能陶瓷材料。但在作为NTC热敏电阻材料方面的研究和应用很少,铬酸镧与锰酸镧具有良好的高温稳定性,且在一定温度范围内具有NTC特性,通过技术处理有望代替传统的尖晶石相,解决上述NTC热敏陶瓷材料面临的问题。LaCrO3具有高的电阻率,且其导电性受掺杂离子和环境的可调控性高;LaMnO3具有良好的导电性,其室温电阻率低于1 Ω·cm。通过复合实现铬锰共占钙钛矿ABO3的B位,进而调控其电性能参数,获得参数逆势变化即高阻、低B及低阻、高B,稳定性好、一致性好的NTC热敏电阻材料。
发明内容
针对目前缺少高精度,高阻、低B和低阻、高B元器件的问题,本发明提供一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,电性能参数可调,稳定性好、一致性好。
本发明的另一目的是提供一种上述热敏陶瓷材料的制备方法。
为实现上述目的,本发明采用如下技术方案。
一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料的制备方法,包括以下步骤:
(1)按La:Cr:Mn原子百分比为20-55:5-75:5-40称取La2O3、Cr2O3、MnO2进行湿磨,得浆料;
(2)将步骤(1)中的浆料干燥,然后研磨得粉体;
(3)将步骤(2)中的粉体煅烧,得到钙钛矿相的La(CrMn)O3的粉体;
(4)将步骤(3)中的粉体压制成钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中的块体材料先升温至1350-1450℃,然后再降温至1200-1300℃保温,随炉冷却即得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料。
步骤(1)中,所述湿磨以玛瑙球为球磨介质,以无水乙醇为分散介质;玛瑙球:原料:无水乙醇质量比为2.5:1:1;优选的,湿磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;湿磨时间为10-24h。
步骤(2)中干燥温度为80-100℃;研磨时间为1h。
步骤(3)中煅烧温度为于950-1050℃;煅烧时间为1-3h。
步骤(3)中,La(CrMn)O3粉体为单一钙钛矿结构,D50为0.128-1.054μm。所述D50是指累计粒度体积分布百分数达到50%时所对应的粒径。
步骤(3)还包括将钙钛矿相La(CrMn)O3研磨,得到粒度均匀的粉体的过程;所述粉体的D50为0.101-0.974μm。
步骤(4)中,优选的制备方法为在10Mpa的压力下压制成Φ10mm的圆片,保压时间为3min,再将该圆片于350Mpa的压力下冷等静压4min,即得。
步骤(5)中,所述升温速率为5-10℃/min;所述降温时间为1-5min;保温时间为5-15h。
一种上述方法获得的La(CrMn)O3陶瓷材料;所述陶瓷材料的相对密度为95.0-97.0%;所述陶瓷材料的电学参数为:ρ 25°C=15.2-13823.2Ω·cm±2%,B25/50=2688-3942K±1.5%。
本发明具有以下优点:
在粉体制备时,磨料的方式对粉体的粒度和均匀性有着重要的影响。本发明采用湿磨的方式,以无水乙醇为球磨分散介质,在液相的氛围下球磨,由于表面张力的作用,提高了粉体的球磨活性;而且在球磨的过程中顺逆时针方向球磨交替规律进行,使球磨更充分,这样得到的粉体粒度均匀、分散性好,颗粒尺寸小,经成型烧结后得到的材料成瓷性好,热敏陶瓷材料一致性好,稳定性高。
采用铬锰共占位钙钛矿结构ABO3的B位制备高阻、低B及低阻、高B参数逆势变化的负温度系数热敏陶瓷材料,通过调整和改变共占位离子铬锰的相对含量,改变了其电性能参数变化方向,改善了NTC热敏陶瓷材料的高温稳定性,扩大了其作为NTC热敏电阻陶瓷材料的应用范围。
制备铬锰共占位钙钛矿型负温度系数热敏陶瓷材料时,为避免高温烧结过程中晶粒长大,影响其电性能,采用两步烧结法,即升温至最高烧结温度后快速降温到一定温度,于该低温长时间保温,通过这种对温度的控制,在抑制晶界迁移的同时,保持晶界扩散处于活跃状态,实现了晶粒不长大的前提下完成烧结的目的;另外从环保的角度,该烧结制度能有效节能。通过该方法最终制得晶粒尺寸小而分布均匀,具有高阻、低B及低阻、高B参数逆势变化、稳定性高、一致性好的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,可适用于宽温区内温度的测量、控制、线路补偿和抑制浪涌电流。
附图说明
图1为不同Mn掺杂量获得的负温度系数热敏陶瓷材料的XRD图谱;
图2为实施例1的负温度系数热敏陶瓷材料SEM图片。
具体实施方式
下面结合实施例和附图对本发明做进一步说明,但本发明不受下述实施例的限制。
实施例1
(1)首先以La2O3、Cr2O3、MnO2为原料,按钙钛矿相La(CrMn)O3中原子百分比为La:Cr:Mn=50:45:5称取各氧化物置于玛瑙球磨罐中,以玛瑙球为球磨介质、无水乙醇为分散介质,湿磨15h,控制球磨罐中各物质质量比为:玛瑙球:料:无水乙醇=2.5:1:1,球磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;
(2)将步骤(1)中湿磨后的浆料在真空干燥箱中于80℃下干燥,然后研磨1h得到粉体;
(3)将步骤(2)中得到的粉体于950℃下煅烧2h,得到步骤a中的钙钛矿相的La(CrMn)O3粉体,粉体颗粒度为0.746μm;然后置于玛瑙研钵中研磨4h,得到粒度均匀的粉体材料,粉体颗粒度为0.469μm;
(4)将步骤(3)中得到的粉体在10Mpa的压力下压制成Φ10mm的圆片,保压时间为3min,再将该圆片于350Mpa的压力下冷等静压4min,得到成型良好的钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中得到的块体材料以10℃/min的速率升至1400℃,然后在4min内将温度迅速降至1250℃保温10h,随炉冷却即可得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,其相对密度为96.0%;
将得到的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料进行电性能测试,其电学参数为ρ25°C =13823Ω·cm±2%,B25/50=3942K±1.5%;该材料适用于宽温区下温度的的测量、控制、线路补偿。其XRD图谱如图1所示;其SEM照片如图2所示,晶粒尺寸小而均匀,致密度高。
实施例2
(1)首先以La2O3、Cr2O3、MnO2为原料,按钙钛矿相La(CrMn)O3中原子百分比为La:Cr:Mn=50:15:35称取各氧化物置于玛瑙球磨罐中,以玛瑙球为球磨介质、无水乙醇为分散介质,湿磨20h,控制球磨罐中各物质质量比为:玛瑙球:料:无水乙醇=2.5:1:1,球磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;
(2)将步骤(1)中湿磨后的浆料在真空干燥箱中于80℃下干燥,然后研磨1h得到粉体;
(3)将步骤(2)中得到的粉体于1000℃下煅烧2h,得到步骤a中的钙钛矿相的La(CrMn)O3粉体,粉体颗粒度为0.417μm;然后置于玛瑙研钵中研磨4h,得到粒度均匀的粉体材料,粉体颗粒度为0.306μm;
(4)将步骤(3)中得到的粉体在10Mpa的压力下压制成Φ10mm的圆片,保压时间为3min,再将该圆片于350Mpa的压力下冷等静压4min,得到成型良好的钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中得到的块体材料以8℃/min的速率升至1350℃,然后在5min内将温度迅速降至1230℃保温12h,随炉冷却即可得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,其相对密度为95.8%;
将得到的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料进行电性能测试,其电学参数为ρ 25°C=15.2Ω·cm±2%,B25/50=2688K±1.5%;该材料适用于抑制浪涌电流。其XRD图谱如图1所示。
实施例3
(1)首先以La2O3、Cr2O3、MnO2为原料,按钙钛矿相La(CrMn)O3中原子百分比为La:Cr:Mn=50:35:15称取各氧化物置于玛瑙球磨罐中,以玛瑙球为球磨介质、无水乙醇为分散介质,湿磨24h,控制球磨罐中各物质质量比为:玛瑙球:料:无水乙醇=2.5:1:1,球磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;
(2)将步骤(1)中湿磨后的浆料在真空干燥箱中于100℃下干燥,然后研磨1h得到粉体;
(3)将步骤(2)中得到的粉体于900℃下煅烧2h,得到步骤a中的钙钛矿相的La(CrMn)O3粉体,粉体颗粒度为0.128μm;然后置于玛瑙研钵中研磨4h,得到粒度均匀的粉体材料,粉体颗粒度为0.101μm;
(4)将步骤(3)中得到的粉体在10Mpa的压力下压制成Φ10mm的圆片,保压时间为3min,再将该圆片于350Mpa的压力下冷等静压4min,得到成型良好的钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中得到的块体材料以5℃/min的速率升至1450℃,然后在5min内将温度迅速降至1300℃保温12h,随炉冷却即可得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,其相对密度为97.0%;
将得到的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料进行电性能测试,其电学参数为ρ 25°C=4965.0Ω·cm±2%,B25/50=3785K±1.5%;该材料适用于宽温区下温度的的测量、控制、线路补偿。其XRD图谱如图1所示。
实施例4
(1)首先以La2O3、Cr2O3、MnO2为原料,按钙钛矿相La(CrMn)O3中原子百分比为La:Cr:Mn=50:25:25称取各氧化物置于玛瑙球磨罐中,以玛瑙球为球磨介质、无水乙醇为分散介质,湿磨10h,控制球磨罐中各物质质量比为:玛瑙球:料:无水乙醇=2.5:1:1,球磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;
(2)将步骤(1)中湿磨后的浆料在真空干燥箱中于90℃下干燥,然后研磨1h得到粉体;
(3)将步骤(2)中得到的粉体于900℃下煅烧2h,得到步骤a中的钙钛矿相的La(CrMn)O3粉体,粉体颗粒度为1.054μm;然后置于玛瑙研钵中研磨4h,得到粒度均匀的粉体材料,粉体颗粒度为0.974μm;
(4)将步骤(3)中得到的粉体在10Mpa的压力下压制成Φ10mm的圆片,保压时间为3min,再将该圆片于350Mpa的压力下冷等静压4min,得到成型良好的钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中得到的块体材料以8℃/min的速率升至1400℃,然后在3min内将温度迅速降至1270℃保温15h,随炉冷却即可得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料,其相对密度为96.5%;
将得到的铬锰共占位钙钛矿型负温度系数热敏陶瓷材料进行电性能测试,其电学参数为ρ 25°C=40.9Ω·cm±2%,B25/50=3191K±1.5%;该材料适用于抑制浪涌电流,其XRD图谱如图1所示。

Claims (10)

1.一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料的制备方法,其特征在于,包括以下步骤:
(1)按La:Cr:Mn原子百分比为20-55:5-75:5-40称取La2O3、Cr2O3、MnO2进行湿磨,得浆料;
(2)将步骤(1)中的浆料干燥,然后研磨得粉体;
(3)将步骤(2)中的粉体煅烧,得到钙钛矿相的La(CrMn)O3的粉体;
(4)将步骤(3)中的粉体压制成钙钛矿相La(CrMn)O3块体材料;
(5)将步骤(4)中的块体材料先升温至1350-1450℃,然后再降温至1200-1300℃保温,随炉冷却即得到铬锰共占位钙钛矿型负温度系数热敏陶瓷材料。
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)中,所述湿磨以玛瑙球为球磨介质,以无水乙醇为分散介质;玛瑙球:原料:无水乙醇质量比为2.5:1:1。
3.根据权利要求2所述的制备方法,其特征在于,湿磨为顺逆时针方向交替进行,顺逆时针间隔时间30min;湿磨时间为10-24h。
4.根据权利要求1所述的制备方法,其特征在于,步骤(2)中干燥温度为80-100℃;研磨时间为1h。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)中煅烧温度为于950-1050℃;煅烧时间为1-3h。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)中,La(CrMn)O3粉体为单一钙钛矿结构,D50为0.128-1.504μm。
7.根据权利要求1所述的制备方法,其特征在于,步骤(3)还包括将钙钛矿相La(CrMn)O3研磨,得到粒度均匀的粉体的过程。
8.根据权利要求1所述的制备方法,其特征在于,步骤(5)中,所述升温速率为5-10℃/min;所述降温时间为1-5min;保温时间为5-15h。
9.一种如权利要求1-8任一所述的方法获得的La(CrMn)O3陶瓷材料。
10.根据权利要求9所述的La(CrMn)O3陶瓷材料,其特征在于,相对密度为95.0-97.0%。
CN201810454190.2A 2018-05-14 2018-05-14 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料 Pending CN108585794A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810454190.2A CN108585794A (zh) 2018-05-14 2018-05-14 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810454190.2A CN108585794A (zh) 2018-05-14 2018-05-14 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料

Publications (1)

Publication Number Publication Date
CN108585794A true CN108585794A (zh) 2018-09-28

Family

ID=63637025

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810454190.2A Pending CN108585794A (zh) 2018-05-14 2018-05-14 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料

Country Status (1)

Country Link
CN (1) CN108585794A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054493A (zh) * 2019-03-26 2019-07-26 济南大学 一种铬酸镧基钙钛矿相与尖晶石相ntc热敏陶瓷材料及制备方法
CN112420296A (zh) * 2020-12-02 2021-02-26 句容市双诚电子有限公司 一种高稳定性耐压ntc陶瓷热敏电阻及其制备工艺
CN112876232A (zh) * 2021-01-26 2021-06-01 南京理工大学 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN115925418A (zh) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 一种低温ntc热敏电阻陶瓷及其制备方法
WO2023093221A1 (zh) * 2021-11-29 2023-06-01 湖南纳金新材料技术有限公司 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009088494A (ja) * 2007-09-13 2009-04-23 Mitsubishi Materials Corp サーミスタ素子及びその製造方法
CN101765573A (zh) * 2007-08-03 2010-06-30 三菱综合材料株式会社 热敏电阻用金属氧化物烧结体、热敏电阻元件、热敏电阻温度传感器和热敏电阻用金属氧化物烧结体的制备方法
CN101882490A (zh) * 2010-03-25 2010-11-10 中国科学院新疆理化技术研究所 一种稀土氧化物掺杂负温度系数热敏电阻材料
CN102211924A (zh) * 2011-04-01 2011-10-12 中国科学院新疆理化技术研究所 复合相负温度系数热敏陶瓷材料的制备方法
CN102627458A (zh) * 2012-05-04 2012-08-08 中国科学院新疆理化技术研究所 一种宽温区负温度系数热敏电阻材料
CN103121837A (zh) * 2013-03-20 2013-05-29 中国科学院新疆理化技术研究所 一种铝掺杂钙钛矿相负温度系数热敏陶瓷材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101765573A (zh) * 2007-08-03 2010-06-30 三菱综合材料株式会社 热敏电阻用金属氧化物烧结体、热敏电阻元件、热敏电阻温度传感器和热敏电阻用金属氧化物烧结体的制备方法
JP2009088494A (ja) * 2007-09-13 2009-04-23 Mitsubishi Materials Corp サーミスタ素子及びその製造方法
CN101882490A (zh) * 2010-03-25 2010-11-10 中国科学院新疆理化技术研究所 一种稀土氧化物掺杂负温度系数热敏电阻材料
CN102211924A (zh) * 2011-04-01 2011-10-12 中国科学院新疆理化技术研究所 复合相负温度系数热敏陶瓷材料的制备方法
CN102627458A (zh) * 2012-05-04 2012-08-08 中国科学院新疆理化技术研究所 一种宽温区负温度系数热敏电阻材料
CN103121837A (zh) * 2013-03-20 2013-05-29 中国科学院新疆理化技术研究所 一种铝掺杂钙钛矿相负温度系数热敏陶瓷材料

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
关芳等: "Ti掺杂对(LaMn1-xTixO3)0.67(NiMn2O4)0.33(0≤x≤0.7) 陶瓷材料微结构及电性能影响", 《无机化学学报》 *
杨文等: "LaCrMnNiO系热敏陶瓷的微观结构控制", 《功能材料》 *
王迎军等: "《新型材料科学与技术 无机材料卷 中》", 31 October 2016, 华南理工大学出版社 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110054493A (zh) * 2019-03-26 2019-07-26 济南大学 一种铬酸镧基钙钛矿相与尖晶石相ntc热敏陶瓷材料及制备方法
CN112420296A (zh) * 2020-12-02 2021-02-26 句容市双诚电子有限公司 一种高稳定性耐压ntc陶瓷热敏电阻及其制备工艺
CN112420296B (zh) * 2020-12-02 2022-08-05 句容市双诚电子有限公司 一种高稳定性耐压ntc陶瓷热敏电阻及其制备工艺
CN112876232A (zh) * 2021-01-26 2021-06-01 南京理工大学 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
WO2023093221A1 (zh) * 2021-11-29 2023-06-01 湖南纳金新材料技术有限公司 一种高稳定低损耗的微波介质陶瓷材料的制备方法及应用其制得的微波介质陶瓷材料
CN115925418A (zh) * 2022-12-14 2023-04-07 肇庆市金龙宝电子有限公司 一种低温ntc热敏电阻陶瓷及其制备方法

Similar Documents

Publication Publication Date Title
CN108585794A (zh) 一种铬锰共占位钙钛矿型负温度系数热敏陶瓷材料
CN108439982A (zh) 一种轴向复合负温度系数热敏陶瓷材料及其制备方法
CN104016674B (zh) 一种钛酸钡基无铅压电陶瓷及其制备方法
CN102211924B (zh) 复合相负温度系数热敏陶瓷材料的制备方法
CN109037759A (zh) 制备致密石榴石型锂离子固体电解质的烧结方法
CN107056273A (zh) 一种双层负温度系数热敏电阻及其制备方法
CN109626996A (zh) 一种铝铁共掺杂石榴石型Li7La3Zr2O12锂离子导体材料及其制备方法
CN105777093A (zh) 一种高b低阻型测温复合热敏电阻材料及其制备方法
CN107324799A (zh) 一种类钙钛矿型高温热敏电阻材料及其制备方法
CN110054493A (zh) 一种铬酸镧基钙钛矿相与尖晶石相ntc热敏陶瓷材料及制备方法
CN112876232B (zh) 一种高温ntc热敏陶瓷材料及其放电等离子烧结方法
CN110550947A (zh) 一种钇和锆共掺杂的宽温区高温热敏电阻材料及其制备方法
Ma et al. Preparation routes and electrical properties for Ni 0.6 Mn 2.4 O 4 NTC ceramics
CN101604566A (zh) 一种适合低浪涌电压电器使用的氧化锌压敏电阻材料及制备方法
CN109456054A (zh) 一种低介电损耗bnt基无铅热释电陶瓷材料及其制备方法
CN102311259A (zh) 复合相负温度系数热敏陶瓷材料
CN104557040B (zh) 一种高温热敏电阻材料及其制备方法
CN108585854A (zh) 一种铁掺杂钙钛矿型负温度系数热敏陶瓷材料及其制备
CN104211399B (zh) 一种电阻温度系数可控的多晶靶材的制备方法
CN106495688B (zh) 一种兼具场致增强热释电性能和宽温区电卡效应新型陶瓷材料及其制备方法
CN101343729A (zh) 镍酸镧导电金属氧化物纳米薄膜的制备方法
CN107500756A (zh) 一种高介电常数低损耗SrTiO3基介质材料及其制备方法
CN107140977B (zh) 钡掺杂铬酸镧包覆钇稳定氧化锆负温度系数热敏复合陶瓷材料的制备方法
CN110357630A (zh) 一种高性能铌酸钠基无铅热释电陶瓷材料及其制备方法和应用
CN102976750A (zh) 一种氧化镁改性的锆钛酸铅热释电陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180928

RJ01 Rejection of invention patent application after publication